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Abstract To realize autonomous navigation of intelligent
robots in a variety of settings, analysis and classification
of places, and the ability to actively collect information
are necessary. In this paper, visual data are organized
into an orientation histogram to roughly express input
images by extracting and cumulating straight lines
according to direction angle. In addition, behavioral data
are organized into a behavioral histogram by cumulating
motions performed to avoid obstacles encountered while
the robot is executing specified behavioral patterns. These
visual and behavioral data are utilized as input data, and
the probability that a place belongs to a specific class is
calculated by designating the places already learnt by the
robot as categories. The naive Bayes classification method
is employed, in which the probability is calculated that
the input data belong to each specific category, and the
category with the highest probability is then selected. The
location of the robot is classified by merging the
probabilities for visual and behavioral data.

The experimental results are as follows. First, a
comparison of behavioral patterns used by the robot to
collect data about a place indicates that a rotational
behavior pattern provides the best performance. Second,
classification performance is more accurate with two

types of input data than with a single type of data.

www.intechweb.org

Keywords place classification, vision data, behavior data,

Naive Bayes

1. Introduction

Environment recognition technology, which allows an
intelligent robot to recognize a given environment, is
necessary to enable the interaction technology by which
robots can coexist with humans and to allow their use in
the fields of home service, education, and entertainment.
The environment recognition function is the most
fundamental component of such a technology, and
environment recognition data can be utilized as basic
information in fields such as context reasoning, setting up
paths, control, and SLAM
(Simultaneous Localization and Mapping).

robot travel travel

In many previous studies, place classification has been
accomplished by using a visual sensor capable of
obtaining a large quantity of information. However,
methods that utilize only a visual sensor are beset by
uncertainty due to internal and external discrepancies,
such as changes in light and noise input. Moreover, the
various complicated algorithms developed to solve this
problem entail significant computational costs for multi-
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step convolutions [1]. Therefore, techniques are required
for classifying and recognizing places using additional
sensors to complement the limits of the visual sensor
[21[3][4][5][6]. The limits of a visual sensor can be overcome
by adding data such as the distance from obstacles,
collisions with obstacles, and the slope of the floor, all of
which can be obtained from the visual sensor. However,
this approach collects place information passively, and the
robot can travel only along a planned path, or be operated
by a human. In the absence of place information, it would
be difficult for the robot to recognize a place.

Eventually, some intentional action is required to cope
with changes in the environment and to collect place
information. This suggests a search of past information to
recognize a place, and also more active acquisition of
place information by observing and experiencing a place
while performing movements.

Here, movements that enable active information collection
for place classification will be developed, together with a
place classification technique with low computational
complexity and high accuracy, using a simple image-
processing technology that is less affected by lighting.

Behavioral patterns for a robot are defined to actively
classify places, and a classification procedure is suggested,
based on the information obtained by the robot while
executing these behavioral patterns. A behavioral pattern
is first defined to review a place. The robot then reviews
its location by executing the predefined behavioral
pattern to observe and experience the place. By defining
and comparing 3 types of behavioral pattern (rotational,
rectangular, and random), the best behavioral pattern is
determined.

The data obtained during the robot's execution of the
behavioral patterns are recorded continuously, and are
defined as either visual or behavioral data. Visual data
express the overall characteristics of an image, and can be
converted to a set of straight lines via the Hough transform.
The orientations and magnitudes of these lines are
calculated, and an orientation histogram is constructed by
cumulating the straight line components[7]. Behavioral
data are obtained by recording the movements of the robot
to avoid walls and obstacles while executing a given
behavioral pattern. A behavior histogram is constructed by
designating travel commands such as "go straight," "turn
left," "turn right," "stop," "back up," and "bumper impact"
as the bins of the horizontal axis, and cumulating the
number of times each command is carried out.

The naive Bayes classification method is used to classify
places in terms of these two types of data [8]. This technique
calculates the probability that an item belongs to each
specified category, and then selects the category with the
highest probability. In the present study, the major units of
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the horizontal axes in the orientation histogram and the
behavior histogram are defined as key points that represent
the orientation angle and the movements performed by the
robot. These two histograms define the visual and
behavioral data for place classification. After designating the
places already learnt as categories to be classified, the
probability that the data belong to each specified category is
calculated, and the category with the highest probability is
then selected. The location of the robot is classified by
merging the probabilities for the visual and behavioral data.
Finally, a specific technique for classifying the given location
as a relevant place is suggested.

2. Related Work

This section contains a brief review of existing research on
active behaviors executed to collect place information.
References relevant to place classification are emphasized,
and the primary techniques used in the cited studies are
described. Particular attention is paid to place classification
studies that use various sensor types to obtain different
types of information, and studies in which specific behaviors
are executed to determine peripheral environments.

