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We investigate an array of metal nanoparticles as a channel for nanophotonic quantum communication and the
generation of quantum plasmonic interference. We consider the transfer of quantum states, including single qubits
as plasmonic wave packets, and highlight the necessity of a quantum-mechanical description by comparing the
predictions of quantum theory with those of classical electromagnetic theory. The effects of loss in the metal are
included, thus putting our investigation into a practical setting and enabling the quantification of the performance
of realistic nanoparticle arrays as plasmonic quantum channels. We explore the interference of single plasmons,
finding nonlinear absorption effects associated with the quantum properties of the plasmon excitations. This
work highlights the benefits and drawbacks of using nanophotonic periodic systems for quantum plasmonic
applications, such as quantum communication and the generation of quantum interference.
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I. INTRODUCTION

The field of quantum plasmonics is currently experiencing
intense interest from the plasmonics and quantum-optics com-
munities [1–24]. Integrated quantum systems featuring surface
plasmons are showing remarkable potential for their use in
quantum-control applications, such as quantum-information
processing [12–16]. Here, novel capabilities in the way the
electromagnetic field can be localized [25,26] and manipu-
lated [27–31] offer the prospects of miniaturization, scalability,
and strong coherent coupling to single-emitter systems that
conventional photonics cannot achieve [16–24]. Recent studies
have focused on entanglement preservation [1,2], quadrature-
squeezed surface plasmon propagation [3], and the use of
surface plasmons as mediators of entanglement between
two qubits [4–6]. With the advancement of nanofabrication
techniques, ordered arrays of closely spaced noble-metal
nanoparticles have been proposed as a means of guiding elec-
tromagnetic energy, via localized surface plasmons (LSPs),
on scales far below the diffraction limit [32,33]. Here,
energy transport relies on near-field coupling between surface
plasmons of neighboring particles [34], with the suppression
of radiative scattering into the far field [35–37]. Recently it
was shown that an appropriate arrangement of nanoparticles
can form passive linear nanoscale optical devices such as beam
splitters, phase shifters, and crossover splitters [38–40]. While
much progress has been made in the area of device design,
so far there has been no analysis of the effects of loss in
these nanoparticle systems in the quantum regime. It is vital to
understand the impact of these effects on the performance of
such devices so that plasmonic systems may be developed
as an efficient platform for nanophotonic quantum control
applications.

In this work we carry out such an analysis and investigate
quantum-state transfer and interference of surface plasmons
on a metal nanoparticle array. The transfer of quantum states,
including those encoded into single-qubit plasmon wave
packets, is studied. The effects of loss in the metal due to
electronic relaxation are also included in our model, putting

the investigation into a more practical setting. We find that
quantum-state transfer can be achieved for small length arrays
even under nonideal conditions and therefore these arrays
may act as channels for short-distance on-chip nanophotonic
quantum communication. We also study the interference of
single plasmons in the nanoparticle array and find nonlinear
absorption effects associated with the quantum properties of
the plasmon excitations. Our study highlights the benefits and
drawbacks associated with building nanophotonic systems that
use surface plasmons in the quantum regime. The results
of this work may help in the future study and design of
more complex plasmonic structures involving emitter systems
for quantum-control applications and the probing of novel
nanoscale optical phenomena.

We start our investigation in the next section by introducing
the nanoparticle-array model and quantized mathematical
description, along with some basic properties of the system
dynamics. Then in Sec. III we study the performance of
quantum-state transfer under ideal conditions and highlight the
necessity of a quantum-mechanical description by comparing
the predictions of quantum theory with those of classical
electromagnetic theory. In Sec. IV we consider the effects of
damping due to losses associated with the electronic response
within the metallic nanoparticles and study the interference
of single plasmons in the nanoparticle array. Finally, we
summarize our findings in Sec. V.

II. PHYSICAL SYSTEM AND MODEL

A. The Hamiltonian

We consider the system depicted in Fig. 1(a), which is
presented in a top-down view. Here, a tapered metal nanowire
waveguide on the left-hand side focuses light at the end of
its tip in the form of a confined surface plasmon field. This
field then couples to the adjacent spherical metal nanoparticle
and excites a localized surface plasmon. The LSP excitation
propagates across the linear array of metal nanoparticles
by near-field coupling and exits via another tapered metal

063823-11050-2947/2012/85(6)/063823(18) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.85.063823


LEE, TAME, LIM, AND LEE PHYSICAL REVIEW A 85, 063823 (2012)

FIG. 1. (Color online) (a) A tapered metal nanowire waveguide on the left-hand side focuses light to the end of its tip and excites a localized
surface plasmon (LSP) on the adjacent nanoparticle. The excitation then propagates across the array of nanoparticles and exits via another
tapered metal nanowire waveguide on the right-hand side. All metal regions have permittivity εm and dielectric regions have permittivity εd , as
defined in the text. The dimensions are chosen as an example and the theory developed is more general, with a range of parameters investigated
in this work. (b) Weak-coupling approximation for the nanoparticle array. The theoretical model developed in this paper is valid in the regime
|g| � ω0 and in particular we choose max|g| = 0.1ω0, where ω0 is the natural frequency of the nanoparticle field oscillations and g is the
nearest-neighbor coupling parameter. The lower blue curve is for transverse polarization (T ) and the upper red curve is for longitudinal (L)
polarization.

nanowire waveguide on the right-hand side. All metal regions
have a frequency-dependent permittivity εm(ω) and dielectric
regions have static real and positive permittivity εd . In Fig. 1(a),
we give a specific example of the system being studied by
choosing the radius of the nanoparticles as R = 25 nm and
the distance between nanoparticles in the array as d = 75 nm
(however, the general model we will introduce allows arbitrary
values to be chosen for these parameters and for all other
physical parameters). We consider that the metal nanoparticles
in the array support electron-charge-density oscillations in the
longitudinal (L) and transverse (T ) directions, as shown in the
inset of Fig. 1(a) and neglect multipolar interactions [41]. In
the system depicted in the main part of the figure, due to the
direction in which the electron charge density oscillates in the
nanowires, which act as the surface plasmon source and drain
on the left- and right-hand sides, the nanotips at the ends are
oriented to excite and collect charge-density oscillations in the
L direction. For excitation and collection in the T direction,
both nanowires should be rotated by 90◦ either clockwise
or counterclockwise. Further details regarding the nanowire
orientations are discussed later.

We now introduce the Hamiltonian for the system, justi-
fying the physical origin of each of the terms appearing. The
total Hamiltonian describing the system in Fig. 1(a) is given
by

Ĥ = Ĥnp + Ĥs + Ĥd + Ĥnp,s + Ĥnp,d. (1)

Here, the first term describes the linear nanoparticle-array
system consisting of n nanoparticles and is given by

Ĥnp =
n∑

i=1

h̄ωi â
†
i âi +

∑
[i,j ]

h̄gi,j (â†
i âj + â

†
j âi), (2)

where ωi is the natural frequency of the field oscillation at
the ith nanoparticle, gi,j is the coupling strength between

the fields of the ith and j th nanoparticles, [i,j ] denotes a
summation over nearest neighbors j for a given nanoparticle
i, and the operators â

†
i (âi) represent the creation (annihilation)

operators associated with a field excitation at nanoparticle
site i, which obey bosonic commutation relations [âi ,â

†
j ] =

δij . Here, a macroscopic quantization of the fields is used,
where the field modes are defined as localized solutions to
Maxwell’s equations satisfying the boundary conditions of
the metal-dielectric interface [42]. In this case, the electron
response is contained within the dielectric function of the
metal [8,43]. We consider either L or T polarization along
the array, suppressing the polarization index. In addition,
while the model we investigate here is for a linear array of
nanoparticles, the theory introduced can be applied to more
complex arrangements of nanoparticles [38–40].