2.1 Sensory Motor Coordination

In Sensory Motor Coordination (SMC), an animal engages
in physical behavioral reactions according to information
obtained from its perceptual
environment [9]. The movements comprising the animal's
actions are generated by muscle contraction and relaxation
produced by electrochemical signals, and these movements
can be explained in terms of changes in the environment
and the perceptual organ that recognizes these changes.

organs in a given

SMC can be applied to behavior-based robotics. This is
the basic concept for behaviors executed by a robot, and
also a basic pattern of higher level learning and reasoning.
In general, a robot's response to sensor stimulation and
the classification of sensor stimulation in terms of the
robot's behavior can be accomplished via SMC. This
means that if a robot is following a pre-trained behavior
pattern and encounters an obstacle that is not pre-trained,
the robot classifies the unknown obstacle in a manner
appropriate to the behavior it is currently executing,
thereby learning it. This was demonstrated by Pfeifer in a
travel experiment in which the sizes of certain objects
from a group of familiar objects were manipulated, and
the robot was permitted to travel among these objects and
classify the manipulated objects until its mode of travel
was appropriate [10]. An SMC-based robot can execute a
behavior and react to stimulation from the environment,
and learn by classifying the stimulation on the basis of the
behavior being executed. Active behavioral patterns are
defined by incorporating the SMC concept, and are
executed to collect information for place classification.
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2.2 Place Classification Method

In the robot-installed sensor-based method, a robot is
equipped with sensing devices, such as visual sensors
and distance sensors, to classify places via information
obtained while traveling. This technique can be utilized
without external devices in an indoor/outdoor
environment, and provides input suitable for use as high-
level knowledge, such as circumstance recognition and
reasoning, depending on the available information.
Among the sensors commonly employed, visual sensors
have attracted particular interest because of their capacity

for gathering information in quantity.

Place classification methods based on visual sensors
typically employ a camera to obtain images in real time,
process information such as size, location, and color from
the images, and finally use this information to classify the
place. Much ongoing research of this type has been
devoted to finding a technique for recognizing natural or
in a place, for ontology
representation of domain knowledge, and as context
information on pre-trained places or objects.

artificial land markers

Recognition methods for landmarks classify a place by
predefining the place to be relevant to a designated
landmark [11][12][13][14][15][16]. Natural landmarks
designate physical objects in a place, while artificial
landmarks are artificially preinstalled in a fixed pattern.
After feature information on the underlying physical
object has been saved to a database, a landmark is
recognized by extracting and matching these features,
using a technique such as SIFT (scale-invariant feature
transform)[1], and the object is identified as a predefined
place based on the relevant landmark. Assuming that
lighting is constant and a robot can be placed exactly
where it can recognize a physical object, good place
classification, place recognition, and object recognition
can be expected.

Rottmann et al. proposed a procedure for semantic place
classification, using metric data from a laser range sensor
and semantic information on recognized objects and
humans [2]. They suggested the Adaboost model, which
contains probabilistic models for low-level features up to
high-level inference. In this way, they were able to
classify more categories, such as kitchen, office, and
laboratory.

Constructing a knowledge system with ontology
representation provides a complementary method in
cases of scene recognition failure or lack of learning data
[17][18][19]. Such a procedure is also capable of
classifying a place even when there is no learning data in
the database. However, as clustering classifies target
recognition data only after all the data have been
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collected, it is difficult to use in cases in which the data
occur in sequence, and hence should be classified in real
time. That is, the technique focuses more on place
classification from small amounts of data than on real-
time properties.

Another method for place classification in terms of
context utilizes the context information of a pre-trained
scene [20][21][22][23]. This procedure can overcome
ambiguity caused by blurring of images, camera noise,
and similarity of environment generated by robot
movement, and can also enhance recognition accuracy.
As this technique is based on the idea that the component
factors of an image provide related information about a
physical object, and specified place-forming relations do
not exist independently or arbitrarily, it could provide
more accurate place recognition by including place
context, layer context, and time context in the analysis.

3. Definition of Robot Action
3.1 Sensory Motor Coordination

To experience a place means that a robot actually
performs actions in that place, and acquires knowledge or
functions from the experience. Specific patterns are not
required for a traveling robot that can sense obstacles
using a distance sensor. However, a robot could acquire
more reliable information through direct experience, such
as actual collisions with obstacles and the actions taken to
avoid them, instead of using a distance sensor.

In this case, to actively acquire information in its current
location, the robot must travel according to a given
format. Consequently, the
instructions that drive the robot, based on positions and
orientational angles on a map, are obtained from the
robot's mobility model, and various behavior patterns are

pattern  or movement

defined in this paper.

3.2 Definition of Robot Movement Instructions

Place data are collected using a differential drive robot
with a collision sensor, as shown in Fig. 1. This robot is

composed of a single forward-facing camera, as shown in
Fig. 1(a), and 7 collision sensors, as shown in Fig. 1(b).

(@) (b)
Figure 1. Robot with collision sensor. (a) Two-wheel robot with
Web camera, (b) configuration of collision sensors.
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All actions performed while traveling are saved as
traveling information, and are utilized to classify places.
The instructions must express the operating conditions.
Accordingly, rotational movement, backward movement,
stopping, and input from the sensors are defined as
movement instructions, except for operating conditions
that follow previously defined behavioral patterns.

3.3 Definition of Robot Behavioral Patterns
Based on the position and directional angle of the robot

acquired from the robot mobility model, three kinds of
behavioral pattern are defined, as illustrated in Fig. 2.
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Figure 2. Robot behavioral patterns. (a) Rotational pattern, (b)
rectangular pattern, and (c) random pattern.

The first behavioral pattern is a rotational pattern. In this
case, the robot travels in a circle from the starting point,
covering 3 circuits with different radii. If the robot
encounters an obstacle while traveling in a rotational
pattern, it moves backward to avoid the obstacle and
rotates through a certain angle (7t/2) relative to the
opposite side of the sensor that recorded the collision.
The robot then resumes its rotational course. The robot
alters its path to avoid the obstacle, and then continues
along the remainder of the altered path.

The second behavioral pattern is a rectangular traveling
pattern. In this case, the robot follows a rectangular path
from a starting point. After moving forward in a straight
line, the robot rotates through (m/2) in place and then
continues to move forward. After completing three
rectangular motions, the robot ceases all movement. If the
robot encounters an obstacle during rectangular travel, it
moves backward to avoid the obstacle and rotates in place.
The robot then resumes its rectangular course in a manner
similar to the procedure for a rotational course. For example,
if the robot encounters an obstacle after traveling halfway, it
changes the rectangular course after moving backward and
turning a certain angle (7/2), then resumes the path of the
remaining alternative two and half rectangular motions.

The third behavioral pattern is a random pattern. If the
robot encounters an obstacle while traveling in a straight
line, it rotates through a randomly selected angle to avoid
the obstacle regardless of the collision sensor's direction
when it collided with the obstacle, and then resumes its
movement in a straight line. The robot simultaneously
accumulates visual and behavioral data on a given place
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while executing this type of behavioral pattern. The
visual and behavioral data acquired while the robot
executes a single behavioral pattern in a particular place
can be expressed as a set of feature vectors, to be utilized
as information on the observation and experience of that
place. In this paper, 3 types of behavioral pattern are
defined. Each pattern is executed and classified at a given
place, the results are compared, and the most reliable
behavioral pattern can thus be determined.
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Figure 3. An example of path-altering, using a rotational pattern
(dotted blue line: the previous path, which encounters an object;
solid red line: the actual trajectory taken; dotted red line: the
alternative path). (a) The robot encounters an obstacle, (b) it moves
backward and turns a certain angle (11/2), and (c) then resumes the
alternative path of the remaining two and half circular motions. (d)
Comparison of the previous path and the robot’s actual trajectory.

4. Configuration of Visual and Behavioral Place Data
4.1 Target Places

A "place" is a location where a physical object exists or
something occurs. The place may include many objects, such
as a room, or relatively few objects, such as a corridor.
People define the purpose of a place in advance, and
configure the place as appropriate for the purpose. People
generally execute behaviors in a place on the basis of
previous experience [24]. In addition, people can reason and
classify the purpose of a place by utilizing previous and
newly obtained information, even in a new place. Therefore,
when a robot encounters a new place, it must observe and
experience the place for itself to make a judgment.

®) (©
Figure 4. Sample images of places that are objects for place
classification: (a) corridor, (b) room, and (c) hall.
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Fig. 4(a) shows a corridor. It is designed for people's
movement, and is not complex, generally consisting of
simple walls, a floor, and a ceiling. Fig. 4(b) shows a room,
laboratory, or office, a place in which people live and
work. There are various appliances for functionality, and
hence the space for movement is sometimes narrow.
Therefore, a robot should travel slowly and with care in
such a place. The room is composed of walls, a floor, and
a ceiling, and is similar to a corridor in this respect, but
also has complicated features, possibly including
bookshelves, a table, and a whiteboard. Fig. 4(c) shows a
hall or meeting place. Many people typically move
through a hall at the same time to enter a building, and
meetings are sometimes held there. Therefore, the hall
includes some physical objects, such as a bulletin board,
as well as high walls, a floor, and a ceiling.

The visual and behavioral features of a place are
reviewed in terms of the place's characteristics, and a
place classification technique based on images and
behaviors is proposed in this paper.

4.2 Configuration of Visual Data
4.2.1 Extraction of Straight Line Components from an Image

The straight line components in an image are extracted via
the Hough transform, on the assumption that the general
features of the image are straight lines created at the
crossing areas between ceiling and wall, wall and floor,
and the combination of gates and various appliances. The
directionality of the extracted straight lines is determined,
and is used as a feature to distinguish the place.

The Hough transform is a technique for extracting
straight lines, inducing the equations of the lines by
transforming them to the parameter space. The boundary
of the image is first extracted using a Canny edge detector,
and then the straight lines are extracted. The straight lines
extracted via the Hough transform do not have
directionality, and their directionality is determined by
designating the starting and end points of each line in
terms of the center of the image.

Figure 5. Example of straight lines extraction from an image.
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Figure 6. Example of straight lines extraction from an image.

The center of the image is defined as the origin of
coordinates, and the distance between two points on a
straight line is calculated as shown in Fig. 6. By comparing
the distances between the origin and the two points, the
closest and most distant points are designated as the
starting and end points, respectively. The length and
directional angle of the straight line are then calculated.

4.2.2 Orientation Histogram

The straight lines extracted above are regarded as vectors
with directionality. These vectors have an angular range
of 0~2m, are distributed over the image, and play the role
of general features. To use the various vectors comprising
an image as a single set of data, an orientation histogram
is constructed, which accumulates the distribution of
vectors in terms of direction.