The first term in Eq. (2) represents the free Hamiltonian
of the fields at the nanoparticles, where ωi satisfies the
Fröhlich criterion Re[εm(ωi)] = −2εd [34,37]. This criterion
considers the nanoparticles to be small enough compared
to the operating wavelength such that only dipole-active
excitations are important [27]. Taking all nanoparticles to
have the same permittivity εm, the local frequencies can be
set to be equal, ωi = ω0,∀ i. Due to the spherical symmetry
of the nanoparticles, these local frequencies are independent
of the polarization. The second term in Eq. (2) represents
a nearest-neighbor coupling between the near fields at each
nanoparticle. In order to justify the physical mechanism of
this second term, we briefly provide the correspondence of the
quantum description of the nanoparticle array to the classical
description [34].

Consider a quantum state |ψ〉 = ∏
i |αi〉, where |αi〉 =

e−(1/2)|αi |2eαi â
†
i |0〉 is a coherent state and αi is the mean-field

amplitude at the ith nanoparticle. Here, the electric field
variation of a coherent state |α〉 approaches that of the classical

063823-2



QUANTUM PLASMONICS WITH A METAL NANOPARTICLE . . . PHYSICAL REVIEW A 85, 063823 (2012)

wave picture in the limit of large amplitude α [44]. Taking Ĥnp

and |ψ〉 and substituting them into the Schrödinger equation
ih̄ ∂

∂t
|ψ〉 = Ĥnp |ψ〉, one finds the differential equation for the

mean-field amplitudes as [38]

dαi

dt
= −iω0αi − i

∑
[i,j ]

gi,jαj . (3)

By choosing all the couplings to be equal, gi,j = g = 1
2

ω2
I

ω0
γ ,

where γ = γT = 1 and γ = γL = −2 are the relative cou-
plings and phases for polarizations T and L, respectively (at
a fixed distance d, array orientation, and nanoparticle size
R [34]), the differential equation in Eq. (3) is exactly the same
as the classical differential equation for the amplitude of the
dipole moment pi (associated with the electric field at site i)
for an array of interacting Hertzian dipoles under the condition
ωI � ω0 for the interaction frequency ωI [34,38]. This is
a weak-coupling approximation including only the nearest-
neighbor interactions. In the classical Hertzian model, the
dominant interaction in the system is considered to be between
the nanoparticle dipoles via the Förster field, which has a 1/d3

dependence for d � λ, where λ = λ0/
√

εd and λ0 is the free-
space wavelength corresponding to the natural frequency ω0

of the nanoparticle dipole field, λ0 = 2πc/ω0 (c is the velocity
of light in a vacuum) [34,45]. This regime (d � λ) is known
as the near-field approximation. Furthermore, the dipoles
are considered pointlike for R � d/3 [41], known as the
point-dipole approximation. Thus, under the weak-coupling,
near-field, and point-dipole approximations, the quantum
model with g = ω2

I γ /2ω0 recovers the classical dynamics in
the correct limit using coherent states. Here, the interaction
frequency is given by ωI = [e2ρelR

3/3m∗ε0εdd
3]1/2 [34],

where e is the electronic charge, ρel is the free electron density
of the metal, m∗ is the optical effective electron mass, and ε0

is the free-space permittivity.
In Fig. 1(b) we show an example of the dependence of

the magnitude of the coupling g = ω2
I γ /2ω0 (in units of

ω0) as the ratio R/d increases. Here we have taken the
permittivity of the metal εm(ω) as that of silver and used
εm(ω) = ε∞ − ω2

p/(ω2 + iω�) + i/2, where ε∞ = 5, � =
6.25 × 1013 rad/s, and ωp = 1.402 × 1016 rad/s, which are
chosen to obtain a best fit to experimental data at frequencies
corresponding to free-space wavelengths λ0 � 350 nm [46],
i.e., the optical range and above. This leads to ω0 = 5 ×
1015 rad/s, the local frequency of the nanoparticles. In addi-
tion, we have used ρel = 5.85 × 1028 m−3, m∗ = 8.7 × 10−31

kg, and εd = 1 [34]. The weak-coupling approximation is
equivalent to |g| � ω0 and we impose this by setting max|g| =
0.1ω0. Note from Fig. 1(b) that the condition max|g| = 0.1ω0

satisfies the point-dipole approximation immediately, as well
as the weak coupling for both polarizations. For the near-field
approximation to also be satisfied we require d � 2πc/ω0 	
377 nm. The example in Fig. 1(a) with d = 75 nm and
R = 25 nm with silver satisfies all three of the required
approximations.

An additional requirement for the system is that quantum
effects other than those due to the quantized surface plasmon
field, such as electron tunneling between nanoparticles and the
quantum-size effect of each nanoparticle [47], are negligible.

This puts a lower limit on the distance d between nanoparticles
at ∼1 nm [48] and nanoparticle radii of the order of
1 nm [37], respectively. However, in order to confidently
use the macroscopic approach for the quantization of the
surface plasmon field due to the electron response, we assume
nanoparticle radii R � 10 nm and therefore d � 30 nm to
satisfy the point-dipole approximation. As far as we are aware
it is still an open question as to the dimension at which the
macroscopic approach to surface plasmon quantization breaks
down. In addition, for the moment, we also neglect internal
electronic relaxation at the nanoparticles and relaxation of the
dipoles into the far field. Damping will be introduced after the
ideal case has been developed in the next section.

Continuing with our description of the physical system,
the second and third terms of Eq. (1) represent the free
Hamiltonian of surface plasmon fields in the source and
drain nanowires on the left- and right-hand sides of Fig. 1(a),
respectively, and are given by

Ĥs =
∫ ∞

−∞
dωh̄ωŝ†(ω)ŝ(ω),

Ĥd =
∫ ∞

−∞
dωh̄ωd̂†(ω)d̂(ω).

The operators of the nanowires correspond to continuum
modes of surface plasmons, which obey the bosonic commuta-
tion relations [ŝ(ω),ŝ†(ω′)] = δ(ω − ω′) and [d̂(ω),d̂†(ω′)] =
δ(ω − ω′). Again, a macroscopic quantization is carried out
for the field [8,23,43], and we have extended the integration
of ω to cover the range −∞ to ∞ [44].

The surface plasmon excitation in each nanowire is taken
to correspond to the fundamental transverse magnetic mode
with winding number m = 0 [23]. It can be generated by
various methods. For instance, it could be generated via
coupling of a photon from the far field by focusing the
quantized light field onto a grating structure at a thicker
part of the tapered nanowire [49]. Another method could
be to use end-fire coupling of photons in conventional silica
waveguides to the metal nanowires, again at a much thicker
part of the tapered wire [50]. One could also generate the
plasmon excitations directly on the wires very close to the tip
region by driving emitter systems, such as quantum dots [17]
or nitrogen-vacancy (NV) centers [19], with coherent light to
further reduce losses during propagation of the input [23].
Here, the combination of metal and emitter system may
provide additional flexibility in optimizing the field profile
that couples to the nanoparticle—similar to a nanoantenna
system [51]—rather than a direct coupling of the emitter
system on its own.

The fourth and fifth terms of Eq. (1) represent the coupling
of the surface plasmon field of the source nanowire to the LSP
field of nanoparticle 1 and the surface plasmon field of the
drain nanowire to the LSP field of nanoparticle n, respectively.
Using a weak-field linearized model [52,53], the terms are
given by

Ĥnp,s = ih̄

∫ ∞

−∞
dωgin(ω)[â1ŝ

†(ω) − ŝ(ω)â†
1],

Ĥnp,d = ih̄

∫ ∞

−∞
dωgout(ω)[ând̂

†(ω) − d̂(ω)â†
n].
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Here the coupling parameters gin,out(ω) depend on the strength
of the near-field coupling between the nanowires and nanopar-
ticles. Focusing on the case of the source nanowire-to-
nanoparticle coupling and considering a propagating surface
plasmon in the nanowire entering the region at the nanotip from
the left-hand side, we have that for an appropriate paraboloidal
profile of the nanowire, the mode function of the excitation near
the tip strongly couples to a dipole oriented in the direction
of the propagation and placed in close proximity [23,54].
Thus, for the orientation of the source nanotip shown in
Fig. 1(a), the nanowire field couples predominantly to the
L-polarized oscillation in the nanoparticle. For coupling to
the transverse polarization, we rotate the nanotip clockwise by
90◦. The reciprocal case holds at the drain nanotip, and in the
orientation shown in Fig. 1(a), the drain predominantly couples
to L-polarized field oscillations in the nth nanoparticle.

Regardless of the excitation method of the plasmons in the
nanowire, for a wire that has a slowly varying radius R(x)
with distance x from the tip along the wire, we have a locally
varying dispersion relation given by [55]

εm

κm

I1(k0κmR(x))
I0(k0κmR(x))

+ εd

κd

K1(k0κdR(x))
K0(k0κdR(x))

= 0, (4)

where Ip and Kp are the modified Bessel functions, κm =√
n2 − εm, κd =

√
n2 − εd , k0 = ω/c is the free-space wave

number at a given frequency ω, and n = n(x,ω) is the local
effective refractive index at position x along the nanowire. The
radius of the nanotip at the end of the source wire defines the
effective radius of the wire in the region just before the tip. We
can use this to determine the approximate dispersion relation
of the surface plasmons entering the nanotip region where they
couple to the LSP of the first nanoparticle. Therefore, Eq. (4)
can be solved for a given set of physical parameters in order to
obtain the local effective refractive index n(x,ω), leading to the
dispersion relation k = n(x,ω)ω/c for the surface plasmons
close to the tip (x 	 0). In Fig. 2 we show the dispersion rela-
tion for a free-space photon k = k0 = ω/c, a nanowire surface
plasmon [for R(0) = 25 nm] using Eq. (4), a standard metal-air
interface surface plasmon k = (ω/c)

√
εm(ω)/[1 + εm(ω)] [8],

and the nanoparticle natural oscillation frequency ω0. In all
cases the example metal is taken to be silver with the dielectric
function defined previously. Here we have chosen to represent
the wave number k in units of the array spacing d = 75 nm.
Note that only the surface plasmon field from the tip region of
a nanowire has the potential to achieve both the correct energy
conservation (ω matching) and dipole coupling [23,54] for
efficient near-field coupling to the first (or last) nanoparticle
of the array.

Thus, by setting the coupling gin(ω) in Ĥnp,s according to
the physical geometries and tip orientation being considered,
one can model coupling of the surface plasmon in the source
nanowire to the first nanoparticle and its reflection back along
the nanowire. Similarly, by setting the coupling gout(ω) in
Ĥnp,d, one can model coupling of the last nanoparticle’s near
field to the drain nanowire and its reflection back along the
nanoparticle array. As the field profiles at the tips are similar
in form to those of the nanoparticles, the same physical
approximations as for the interparticle coupling strengths gi,j

should be satisfied by the couplings gin(ω) and gout(ω) in order
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2 d

0 Π

2 d

Π
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np
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FIG. 2. (Color online) Dispersion relation for various forms of
surface plasmon excitation. Here silver has been chosen as the metal
and air as the dielectric background media. The straight dashed line P
shows the photon dispersion relation in free space, the curve SPP-f
is the dispersion relation of a surface plasmon field at a standard
metal-air interface, and the curve SPP-w is the dispersion relation of
a surface plasmon field in the tapered metal waveguide in the region
of its tip at a radius of R = 25 nm. The horizontal dotted line np is
the natural frequency of a single nanoparticle ω0. For all curves only
the real part of the wave number k is plotted, the imaginary part being
several orders of magnitude smaller.

for the model to be a consistent description. The gin,out(ω)
couplings can then be modified to model nonideal mode-
function profiles due to the tip shape and other geometrical
factors.

B. Transmission and dispersion

We now use the Hamiltonian in Eq. (1) to model the
transmission of a quantum state injected into the array by the
source nanowire and then its propagation along the array until
it is subsequently extracted out by the drain nanowire. In order
to do this we use an effective scattering matrix approach that
will link the input field operators of the source nanowire to
the output field operators of the drain nanowire, providing
a method to map arbitrary input quantum states to output
quantum states. This scattering matrix is obtained by applying
input-output formalism [52,53] to the nanoparticle array, as
summarized in Appendix A. The benefit of this approach is
that we may treat the nanoparticle array as a waveguide with an
effective medium, which makes the description of the system
in the context of the transfer of quantum states more intuitive.
However, it is important to note that one can also use this
approach to investigate the internal quantum dynamics of the
nanoparticle array and even interactions with other resonant
systems, for instance, emitter systems such as NV centers,
placed in close proximity [52,53].

Using the input-output formalism in Appendix A, we have
the relation between input field operators ŝin(ω) and d̂in(ω) and
output field operators ŝout(ω) and d̂out(ω) for the nanowires as
follows:

ŝin(ω) = R∗
s (ω)ŝout(ω) + T ∗

s (ω)d̂out(ω), (5)

d̂in(ω) = T ∗
d (ω)ŝout(ω) + R∗

d (ω)d̂out(ω), (6)
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where the transmission Ts,d and reflectionRs,d coefficients are
functions of the system parameters gin, gout, gi,j , and ωi , and
the relation |Rs,d (ω)|2 + |Ts,d (ω)|2 = 1. Taking the Hermi-
tian conjugate of Eq. (5), we have ŝ

†
in(ω) = Rs(ω)ŝ†out(ω) +

Ts(ω)d̂†
out(ω). This allows us to describe the nanoparticle

array as an effective waveguide, with transmission Ts(ω) =
|Ts(ω)|ei(kx±π), where x = (n + 1)d is the total effective
distance [from the center of the source tip to the center of
the drain tip, as shown in Fig. 1(a)]. The factor ±π takes into
account the phase difference of −1 in the definition between
the input and output field operators, and the wave number
k depends on the system parameters gin, gout, gi,j , and ωi .
We now drop the index s in the transmission coefficient for
ease of notation and consider only transmission in the forward
direction. Thus, with the use of T (ω), we obtain

k = arg [T (ω)] ∓ π + 2mπ

(n + 1)d
, m = 0, ± 1, ± 2, . . . , (7)

where the additional factor of 2mπ is included to reflect the
cyclical degeneracy of the wave number.

In Figs. 3(a)–3(e) we plot the amplitude squared of the
transmission, |T (ω)|2, as the frequency is varied for an array
of n = 1, 2, 3, 5, and 7 nanoparticles, respectively. While an
analytical form for T (ω) can be found, due to the general
complexity of all the system parameters, here we show only
explicit examples where we have taken all local frequencies
to be equal, ωi = ω0,∀ i, and the couplings to be equal
gi,j = gnp = −0.1ω0,∀ i and its nearest neighbors j (with the
minus sign for the longitudinal polarization, as γL = −2). In
Appendix B we provide the analytical form for the T (ω)’s.
Physically, this chosen coupling regime corresponds to an
array with d/R 	 3, for example, R = 25 nm and d = 75 nm,
if we take the metal to be silver as before. The source and
drain couplings are set as gin,out = 0.01ω0, achieved by varying
the distance between the nanowire tips and their respective
nearest nanoparticles. For a given number of nanoparti-
cles n, the transmission spectral profiles in Figs. 3(a)–3(e)
have n resonances at frequencies ωrj

= ω0 + 2gnp cos(kjd),
where kj = jπ/(n + 1)d for j = 1, . . . ,n. In Figs. 3(f)–3(j)
we plot the effective wave number k from Eq. (7) for n =
1, 2, 3, 5, and 7, respectively. Points corresponding to the kj

transmission resonance peaks from Figs. 3(a)–3(e) are marked
as circles. Also included in these figures is the dispersion
relation for the infinite-array case (dashed line), where the
kj take on continuous values [38], with a positive group
velocity over the entire range due to taking the minus sign
(phase) for the longitudinal polarization coupling g in this
example. From Figs. 3(f)–3(j) one can clearly see that, as n

is increased, the band structure of the infinite-array case is
gradually recovered, where each (ωrj

,kj ) point corresponds
to the dominant excitation of a stationary eigenstate of the
system Hamiltonian Ĥnp, analogous to the case of coupled
cavities [56], for instance, in the case of photonic crystals [57].