First, an arbitrary set of straight line vectors in the image
will be denoted by X = {x¢, x4, ..., Xp—1, Xp}, where M is
the number of lines. The set of major units on the
horizontal axis of the orientation histogram is denoted by
V = {vy,v,,...,vy_1, vy}, where N is the width of a major
unit, and has a value of 18. An orientation histogram
based on this definition can be constructed as follows:

i

1 lf'Uf =L§

H,(f) = Zﬂ-”ﬂ ¢rj, where ¢ = {
0 otherwise

)

where f satisfies the condition 0 < f < N. When vy has
the same value as the quotient obtained when the straight
line is divided by a constant §, the value of the
corresponding ¢; is increased by 1. The constant 6 has
the value 10 in this paper. Thus, by applying Eq. (1) to all
of the vectors in an image, the following histogram is
constructed:

H, = [H,(0) H,(1) ... H,(N)] @)

An orientation histogram constructed in this way is
shown in Fig. 7.
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Figure 7. Construction of orientation histogram: (a) cumulative

image, (b) histogram.

Fig. 7(a) is a cumulative image compiled while the robot
was observing the place. Fig. 7(b) is an orientation
histogram constructed by accumulating the vectors
acquired from the observations according to directional
angle. The straight lines are extracted from the sequential
images obtained while performing a single action, and
are utilized as behavioral data for the place.

4.3 Configuration of Behavioral Data
4.3.1 Behavior Histogram

If a robot encounters an obstacle while executing a
behavioral pattern that has been defined in advance for
searching a place, the robot performs certain movements
to avoid the obstacle.

At this time, the robot calls a movement instruction to
carry out the appropriate movement for the situation. By
saving the frequencies of the instructions that are called,
the robot has access to information that it has experienced
in that place. In this paper, the robot recognizes obstacles
by using bumper sensors. This is used to define the
behavior histogram, which is constructed as follows.

First, the 6 robot movement instructions are organized
into a set of behavior histogram  bins,
E ={e;,e5 e5,e4 €56}, where e; is the pattern being
executed, e, is a right turn (RT), e3 is a left turn (LT), e, is
a backward movement (Back), es is stop (Stop), e and is
the collision sensor (Bumper).

The sequence of movements that constitute the behavior
pattern being executed by the robot is denoted by
B = {Bo, B, ""BP—].‘ BP}'

Based on this definition, the movement instructions
received by the robot are expressed as in Eq. (3), by
accumulating on the vertical axis according to the major
unit of the horizontal axis of the histogram:

1 lf ex = b]
0 otherwise

®)

Hy (k) = %_; myj, where my; = {

where k satisfies the condition 1<k < 6. After the
current movement instruction is confirmed, the value of k
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is increased by 1. Thus, the histogram can be constructed
as in Eq. (4), by applying Eq. (3) to the acquired
movement instructions:

Hy, = [Hy(1) Hp(2) Hy(3) Hy(4) Hy(5) Hy(6)] (4)

Fig. 8(a) shows a place where the robot executed a
rotational traveling pattern, and Fig. 8(b) shows the
resulting behavior histogram. The instructions received
during a single action are recorded in the histogram, and
are used as behavioral data.

Figure 8. Behavior histogram: (a) place traveled and (b) behavior
histogram.

5. Place Classification
5.1 Place Classification Method

The purpose of place classification is to determine the
class to which the acquired information belongs based on
a predefined set of categories. The information should be
similar to the pattern of the relevant category.
Numerous classification studies utilizing various
procedures have been reported, including the naive Bayes
method and SVM. Each technique has relative advantages
and disadvantages. The naive Bayes approach is simple
and responsive, but slightly less accurate than other
methods. SVM has comparatively higher accuracy, but its
algorithm is complex. The results generated by a naive
Bayes classifier and SVM are compared in Section 6.

In this paper, the naive Bayes method is used to classify
place. Assuming a polynomial constructor using a given
set of learning data, this procedure classifies each object
into the category with the highest inclusion probability.
Here, the K-means algorithm is used to calculate the
polynomial constructor in advance, by classifying the
learning data obtained in a given place.

5.2 Analysis of Visual and Behavioral Data
Fig. 9 shows the orientation histograms, cumulative

and behavior histograms acquired while
executing the rotational pattern in different places.

images,
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Figure 9. Orientation histogram and behavior histogram.

For the corridor, the orientation histogram is very simple.
However, the behavior histogram shows that the robot
collided with a wall due to the narrowness of the corridor,
and then performed some actions to avoid the wall. For
the room, numerous straight line vectors were extracted.
In addition, the behavior histogram shows that the robot
collided with an obstacle, and then performed a number
of actions to avoid the obstacle. For the hall, more straight
line vectors were extracted than for the corridor, but
fewer than for the room. The behavior histogram shows
that the robot executed a rotational traveling pattern
without colliding with any obstacles, because of the
spaciousness of the surroundings. Thus, the respective
histograms of the three places have different features,
which can be used as information for classification via the
behavioral histograms.

5.3 Classification of Visual and Behavioral Data
5.3.1 The Naive Bayes Method

The naive Bayes method calculates the probability that
random information belongs to each specific class, and
then selects the class with the highest probability. These
probabilities are calculated using

P(Cj)P(AilC)
P(A;) ©®)

P(Gla;) =
The above formula represents the probability that
information A4; from a set of information
A ={Ag, Ay, ... ,Ay} belongs to class Cj . P(4;) is the
probability that information A4; will be extracted from the
set of information, and P(C;) is the probability that class
C; will be extracted from the set of classes. P(4;|C;)
represents the probability that C; is the class to which 4;
belongs. The naive Bayes method selects the class with
the highest calculated probability among
P(Ao|C;)P(A4]C)) -+ P(A,]C)) for given information A. This
class is generally expressed as follows:

- P(cpPeac)
C* = argmax Py 6)
j
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During the search for C*, P(4;) has a constant value, and
can be omitted from the calculations. We propose to
select the place with the highest probability of being the
robot's location by applying the naive Bayes method to
the respective visual and behavioral data, and then
merging the probabilities.