Note that while the above examples provide a basic insight
into the system dynamics, the formalism introduced here can
be used to describe more complex and general plasmonic
nanoparticle systems with arbitrary couplings and natural
local frequencies. We now proceed to focus on odd-numbered
nanoparticle systems with n > 1 in order to understand the
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FIG. 3. (Color online) Transmission spectral profiles and dis-
persion relations for undamped arrays of nanoparticles. (a)–(e)
correspond to the amplitude squared of the transmission, |T (ω)|2,
as the frequency is varied for arrays of n = 1, 2, 3, 5, and 7
nanoparticles, respectively. (f)–(j) correspond to plots of the effective
wave number k for n = 1, 2, 3, 5, and 7, respectively. Also shown
are points corresponding to the kj transmission resonance peaks from
(a)–(e) as well as the dispersion relation for the infinite-array case
(dotted line).

transmission properties of larger arrays in more general
regimes. A similar study could be made for even-numbered
systems; however, we choose odd numbers as there is always
a resonance at the natural frequency ω0. This will become
important later in our study of quantum-state transfer.

In Figs. 4(a), 4(e), and 4(i) we plot a cross section of
the amplitude squared of the transmission, |T (ω)|2, as the
frequency ω and coupling gin (= gout) is varied for arrays
of n = 3, 5, and 7 nanoparticles, respectively. Here, �ω =
ω − ω0 and we have chosen to plot all parameters in units
of the nanoparticle coupling gi,j = gnp,∀ i and its nearest
neighbors j . The plots are therefore independent of gnp, as
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FIG. 4. (Color online) Cross sections of the amplitude squared of the transmission, |T (ω)|2, as the frequency ω and couplings gin and gout

are varied. Here, �ω = ω − ω0, where ω0 is the resonant frequency of each nanoparticle. (a), (e), and (i) correspond to couplings gin = gout for
arrays of n = 3, 5, and 7 nanoparticles, respectively. (b), (f), and (j) correspond to gin = 2gout and (c), (g), and (k) correspond to gin = gout/2.
(d), (h), and (l) have a threshold placed on the value of |T (ω)|2, with the solid area corresponding to |T (ω)|2 � 0.98 for gin = gout.

long as gnp � ω0 is satisfied. Increasing (decreasing) gnp

shrinks (expands) all axes. This observation can be useful
when comparing two gnp regimes with each other. Note also
that max(gin/g

max
np ,gout/g

max
np ) = 1 must be imposed, where

gmax
np = 0.1ω0, otherwise we would move away from the

weak-coupling regime for the source and drain. In other words,
the rescaled couplings gin/gnp and gout/gnp can in principle
go higher than 1, but the value for gnp must be lower than
0.1ω0 to compensate so that we are still in the weak-coupling
regime. In Figs. 4(b), 4(f), and 4(j) we plot a different cross
section for n = 3, 5, and 7 nanoparticles, where gin = 2gout

and in Figs. 4(c), 4(g), and 4(k) for gin = gout/2. In Figs. 4(d),
4(h), and 4(l) we place a threshold on the value of |T (ω)|2
such that the solid red area corresponds to |T (ω)|2 � 0.98 for
gin = gout. One can see that as the source and drain couplings
increase, the range over which the transmission is close to
ideal becomes enlarged about the central resonance, although
if the couplings are too large this range becomes smaller
again. Similar behavior can be seen for larger odd numbers of

nanoparticles, with the central “fork” area becoming narrower
as n increases. These behaviors can be understood as follows.
The early increase of gin enables the off-resonant transfer from
the source to the first nanoparticle, whereas its late increase
leads to strong coupling as if the first nanoparticle becomes
the extended “tip” of the nanotip. A similar argument about
gout applies for the last nanoparticle and the drain nanotip.
Thus the large gin,out implies that the number of nanoparticles
is effectively reduced to n − 2. At moderate magnitudes of
gin,out, we have the broad region of frequency ω for highly
efficient transfer. This observation will be important in our
study of quantum-state transfer in the next section.

III. QUANTUM-STATE TRANSFER

A. Qubit transfer

We now consider quantum information in the form of
a single quantum bit, or qubit, transferred across a metal
nanoparticle array. We write the input qubit state in the
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source as |ψ〉s = a|0〉s + b|1ξ 〉s , where |a|2 + |b|2 = 1, and
|0〉s and |1ξ 〉s represent the vacuum state and single-plasmon
wave packet in the source (at the tip), respectively. The
wave packet is characterized by a spectral profile ξ (ω) with∫ ∞
−∞ dω|ξ (ω)|2 = 1. More explicitly we have

|ψ〉s = a|0〉s + b

∫ ∞

−∞
dωξ (ω)ŝ†in(ω)|0〉s . (8)

Then for a given input state from the source, we take both
the nanoparticles and drain to be initially in the vacuum state.
Using the relation in Eq. (5) and substituting for ŝ

†
in(ω), then

tracing out the state in the source (see Appendix C), we obtain
the output state in the drain nanowire (at the tip) as

ρd =
(

|a|2 + |b|2
∫ ∞

−∞
dω|ξ (ω)|2[1 − |T (ω)|2]

)
|0〉d〈0|

+ ab∗
∫ ∞

−∞
dωξ ∗(ω)T ∗(ω) |0〉d〈1ω|

+ a∗b
∫ ∞

−∞
dωξ (ω)T (ω) |1ω〉d〈0|

+ |b|2
∫ ∞

−∞
dω

∫ ∞

−∞
dω′ξ (ω)ξ ∗(ω′)

× T (ω)T ∗(ω′) |1ω〉d〈1ω′ | , (9)

where |1ω〉d = d̂
†
out(ω)|0〉d . For perfect state transfer, i.e.,

T (ω) = ei(kx±π), giving |T (ω)|2 = 1 and |R(ω)|2 = 0, the
output state going into the drain nanowire, described by
Eq. (8), becomes the pure state ρd = |ψ ′〉d〈ψ ′|, where |ψ ′〉d is
equivalent to Eq. (8), but with ξ (ω) → ξ ′(ω) = ξ (ω)ei(kx±π)

and ŝ
†
in(ω) → d̂

†
out(ω). The change in the spectral amplitude

of the wave packet is equivalent (upon Fourier transform) to
a positive temporal shift (delay) in the wave packet, which
corresponds to the time that the wave packet takes to move
from the source tip to the drain tip. For concreteness, consider
a Gaussian wave packet with spectral amplitude profile

ξ (ω) = (2πσ 2)−1/4e−(ω0−ω)2/4σ 2
, (10)

where ω0 is the central frequency and σ = δω/(2
√

2ln2) is
the standard deviation corresponding to a full width at half
maximum bandwidth δω for the spectral intensity profile
|ξ (ω)|2. Applying the transform ξ (ω) → ξ ′(ω) = ξ (ω)ei(kx±π)

and assuming a small enough δω so that there is linear
dispersion about ω0, then k 	 ωneff/c = ω/ceff , where neff

and ceff are the effective refractive index and speed across the
nanoparticle array. We can then write kx 	 ωx/ceff = ωδt ,
where δt is the time taken for the wave packet to propagate
from the source tip to the drain tip and x is the total effective
distance (from the center of the source tip to the center of the
drain tip). Setting ξ (ω) → ξ ′(ω) = ±ξ (ω)eiωδt and taking the
Fourier transform, one finds

ξ ′(t) = ±(2σ 2/π )1/4e−σ 2(t−δt)2−iω0(t−δt) ≡ ξ (t − δt), (11)

corresponding to a positive shift, or delay, of δt in the time
domain.

We now consider the fidelity of the transfer, defined as
F =d 〈ψ ′|ρd |ψ ′〉d , where |ψ ′〉d is the ideal transferred state
including the dispersion, as defined previously. The fidelity
describes how close the output state is to the expected one,

being zero for orthogonal states and 1 for perfect transfer.
Thus we use it to quantify the quality of state transfer. A
straightforward substitution gives the more explicit form

F = |a|4 + |a|2|b|2
∫ ∞

−∞
dω|ξ (ω)|2[1 − |T (ω)|2 + 2|T (ω)|]

+ |b|4
(∫ ∞

−∞
dω|ξ (ω)|2|T (ω)|

)2

. (12)

Using the Bloch sphere coordinates a = cos(θ/2) and b =
eiφ sin(θ/2) and averaging the fidelity over all possible qubit
states F̄ = 1

4π

∫ π

0 dθ
∫ 2π

0 dφF sin θ , one finds |a|4 → 1/3,
|b|4 → 1/3, and |a|2|b|2 → 1/6. Thus, for a given nanopar-
ticle array and input wave packet defined by ξ (ω), with a
knowledge of |T (ω)|, one can calculate the average fidelity
of the output qubit state going into the drain nanowire using
Eq. (12). Note that Eq. (12) is irrespective of dispersion and
depends only on |T (ω)|, since we have taken the fidelity with
respect to |ψ ′〉d , setting ξ ′(ω) correctly to the expected profile
resulting from an arbitrary input ξ (ω), which compensates the
dispersion of transmission. However, for simplicity we limit
our discussion to linear dispersion, where the expected output
state by perfect transfer has the profile given in Eq. (11).

In Figs. 5(a), 5(c), and 5(e) we show the average fidelity
F̄ for arrays of n = 3, 5, and 7 nanoparticles. Here one can
see immediately that for a small enough bandwidth, the state
can be transferred across the array with perfect fidelity. The
dashed lines correspond to fidelity contours, with the lowest
curve (0.66· = 2/3) corresponding to the classical threshold
for a quantum channel: the best fidelity achievable by mea-
suring an unknown qubit along a random direction and then
sending the result through a classical channel using classical
correlations [58]. The solid blue curves bound the region (from
below) in which the dispersion is approximately linear, so that
we can use the approximation k 	 ωneff/c = ω/ceff to obtain
the form of the expected output spectral profile ξ ′(ω). This
region is found by calculating the group velocity vG(ω), where
v−1

G (ω) = ∂k/∂ω′|ω′=ω and k is found from Eq. (7). For linear
dispersion about the resonant frequency we should have that
vG(ω) 	 vG(ω0). In Figs. 5(b), 5(d), and 5(f) we show the
scaled group velocity ṽG(ω) = vG(ω)/vG(ω0) for arrays of
n = 3, 5, and 7 nanoparticles. One can see that there is a wide
frequency range available in the linear dispersive regime, given
that a large enough input and output coupling can be achieved.

B. Single-photon and coherent-state transfer

We now discuss the transfer of two particular kinds of input
state: single-photon states and very low-intensity classical
light described by coherent states having an average photon
number of 1. These are typical quantum and classical states
of light, respectively, and while they appear to be similar,
they are in fact very different states altogether, with different
measurable physical properties. On one hand, a single-photon
state injected into the source nanowire can be described by
|1ξ 〉s = ∫ ∞

−∞ dωξ (ω)ŝ†in(ω)|0〉s , with
∫ ∞
−∞ dω|ξ (ω)|2 = 1. On

the other hand, a coherent state is described by |{α}〉s =
exp(ŝ†in,α − ŝin,α)|0〉s , where the wave-packet operators are
ŝ
†
in,α = ∫ ∞

−∞ dωα(ω)ŝ†in(ω), with
∫ ∞
−∞ dω|α(ω)|2 = 〈n̂〉 [44].

Using the quantum theory we have developed to describe
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FIG. 5. (Color online) Fidelity of quantum-state transfer for a single-qubit wave packet in the absence of damping and scaled group velocity
over a range of frequencies and couplings. (a) Average fidelity F̄ for transferring a qubit wave packet over n = 3 nanoparticles as the bandwidth
(σ ) and coupling gin (= gout) are modified. All parameters are scaled by gnp. (b) Scaled group velocity ṽG(ω) = vG(ω)/vG(ω0) as it deviates
from that at the resonance frequency ω0 for n = 3, showing the regions of approximate linear dispersion. (c) Average fidelity for transferring a
qubit wave packet over n = 5 nanoparticles. (d) Scaled group velocity ṽG(ω) as it deviates from that at the resonance frequency ω0 for n = 5.
(e) Average fidelity for transferring a qubit wave packet over n = 7 nanoparticles. (f) Scaled group velocity ṽG(ω) as it deviates from that at
the resonance frequency ω0 for n = 7. In all group-velocity plots, the region inside the blue lines for �ω corresponds to the frequency range
below the blue lines for σ shown in the average fidelity plots.

the nanoparticle-array system, we now highlight a difference
between single-photon states and coherent states (which are
consistent with classical electromagnetic theory). The aim is
to show the necessity of our quantum formalism in order to
correctly predict measurable physical properties of the transfer
process.

First we consider that the average photon number of the
injected coherent state is 1, i.e., 〈n̂〉 = ∫ ∞

−∞ dω|α(ω)|2 = 1,
and the wave-packet amplitude α(ω) has the same Gaussian
form as ξ (ω). The scattering matrix given in Eq. (5) enables
us to treat the nanoparticle array as an effective beam splitter,
and for a single-photon state and a coherent state, respectively,
we obtain the following output states at the nanotips:

|1ξ 〉s →
∫ ∞

−∞
dω[ξ (ω)R(ω)|1ω〉s + ξ (ω)T (ω)|1ω〉d ],

|{α}〉s → |{αR}〉s ⊗ |{αT }〉d .
It is clear from the above that each input state arriving at
the source nanotip is transmitted and reflected in a different
way: the single-photon state becomes an entangled state
of transmitted and reflected single-plasmon states while the
coherent state remains as a separable state of transmitted
and reflected coherent states of plasmons. Nevertheless, the

detection probabilities (mean excitation flux) at the drain are
exactly the same as each other. This is calculated by finding the
expectation value 〈n̂dout〉, where n̂dout = ∫ ∞

−∞ dωd̂
†
out(ω)d̂out(ω),

and gives the same result for both input states:

〈n̂dout〉 =
∫ ∞

−∞
dω|ξ (ω)|2|T (ω)|2 =

∫ ∞

−∞
dω|α(ω)|2|T (ω)|2.

This implies that there is no difference in the energy transfer
efficiency between single-photon states and coherent states
when they are injected into the nanoparticle array. However,
in quantum-information processing, and in particular quantum
communication, a more meaningful measure of the transfer
success is not the energy efficiency, but how well the
information content that is encoded into a physical state is
preserved. This can be quantified by the fidelity between the
transferred state and the ideal transferred state, as defined in
the previous section, and it is a measurable physical property
of the transfer process; it can be measured by performing
quantum-state tomography [59]. The fidelity for the transfer
of a single-photon state is obtained by substituting a = 0
and b = 1 in Eq. (12). The fidelity for the continuous-mode
coherent-state transfer is summarized in Appendix D. The
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respective fidelities are as follows:[∫ ∞

−∞
dω|ξ (ω)|2|T (ω)|

]2

,

exp

[
−

∫ ∞

−∞
dω|α(ω)|2[|T (ω)| − 1]2

]
.

It is clear that they are not the same. It is important to note
that, while the transfer of a single-photon state and coherent
state are equivalent in the sense that the nanoparticle array
transmits the same amount of their energy from the source to
the drain nanowire, they are in fact different from the viewpoint
of the transfer of information encoded within the states. This
behavior naturally carries over to the general case of qubits,
where a and b are arbitrary, as in Eq. (12). It also applies when
damping is introduced (see the next section).