5.3.2 Visual Data Classification Method

The visual data obtained while executing a given
behavior pattern can be expressed in terms of the
directionality of the straight line components extracted
from the image associated with the histogram. In the
orientation histogram, the major unit of the horizontal
axis can be used to define key points representing the
relevant range. If these key points are denoted by
V = {vy, vy, ..., Uy}, a set of representative key points can
be defined.

Let I = {ly, 11, ...,I;} be a set of visual data for a given
place, and let the number of feature vectors accumulated
at key point vy be denoted by H,(vy,I;) for each visual
datum /;. Then, the following method is used to classify
visual data obtained in time:

P(G|1:) < P(C;)P(1;|C;) = P(CHTIYL, Pyl rid (7)

To avoid the case in which some factor P(vy|C;)"r1) of
]_[}cvzl1 P(vs|C)H"@r!) = 0, Laplace smoothing is carried
out as follows:

1+Z{liECj} H,,(Uf,li)

P(vs|G) =
( f| 1) |V|+z}"='1z{liecj}y,,(uf,zi)

®)

The probability P(vs|C;))"®r) of Eq. (7) always has a
value less than 1, and hence H|fV=|1P(vf|Cj)H”(”f"i) may
have too small a value. To avoid this situation, Cpeg; is

determined by applying a logarithm to Eq. (7):

Coisual = Argmax [logP(Cj) + Zlfvil{logP(vﬂCj)}] 9)

Cj

By using Eq. (9), the greatest a posteriori score for the
visual data of a place can be obtained.

5.3.3 Behavioral Data Classification Method

Behavioral data (as defined above) are organized into a
behavior histogram based on 6 movement instructions to
the robot. Let E = {e,e,, €3, €4, 65,65} denote the major
units of the horizontal axis of the histogram, and let
B ={By,By,..,Bx} be a set of behavioral data. The
number of instructions accumulated for each movement
instruction of each behavioral datum is denoted by
Hp(eg, By). The following method is then used to classify
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behavioral data obtained in time (as in the previous
subsection):

P(C;|Bi) « P(C;)P(B|C;) = P(C) T, P(eg|Ci)Ho(CaB®)
(10)

To avoid the case in which some factor P(ey|C;)"b(¢aBi) of
|E]|
g:

out as follows:

1 P(eg|CHHrCaB) = 0, Laplace smoothing is carried

1+2{BkECj} Hyp (eg,Bk)

P(ey|C) =
( gl 1) |E|+ZfilZ{Bkecj}Hb(eg.Bk)

(11)

In addition, a logarithm is applied to Eq. (10) to yield

Cljehavioral = argmax [logP(Cj) + Z‘IgEil{logP(eglcf)}] (12)
Cj

By using Eq. (12), the greatest a posteriori score for the
behavioral data of a place can be obtained.

5.3.4 Merging of Classification Probabilities

Visual and behavioral data can be classified separately for
their respective places, but there is a limit to using only
one type of data. A more reliable place classification can
be obtained by merging the probabilities of the two types
of data. Under the assumption that the visual and
behavioral data are independent of one another, a final
classification can be obtained from Eq. (13):

P(C;)PU;BkIC))

P(lell,Bk) = PULEYD

(13)
P(C)P(11, Bk|C;) = P(G))PUICHP(BLIC)  (14)

where P(C]-|IL-,B,<) is the probability of class C; when the
visual data I; and behavioral data B, concur. By the Bayes
theory of Eq. (13), this can be represented by
P(Cj)P(Ii,Blej), and P(I;, B;) can be omitted as it has a
constant value. P(I;|C;) is the probability that I; belongs to
the class C; acquired from Eq. (7), and P(Bi|(;) is the
probability that B belongs to class C; acquired from Eq.
(10). The highest probability classification of the given
place is obtained by multiplying these two probabilities.

6. Experiments
6.1 Experimental Environment

To validate the method proposed in this paper, an
experimental environment was constructed as follows,
and experiments were carried out accordingly.
® Learning data collection place: IT building
®  Experimental places: IT building, R&D building,
Olympic gymnasium, Law building
®  Experimental robot: X-bot of Yujin Robot
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® Camera: Logitech QuickCam Communicate
Deluxe

® Computer: Core2Duo T7250 (2 GHz) CPU, 512
Mb RAM

® Implementation tools: Visual Studio 6.0, MFC

The learning data were collected in the IT building only,
and the experiments were implemented in different
experimental settings, based on these data. The
experimental places had walls of different colors, and the
ceiling and floor conditions were also different.