IV. DAMPING

A. Physical model and transmission

We now include damping in our model. The effects of
loss in the system are due to the interaction of the electrons
(supporting the surface plasmon field) with phonons, lattice
defects, and impurities [34,60], as well as radiative scattering
of the surface plasmon into the far field [34]. For most scenarios
of nanoparticle arrays, the couplings between nanoparticles
are large enough such that most of the field remains within
the array, with radiative scattering rates generally five orders
of magnitude smaller than the relaxation rate [34]. Thus we
assume radiative scattering can be neglected in our model.
This assumption also allows us to neglect possible scattering
at the tips. Electronic relaxation effects, on the other hand,
cannot be neglected and lead to damping of the supported
surface plasmon field. In our model we describe this as
an amplitude-damping channel at each nanoparticle. In this
context a mechanism can be introduced where the damping
is modeled by coupling of the field at each nanoparticle to an
independent bath mode, which is eventually traced out from the
system dynamics, as shown in Fig. 6. As we are interested in the
mapping of the input field at the source tip to the output field at
the drain tip, we assume that the source and drain excitations
experience no loss when propagating in and out of the tip
regions. Such insertion loss can, however, be incorporated
using standard waveguide methods [8,44], although a specific

FIG. 6. (Color online) The plasmonic nanoparticle array includ-
ing bath modes to model damping at each nanoparticle.
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FIG. 7. (Color online) Transmission spectral profiles and disper-
sion relations for damped arrays of nanoparticles. (a)–(e) correspond
to the amplitude squared of the transmission, |T (ω)|2, as the
frequency is varied for arrays of n = 1, 2, 3, 5, and 7 nanoparticles,
respectively. (f)–(j) correspond to plots of the real part of the effective
wave number kr for n = 1, 2, 3, 5, and 7, respectively. Also shown
are points corresponding to the kr,j transmission resonance peaks
from (a)–(e) as well as the dispersion relation for the infinite-array
case (dashed line). Here the couplings used are the same as in
the undamped case, i.e., gnp = −0.1ω0 and gin,out = 0.01ω0. Note
that larger transmission values can be achieved by increasing these
couplings, as explained in the text and shown in Fig. 8.

model will depend on how the fields in the nanowires are
excited and collected, for instance, how far they propagate in
the nanowires. Various types of dielectric-metal structures can
significantly reduce these losses [61].

The scattering matrix in the presence of damping is
derived in Appendix E. In the forward direction, we have
the relation between the input field operator ŝ

†
in(ω), the

output field operators ŝ
†
out(ω) and d̂

†
out(ω), and the bath
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FIG. 8. (Color online) Damping for the amplitude squared of the transmission, |T (ω)|2, as the frequency ω and couplings gin and gout are
varied. (a), (b), and (c) correspond to couplings gin = gout for arrays of n = 3, 5, and 7 nanoparticles, respectively.

operators Â
†
out,i(ω),

ŝ†in(ω) = R(ω)ŝ†out(ω) + T (ω)d̂†
out(ω) +

n∑
i=1

Si(ω)Â†
out,i(ω),

(13)

where the index s is dropped in the coefficients for ease of
notation. The ith nanoparticle loss coefficients, Si(ω), are also
functions of the system parameters gin, gout, gi,j , and ωi , and
|R(ω)|2 + |T (ω)|2 + ∑n

i=1 |Si(ω)|2 = 1. This method again
allows us to describe the nanoparticle array as an effective
waveguide, with T (ω) = |T̃ (ω)|ei(kx±π), where |T̃ (ω)| is the
transmission in the ideal case (no damping) and the wave
number k = kr + iki has become complex as a result of the
damping [44], which now depends on the system parameters
gin, gout, gi,j , and ωi and the relaxation rates �i at each
nanoparticle. Thus, we have that |T (ω)| = |T̃ (ω)|e−kix .

In Figs. 7(a)–7(e) we plot the amplitude squared of
the transmission, |T (ω)|2, as the frequency is varied for
arrays of n = 1, 2, 3, 5, and 7 nanoparticles, respectively.
To compare the damping with the ideal case shown in
Fig. 3, we use the same system parameters: all local
frequencies are equal, ωi = ω0,∀ i, the couplings are equal,
gi,j = gnp = −0.1ω0,∀ i and its nearest neighbors j , and
the source and drain couplings are set as gin,out = 0.01ω0. In
Appendix F we provide the analytical form for the T (ω)’s
with damping. The damping rate for each nanoparticle
depends on its size and is given by Matthiessen’s rule [34]:
� = vF /λB + vF /R̃, where for silver λB = 57 nm is the
bulk mean free path of an electron, vF = 1.38 × 106 m/s
is the velocity at the Fermi surface, and the effective radius
R̃ ∼ R. We use �i = 0.0158ω0,∀ i, which corresponds
approximately to the damping rate for a silver nanoparticle
with a radius R in the range 20–100 nm. For a given n, the
transmission spectral profiles in Figs. 7(a)–7(e) again have
n resonances at frequencies ωrj

= ω0 + 2g cos(kr,j d), where
kr,j = jπ/(n + 1)d for j = 1, . . . ,n. However, the width of
the resonances has been broadened and the height lowered as a
result of the damping. In Figs. 7(f)–7(j) we plot the real part of
the effective wave number kr from Eq. (7) for n = 1, 2, 3, 5,
and 7, respectively. Note that Eq. (7) remains valid, as the
imaginary part of the wave number k is absorbed into the

magnitude of the transmission |T (ω)|. Points corresponding
to the kr,j transmission resonance peaks from Figs. 7(a)–7(e)
are marked. Also included in these figures, as before, is the
dispersion relation for the infinite-array case (dashed line).

From Figs. 7(a)–7(e) one can clearly see that the transmis-
sion peaks are much reduced from the ideal values. However,
despite this, it is possible to increase the maximum peak
value by increasing the source and drain couplings, as shown
in Figs. 8(a), 8(b), and 8(c), where we plot a cross section
of the amplitude squared of the transmission, |T (ω)|2, as
the frequency ω and coupling gin (= gout) are varied for
arrays of n = 3, 5, and 7 nanoparticles, respectively. Here,
�ω = ω − ω0 and, as before, all parameters are in units of the
nanoparticle coupling gi,j = gnp,∀ i and its nearest neighbors
j . One can see from Fig. 8 that as the source and drain
couplings (gin and gout) increase, the transmission maximum
can be increased, although ultimately the damping dominates
the transmission as n increases, as can be seen by comparing
Figs. 8(a) with 8(c).

B. Qubit transfer

We now discuss the fidelity of state transfer for a single-
qubit wave-packet state under realistic conditions of loss at
each of the nanoparticles. After including the bath modes at
each of the nanoparticles, one finds that the expression for the
fidelity given in Eq. (12) remains valid (see Appendix C),
with the fidelity depending only on the absolute value of
the transmission coefficient. In Figs. 9(a), 9(c), and 9(e) we
show the average fidelity F̄ for arrays of n = 3, 5, and 7
nanoparticles. The dashed lines correspond to fidelity contours
with the lowest curve (0.66· = 2/3) corresponding to the
classical threshold for a quantum channel, as before. The
solid blue curves bound a region (from below) in which
the dispersion is approximately linear, vG(ω) 	 vG(ω0). In
Figs. 9(b), 9(d), and 9(f) we show the corresponding scaled
group velocity ṽG(ω) = vG(ω)/vG(ω0) for n = 3,5, and 7
nanoparticles. For n = 3, one can see in Fig. 9(a) that the
nanoparticle array can provide a transfer channel giving an
average fidelity of up to ∼0.93 even when damping is present,
in which for large bandwidths σ the source and drain couplings
gin and gout must be increased to values close to the limit
of the weak-coupling approximation, |gin,out/g

max
np | = 1. Note
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FIG. 9. (Color online) Fidelity of quantum-state transfer for a single-qubit wave packet under damping and scaled group velocity over a
range of frequencies and couplings. (a) Average fidelity F̄ for transferring a qubit wave packet over n = 3 nanoparticles as the bandwidth
(σ ) and in and out couplings gin = gout are modified. All parameters are scaled by gnp. (b) Scaled group velocity ṽG(ω) = vG(ω)/vG(ω0) as it
deviates from that at the resonance frequency ω0 for n = 3, showing the regions of approximately linear dispersion. (c) Average fidelity for
transferring a qubit wave packet over n = 5 nanoparticles. (d) Scaled group velocity ṽG(ω) as it deviates from that at the resonance frequency
ω0 for n = 5. (e) Average fidelity for transferring a qubit wave packet over n = 7 nanoparticles. (f) Scaled group velocity ṽG(ω) as it deviates
from that at the resonance frequency ω0 for n = 7. In all group-velocity plots, the region inside the blue lines for �ω corresponds to the
frequency range below the blue lines for σ shown in the average fidelity plots.

that in these plots one cannot decrease the coupling gnp in
order to reach gin,out values much larger than 1, as we have
set gnp = −0.1ω0, unlike the ideal case where it could be
modified. The reason for this restriction is that reducing the
nanoparticle coupling gnp means the damping rates begin to
dominate, lowering the maximum transmission and average
fidelities further as a result.

For n = 5, one can see in Fig. 9(c) that the maximum
average fidelity attainable is ∼0.88; no contour can be plotted
for 0.9 or above, regardless of the bandwidth σ . For n = 7 and
above, this situation then becomes gradually worse, and one
can see in Fig. 9(e) that although the maximum average fidelity
attainable is ∼0.84, the source and drain couplings need to be
increased close to the weak-coupling limit, in addition to the
use of a narrow enough bandwidth.

The results obtained here indicate that only small-sized
arrays with n � 7 are useful for the transmission of qubit states
encoded into the number-state degree of freedom. However, it
may be the case that for particular applications, short-distance
communication (�μm) is required at optical frequencies, mak-
ing the use of a nanoparticle array quite beneficial. For exam-
ple, the nanoparticle waveguide could be used as an enhanced
mediator between emitter systems on a very small scale. On the

other hand, additional degrees of freedom for the LSP excita-
tions, the embedding of emitter systems into the waveguides,
novel types of metals with reduced damping rates, and new
schemes for achieving gain in plasmonic media may enable
one to eventually counter the effects of loss highlighted here.

C. Plasmon interference

In Sec. III B we showed that in order to correctly describe
the transfer of a quantum state through a metal nanoparticle
array one requires the quantum formalism we have developed
in this paper. Here, as an additional example of the necessity
of a quantum formalism for the metal nanoparticle array, we
investigate the interference of two plasmons. We consider the
plasmons entering the array from opposite ends, one from the
source and the other from the drain nanowire. The input state
at the nanotips in this case can be written as

|ψ〉in =
∫ ∞

−∞
dωs

∫ ∞

−∞
dωdψ(ωs,ωd )ŝ†in(ωs)d̂

†
in(ωd )|0〉s,d,A,

where |0〉s,d,A denotes the vacuum state for the source,
drain, and baths and the normalization of the state
vector imposes a normalization on ψ(ωs,ωd ), so that
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FIG. 10. (Color online) (a) Plasmon interference. Here plasmons enter the nanoparticle array from both sides, one plasmon from the source
and another from the drain. Nonlinear absorption occurs via quantum interference, even though the damping in the array is linear. (b) Survival
probabilities of zero plasmons (yellow), one plasmon (red), and two plasmons (blue) for n = 3, as the coupling gin (= gout) is varied for
�ω = 0. (c) Survival probabilities for n = 3 when the one-plasmon survival probability is minimized as the loss � is varied for �ω = 0. The
values of gin (= gout) at which minimization occurs are shown in the inset. (d) and (e) Reflection and transmission coefficients corresponding
to the couplings in (b) and (c), respectively.

∫ ∞
−∞ dωs

∫ ∞
−∞ dωd |ψ(ωs,ωd )|2 = 1. By using the scattering

matrix given in Eq. (E2) of Appendix E, that describes forward
and backward propagation in the array, we have the output

|ψ〉out

=
∫ ∞

−∞
dωs

∫ ∞

−∞
dωdψ(ωs,ωd )

× [Rs(ωs)ŝ
†
out(ωs) + Ts(ωs)d̂

†
out(ωs) + F̂ †

s (ωs)]

× [Td (ωd )ŝ†out(ωd ) + Rd (ωd )d̂†
out(ωd ) + F̂

†
d (ωd )]|0〉s,d,A,

where the noise operators are defined as F̂
†
s (ωs) =∑

i Ss,i(ωs)Â
†
out,i(ωs) and F̂

†
d (ωd ) = ∑

i Sd,i(ωd )Â†
out,i(ωd ).

We consider small bandwidths for ψ(ωs,ωd ) over which
the transmission, reflection, and damping coefficients do
not vary appreciably and therefore these coefficients will
be approximated as frequency independent. The case of
gin = gout is considered, so that we have Td (ω) = Ts(ω) = T
and Rd (ω) = Rs(ω) = R. The probability of finding two
plasmons in the source nanowire and none in the drain
nanowire is then (see Appendix G)

P (2s ,0d ) = |R|2|T |2(1 + I), (14)

where we have introduced the (real) overlap integral

I =
∫ ∞

−∞
dωs

∫ ∞

−∞
dωdψ(ωs,ωd )ψ∗(ωd,ωs). (15)

Here, unit quantum efficiency of the photon detector and
infinite counting time are assumed. Similarly, the remaining
nonzero probabilities are

P (0s ,2d ) = P (2s ,0d ),

P (1s ,1d ) = |R|4 + |T |4 + (R2T ∗2 + R∗2T 2)I,

P (1s ,0d ) = (|R|2 + |T |2)(1 − |R|2 − |T |2) (16)

− (RT ∗ + R∗T )2I,

P (0s ,1d ) = P (1s ,0d ),

P (0s ,0d ) = (1 − |R|2 − |T |2)2 + (R∗T + T ∗R)2I.

Here, for simplicity, we consider that the plasmons have
the same wave-packet profile, i.e., ψ(ωs,ωd ) = ξ (ωs)ξ (ωd ),
where ξ (ω) is given in Eq. (10). If I = 0, the Fourier
transforms of the spectral amplitudes for the two plasmons
do not overlap in time in the nanoparticle array, and the
probabilities in Eqs. (14) and (16) describe the case of two
independent particles [62]. On the other hand, if I = 1, the
Fourier transforms of the amplitudes overlap perfectly in time.
In this case, temporal and spectral indistinguishabilities are
immediately satisfied and for |R|2 = |T |2 = 1/2 one recovers
the well-known Hong-Ou-Mandel (HOM) quantum interfer-
ence effect [63], where the two excitations are always found to
be in the same output mode: P (2s ,0d ) = P (0s ,2d ) = 1/2, with
all others being zero. In general, however, when |R|2 �= |T |2
or damping is present (|R|2 + |T |2 < 1), the probabilities for
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two, one, or no plasmons to survive are P2 = P (2s ,0d ) +
P (0s ,2d ) + P (1s ,1d ), P1 = P (1s ,0d ) + P (0s ,1d ), and P0 =
P (0s ,0d ), respectively, with

∑2
i=0 Pi = 1.

For an array of n = 3 nanoparticles, we plot in Fig. 10(b)
the survival probabilities as the coupling gin (=gout) is varied
for �ω = 0, � = 0.0158ω0, and gnp = −0.1ω0. One can
see that the probability for one of the plasmons to survive
(or be absorbed), P1, can be very low depending on the in-out
coupling. Indeed, at a particular point marked by the dashed
line, nonlinear absorption occurs: either both plasmons are
absorbed, P0 ∼ 1/2, or neither is absorbed, P2 ∼ 1/2, even
though the damping in the nanoparticle array is a linear
process. Surprisingly there is no one-plasmon absorption,
P1 ∼ 0. This effect is due to quantum interference of the
plasmons and cannot be described in terms of a classical
treatment of the nanoparticle array [62]. In Fig. 10(d) we
show the corresponding reflection |R|2 and transmission |T |2
coefficients. The transmission coefficient in this plot can also
be seen by taking a cross section from Fig. 8(a) at �ω = 0.
One can see in Fig. 10(d) that the nonlinear absorption effect is
maximized at a similar point to that for the HOM interference
effect: reflection and transmission coefficients are equalized,
but at 1/4 instead of 1/2 due to the necessary presence of
damping in order to see nonlinear absorption [62].