6.2 Collection of Learning Data

The learning data were collected in the IT building of
Hanyang University, as shown in Fig. 10. Fig. 10(a) shows
images of the respective places, taken with a camera
mounted on the robot. The corridor, hall, and room are
listed, and shown in that order. The hall image shows a
spacious area in front of the elevator. The room contained
various objects, including a table, chair, and bookshelves,
and provided a very complex environment. Fig. 10(b)
shows the internal layout of the IT building, and each
point indicates a location at which learning data were
collected. The learning data were collected by executing 3
types of behavior pattern in each place.

R Room

(b)
Figure 10. Collection locations: (a) sample views of each place
and (b) locations where the data were gathered.
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The robot collected learning data at 5 locations while
traveling through the room, corridor, and hall. Whenever
the robot executed a behavioral pattern, it was able to
collect both visual data and behavioral data. Thus, when
the robot collected 5 learning data in one place, a
behavioral pattern was executed 5 consecutive times
while traveling in the same place.

6.3 Place Classification Experiments and Results
6.3.1 Classification Data Collection

Fig. 11 shows the places where the experiments were
performed. During the experiments, the robot repeated
the three kinds of behavioral pattern 10 times in each of
the 4 places, and classification data were collected until
the robot finished each behavioral pattern.

© (d)
Figure 11. Experimental Places. (a) IT building. (b) R&D building.
(c) Olympic gymnasium. (b) Law building.

6.3.2 Experimental Place Classification Results for the IT Building

Tables 1, 2, and 3 list the place classification results for the
IT building, where the robot collected the learning data.

Input data Visual data | Behavioral | Merged
data data
Place Place Place
Result R]IC[H R |[c H R [ H
R 101] 0 0 0 0 8 0 0
Place C 0 9 1 0 0 8 0
H 0 1 9 10 | 10 | 10 | 2 2 10

Table 2. Place classification results according to rectangular
pattern (location: IT building, R: room, C: corridor, H: hall).

Input data Visual data | Behavioral | Merged
data data
Place Place Place
Result R |CJH R |C JH R |c H
R 0 7 0 4 8 0 3
Place C 4|77 |3]10fl0]2|10]5
H 0 3 3 0 0 6 0 0 2

Input data Visual data | Behavioral | Merged
data data
Place Place Place
Result T e E R e B R e m
R wlo|lol1]o]o
Place C o{10|o0]o0]10]0
H 0 0 |10] 0] 0] 10

Table 1. Place classification results according to rotational
pattern (location: IT building, R: room, C: corridor, H: hall).

www.intechweb.org

Table 3. Place classification results according to random pattern
(location: IT building, R: room, C: corridor, H: hall).

The left-hand entries in the table are the  place
classification results. The right-hand columns contain
input data for place classification. For example, rotational
pattern learning and place classification using visual data
are summarized in the blue-shaded rectangle, and all
classification results are correct. As another example,
rectangular pattern learning and place classification using
behavioral data are summarized in the red-shaded
rectangle, and the classification results are correct for the
hall and entirely incorrect for the room and corridor.
When the robot was trained in the rotational pattern, the
visual data, behavioral data, and merged probabilities all
performed well. When the robot was trained in the
rotational pattern, the place classification results using
visual data, behavioral data, and merged probabilities
were all correct. On the other hand, when the rectangular
learning pattern was used, the results obtained by using
visual data were correct, whereas the use of behavioral
data caused the robot to misclassify room and corridor
locations as hall locations. This could mean that visual
data from rotational and rectangular patterns are
adequate for classifying places, whereas behavioral data
from rectangular patterns are not sufficient for classifying
places and are inferior to the behavioral data obtained
from rotational patterns. Although the classification
results for the merged probabilities were inferior to those
for the rotational pattern, they were somewhat better
than the results for the behavioral data. The correctness of
place classification increased from 10/30 to 26/30. This
suggests that the degradation of performance resulting
from the use of behavioral data could be complemented
by using visual data. When the robot executed the
random learning pattern, the classification performance
was lower than that obtained from the other patterns.

Chuho Yi, Young Ceol Oh, Il Hong Suh and Byung-Uk Choi:
Indoor Place Classification Using Robot Behavior and Vision Data
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6.3.3 Experimental Place Classification Results for the R&D

Building

Tables 4, 5, and 6 are the classification results for the R&D

building.
Input data Visual data | Behavioral | Merged
data data
) Place Place Place
Learning R|cH[R [cHR]cH
R 10| 0 0O [10]|10 0 [10] 0 0
Place C 0 |10]| 10| 0 0 0 10 | 10
H 0 0 0 0 0 10| 0 0 0

Table 4. Place classification results according to rotational
pattern (location: R&D building, R: room, C: corridor, H: hall).

Input data Visual data | Behavioral | Merged
data data
) Place Place Place
Learning R[cH[R [cHR]cCH
R 4 0 0 0 0 8 4 0 1
Place |C |5 |10]10{0]0|0][1]8]s3s
H 1 0 0 |10 |10 | 2 5 2 1

Table 5. Place classification results according to rectangular
pattern (place: R&D building, R: room, C: corridor, H: hall).

Input data Visual data | Behavioral | Merged
data data
. Place Place Place
Learning e H R T & Ic a
R 6|00 |10|0]| 4 ]10|]0]|T1
Place C 40| 2101 0lol 3| 2
H ol1olslolole]ol7]s

Table 6. Place classification results according to random pattern
(place: R&D building, R: room, C: corridor, H: hall).

When the robot executed the rotational learning pattern,
it was unable to distinguish the hall, and classified all
surfaces as floor in the visual data. This is because the
corridor, the ceiling of the hall, and the floor and walls of
the R&D building were all the same color and shape, as
shown in Fig. 12.

- =R 3 [ s

Figure 12. Whole-view image of the hall of the R&D building.

The structure of this building is such that the wide space
in front of the stairway and elevator could not be
distinguished from the corridor. Fig. 12 shows that the
spacious area of the R&D building is part of the corridor,
unlike the other buildings.
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6.3.4 Analysis of the Experimental Results

Il Proposed method: Rotational
[ Proposed method: Rectangular
I Proposed method: Random
[ SVM: Rotational

I SVM: Rectangular

[ SVM: Random

Correctness(%)

Olympic

Place

(a)

Il Proposed method: Rotational
[ Proposed method: Rectangular
I Proposed method: Random
[ SVM: Rotational

[ SVM: Rectangular

[ SVM: Random

Correctness(%)

Olympic

(b)

Place

I Proposed method: Rotational
[ Proposed method: Rectangular
Il Proposed method: Random
[ SVM: Rotational

[ SVM: Rectangular

[ SVM: Random

Correctness(%)

R&D Olympic

Place
(©
Figure 13. Average classification correctness for each information
set: (a) average classification correctness of visual data by place,
(b) average classification correctness of behavioral data by place,
and (c) average classification correctness by place.

Fig. 13 shows the average classification correctness of the
visual data, the behavioral data, and the merged
information created by combining the two information
types, according to behavior. Based on the results for the
IT building, R&D building, Olympic gymnasium, and
Law building, place classification can be analyzed
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according to behavioral method and place as follows.

When a robot collects learning data and classifies a place
via the rotational pattern, the place can be searched in all
directions by increasing the radius of the traveling path.
This produces good classification results by acquiring
appropriate visual data for classification. The robot
undergoes frequent collisions in narrow places, and
occasional As collision
information becomes a part of the travel information, it
can be utilized as important classification information
with behavioral data. This method provides high
classification correctness for all types of information, as
shown in Fig. 13. Consequently, the rotational pattern is
confirmed as the most reliable of the 3 behavioral
patterns for collecting place data. Next, the results of
place classification of the respective places are discussed.
The robot first collected learning data in the IT building,
and then the same number of experiments were carried
out in the IT building, R&D building, Olympic
gymnasium, and Law building. The results indicated that
the rotational pattern was the most reliable. As the
learning data were collected in the IT building, the
classification accuracy for the visual data, behavioral data,
and merged probabilities high
environment. As shown in Fig. 13., the 3 behavioral
patterns have higher classification correctness in the IT
building than in the other places. In the R&D building,
the corridor and hall are connected in one place, and have
the same color and shape. Hence, they cannot be readily
distinguished, and the classification correctness was not
high for any of the behavior patterns. Visual data
provided better performance in the rotational behavior
pattern than in the other patterns. Thus, the behavioral
and image data were not completely independent, and
affected each other during the process.

collisions in wide places.

were all in this

Finally, the performances of the naive Bayes classifier and
SVM did not differ significantly. For the SVM classifier,
each place class had the same amount of data; the RBF
kernel parameter y, which was used for training, was

27 and was generated via a tool provided by LIBSVM
[25]. The performance of the object classifier was 93.87%,
based on 10-fold cross-validation, which was also
provided by the LIBSVM tool.
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8. Conclusion

In this paper, active behaviors are defined for the
collection of place information, and a place classification
technique is proposed, using visual and behavioral data
acquired while a robot executes various behavior
patterns. A behavioral pattern is first defined to search
the place. Visual and behavioral data are then defined,
based on the data acquired while the robot executes a
behavioral pattern.

From the visual data, straight lines are extracted to
roughly express the acquired images. An orientation
histogram is then constructed by accumulating the
straight lines according to their directional angles.
Behavioral data are used to create a behavior histogram,
by accumulating the movements performed to avoid
obstacles while executing a behavioral pattern. The visual
and behavioral data are then utilized as input data, and
probabilities are calculated by designating pre-learnt
places as categories. The technique employs the naive
Bayes classification method, which calculates the
probability that the input data belongs to each specific
category, and then selects the category with the highest
probability. The location of the robot is classified by
merging the probabilities for visual and behavioral data.

By defining and comparing 3 types of behavioral pattern
for searching a place, the results confirmed that a
rotational pattern yields the best performance, and has
the most active ability to collect classification data about a
place. The experiments indicate that a robot can
successfully classify a place, using only pre-learnt data
from a single place. These results suggest an effective
method for place classification, which has no need for
reconstruction or replacement of learning data according
to place transfer.

9. References

[1] D. Lowe, “Distinctive Image Features from Scale-
Invariant Keypoints,” International  Journal  of
Computer Vision, v.60 n.2, p.91-110, 2004.

[2] A. Rottmann, O. Mozos, C. Stachniss, and W.
Burgard. “Semantic place classification of indoor
environments with mobile robots using boosting,” in
Proc. of the National Conference on Artificial Intelligence,
2005.

[3] O. Mozos, A. Rottmann, R. Triebel, P. Jensfelt, and
W. Burgard. “Semantic Labeling of Places using
Information Extracted form Laser and Vision Sensor
Data,” IROS 2006 workshop : From Sensors to Human
Spatial Concepts, pp. 33-39, 2006.

Chuho Yi, Young Ceol Oh, Il Hong Suh and Byung-Uk Choi:
Indoor Place Classification Using Robot Behavior and Vision Data

59



[4] A. Pronobis, O. Mozos, B. Caputo, and P. Jensfelt,
"Multi-modal semantic place classification," The
International Journal of Robotics Research (IJRR), Special
Issue on Robotic Vision, 29(2-3), pp. 298-320, 2010.

[5] A. Tapus and R. Siegwart, “Incremental Topological
Mapping with Fingerprints of Places,” in Proceedings
of the IEEE/RS] International Conference on Intelligent
Robot and Systems (IROS), 2005.

[6] T. Nakamura, S. Takamura, and M. Asada,
“Behavior-based map representation for a sonar-
based mobile robot by statistical methods,” in
Proceedings of the 1996 IEEE/RS] International
Conference on Intelligent Robots and Systems, pp. 276-
283, 1996.

[7] W. Freeman and M. Roth. “Orientation histograms for
hand gesture recognition,” Intl. Workshop on
Automatic Face and Gesture-Recognition, IEEE Computer
Society, pp 296-301, 1995.

[8] G. Csurka, C. Dance, L. Fan, ]J. Willamowski, and C.
Bray, “Visual with Bags of
Keypoints,” in European Conference on Computer Vision,
2004.

[9] M. Cambron and R. Peters II, “Determination of
sensory motor coordination parameters for a robot
via teleoperation,” in Proceedings of the 2001 IEEE
International ~ Conference on Systems, Man, and
Cybernetics, vol. 5, pp. 3252-3257, 2001.

[10] C. Scheier and R. Pfeifer, “Classification as sensory-
motor coordination,” in Proceedings 3rd
Conference on Artificial Life, pp. 656-667, 1995.

[11] M. Betke and L. Gurvits, “Mobile Robot Localization
Using Landmarks,” Transactions on Robotics and
Automation, Vol. 13, No 2, pp. 251-263, 1997.

[12] A. Carbonaro, P. Zingaretti, “Landmark matching in

Categorization

European

a varying environment,” Euromicro Workshop on
Advanced Mobile Robots, pp. 147-153, 1997.

[13] A. Briggs, D. Scharstein, D. Braziunas, C. Dima,
P.Wall, “Mobile Robot Navigation Using Self-Similar
Landmarks,” in International Conference on Robotics
and Automation, pp. 1428-1434, 2000.

[14] R. Sim and G. Dudek, “Mobile robot localization
from learned landmarks,” International Conference on
Intelligent Robots and Systems, vol. 2, pp. 1060-1065,
1998.

60 IntJ Adv Robotic Sy, 2011, Vol. 8, No. 5, 49-60

[15] R. Murrieta-Cid, M. Briot, and N. Vandapel,
“Landmark identification and tracking in natural
environment,” in International Conference on Intelligent
Robots and Systems, vol.1, pp. 179-184, 1998.

[16] M. Rous, H. Lipschen, and K. Kraiss, “Vision-Based
indoor scene analysis for
detection,” in International Conference on Robotics and
Automation, 2005.

[17] S. Vasudevan, A. Harati, and R. Siegwart, “A
Bayesian Approach to Conceptualization and Place
Classification: Using the Number of Occurrences of
Objects to Infer Concepts,” in the Proceedings of the 3rd
European Conference on Mobile Robotics (ECMR), 2007.

[18] M. Ullah, A. Pronobis, B. Caputo, J.Luo, P. Jensfelt,
and H. Christensen, “Towards Robust Place
Recognition for Robot Localization,” in IEEE
International Conference on Robotics and Automation,
2008.

[19] S. Lazebnik, C. Schmid, and J. Ponce, "Beyond Bags
of Features: Spatial Pyramid Matching for
Recognizing  Natural Scene Categories," in
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, vol. II, pp. 2169-2178, 2006.

[20] M. Bar, “Visual Objects in Context,” Nature Reviews
Neuroscience, pp. 617-629, 2004.

[21] A. Torralba, K. Murphy, W. Freeman, and M. Rubin,
“Context-based Vision System for Place and Object
recognition,” in IEEE International Conference on
Computer Vision, vol.1, pp. 273-280, 2003.

[22] L. Paletta, S. Frintrop, and ]. Hertzberg, “Robust
localization using
imaging,” in International Conference on Robotics and
Automation, pp. 2072-2077, 2001.

[23] S. Im and S. Cho, “Context-Based Scene Recognition
Using Bayesian Networks
Feature Transform,” Advanced Concepts for Intelligent
Vision Systems (ACIVS), pp. 1080-1087, 2006.

[24] H. Choset, K. Lynch, S. Hutchinson, G. Kantor, W.
Burgard, L. Kavrakij, and S. Thrun, “Principles of
Robot Motion - Theory,” Algorithms, and
Implementations, MIT-Press, 2005.

[25] C. Chang, and C. Lin, “LIBSVM: a library for support
vector machines,” Software retrieved, 2006. available

natural landmark

context in omnidirectional

with Scale-Invariant

at http://www.csie.ntu.edu.tw/~cjlin/libsvm

www.intechweb.org