In Fig. 10(c), we show how increasing the loss at each
nanoparticle affects the two-plasmon interference for n = 3.
Here, P1 is minimized by modifying gin (=gout) as the loss
� is increased for �ω = 0. The corresponding P0 and P2

are also shown. One can see that nonlinear absorption can
be made to occur over a large range of loss. The values of
gin (=gout) at which P1 is minimized are shown in the inset
and the corresponding reflection and transmission coefficients
are shown in Fig. 10(e). Note that, as the amount of loss
increases, both the minimum value of P1 and the required
coupling gin (=gout) are increased also. In particular, one can
see in Fig. 10(e), that as the damping in the array increases, it
becomes impossible to equalize the reflection and transmission
coefficients by changing gin, as the transmission is affected
more by loss within the array. This asymmetry leads to an
eventual breakdown of the quantum interference effect and
subsequently the nonlinear absorption.

The behavior shown in Fig. 10(c) allows us to predict the
growing trend of the minimum value of P1 and the optimal
value of gin (=gout) as n increases. This is because the overall
amount of loss in the array effectively increases as the number
of nanoparticles is increased. For �ω = 0, � = 0.0158ω0, and
gnp = −0.1ω0, one finds that P min

1 = 0.012, 0.034, and 0.063
when g

opt
in /gnp = 0.1543, 0.2223, and 0.2824 for n = 3, 5,

and 7, respectively. The corresponding zero- and two-plasmon
probabilities are P0 = 0.4999, 0.4995, and 0.4990 and P2 =
0.4880, 0.4663, and 0.4380. Thus, nonlinear absorption by
two-plasmon interference is present in the nanoparticle arrays
for n = 3, 5, and 7. The nanoparticle array may therefore act
as an effective two-plasmon absorber, despite the linear optical
properties assumed in the model.

V. SUMMARY

In this work we studied the use of an array of metallic
nanoparticles as a channel for on-chip nanophotonic quan-

tum communication. After introducing the model for the
physical system in the quantum regime, the transfer of a
quantum state encoded in the form of a single-qubit wave
packet was studied under ideal conditions. We then showed
the necessity for our quantum formalism in predicting the
outcomes of measurable physical observables. The effects of
loss in the metal were included in our study, thus putting
the investigation into a more practical setting and allowing
the quantification of the performance of realistic nanoparticle
arrays as quantum channels. For this task we used the average
fidelity for the state transfer. We found that small-sized
arrays are practically useful for the transmission of qubit
states encoded into the number-state degree of freedom. We
also showed that nonlinear absorption can occur by quantum
interference, where two plasmons are absorbed or neither is
absorbed. Thus, the nanoparticle array can act as an effective
two-plasmon absorber, and the observation of this quantum
interference effect may open up new kinds of plasmonic
interference experiments in the quantum domain. Our study
highlights the benefits as well as the drawbacks associated
with nanophotonic periodic quantum systems that use surface
plasmons. The techniques introduced in this work may assist
in the further theoretical and experimental study of plasmonic
nanostructures for quantum-control applications and probing
nanoscale optical phenomena.
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APPENDIX A

Here we use input-output formalism [52,53] for the
nanoparticle array to obtain an effective scattering matrix. We
start with the Heisenberg equation of motion for an operator
Ô, given by dÔ

dt
= − i

h̄
[Ô,Ĥ ], and substitute the Hamiltonian

Ĥ in Eq. (1) to obtain the equations of motion for each of the
system operators:

dŝ(ω)

dt
= −iωŝ(ω) + gin(ω)â1, (A1)

dâ1

dt
= − i

h̄
[â1,Ĥnp] −

∫ ∞

−∞
dωgin(ω)ŝ(ω), (A2)

dâi

dt
= − i

h̄
[âi ,Ĥnp], i = 2, . . . ,n − 1, (A3)

dân

dt
= − i

h̄
[ân,Ĥnp] −

∫ ∞

−∞
dωgout(ω)d̂(ω), (A4)

dd̂(ω)

dt
= −iωd̂(ω) + gout(ω)ân. (A5)

Here we have introduced an explicit time dependence in the
frequency-space operators ŝ(ω) and d̂(ω) in the source and
drain, respectively. This is because the internal field of the
nanoparticle array may acquire some nontrivial dynamics
which forces the external fields in the source and drain to
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have a time dependence that is different from the free-field
dynamics [52,53]. With the above set of coupled equations
of motion we find boundary conditions for the system before
proceeding to solve them. Using the following solutions for
the first and last equations [Eqs. (A1) and (A5)]:

ŝ(ω) = e−iω(t−t0)ŝ0(ω) + gin(ω)
∫ t

t0

e−iω(t−t ′)â1(t ′)dt ′,

d̂(ω) = e−iω(t−t0)d̂0(ω) + gout(ω)
∫ t

t0

e−iω(t−t ′)ân(t ′)dt ′,

where t0 < t , with ŝ0(ω) and d̂0(ω) as the operators for ŝ(ω)
and d̂(ω), respectively, at time t = t0 as initial boundary
conditions, one finds that the equations of motion [Eqs. (A2)
and (A4)] for the first and last nanoparticles become

dâ1

dt
= − i

h̄
[â1,Ĥnp] − gin

2
â1 + √

ginŝin, (A6)

dân

dt
= − i

h̄
[ân,Ĥnp] − gout

2
ân + √

goutd̂in, (A7)

where we have defined the input field operators
as ŝin(t) = −(2π )−1/2

∫ ∞
−∞ dωe−iω(t−t0)ŝ0(ω) and d̂in(t) =

−(2π )−1/2
∫ ∞
−∞ dωe−iω(t−t0)d̂0(ω). Here we have assumed that

the couplings gin(ω) and gout(ω) are constant over a band
of frequencies about the characteristic excitation frequency
being considered, g2

in(ω) = gin/2π and g2
out(ω) = gout/2π .

This assumption is valid for negligible change in the similarity
of the mode-function profiles at the tip and nanoparticles over
the bandwidth. We assume this can be achieved given a narrow
enough band of frequencies along with an optimized nanotip
geometry.

Using alternative solutions for the first and last equations
of motion,

ŝ(ω) = e−iω(t−t1)ŝ1(ω) − gin(ω)
∫ t1

t

e−iω(t−t ′)â1(t ′)dt ′,

d̂(ω) = e−iω(t−t1)d̂1(ω) − gout(ω)
∫ t1

t

e−iω(t−t ′)ân(t ′)dt ′,

where t1 > t , with ŝ1(ω) and d̂1(ω) as the operators for ŝ(ω) and
d̂(ω), respectively, at time t = t1 as final boundary conditions,
one finds that the equations of motion [Eqs. (A2) and (A4)]
for the first and last nanoparticles become

dâ1

dt
= − i

h̄
[â1,Ĥnp] + gin

2
â1 − √

ginŝout, (A8)

dân

dt
= − i

h̄
[ân,Ĥnp] + gout

2
ân − √

goutd̂out, (A9)

where we have defined the output field operators
as ŝout(t) = (2π )−1/2

∫ ∞
−∞ dωe−iω(t−t1)ŝ1(ω) and d̂out(t) =

(2π )−1/2
∫ ∞
−∞ dωe−iω(t−t1)d̂1(ω).

Taking Eq. (A8) and subtracting Eq. (A6) gives the
boundary condition

â1(t) = 1√
gin

[ŝin(t) + ŝout(t)]. (A10)

Similarly, taking Eq. (A9) and subtracting Eq. (A7) gives the
boundary condition

ân(t) = 1√
gout

[d̂in(t) + d̂out(t)]. (A11)

Note that throughout we assume the dispersion is negligible for
the initial and final excitations of the source and drain fields.
In this sense we are interested only in the relation between
the input and output propagating fields in the nanowires near
the tips. The dispersion during propagation of the excitations
in the nanowires can be incorporated into the model by using
standard methods [44]. On the other hand, the dispersion in
the array is included in the model automatically, although
we will need to ensure later that minimal broadening of the
bandwidth due to dispersion occurs during the propagation for
the relation g2

out(ω) = gout/2π to still hold. We will see that
this is a reasonable assumption for small-sized arrays.

We use the relations [â1,Ĥnp] = h̄ω1â1 + h̄g1,2â2,
[ân,Ĥnp] = h̄ωnân + h̄gn−1,nân−1, and [âi ,Ĥnp] =
h̄ωi âi + h̄gi−1,i âi−1 + h̄gi,i+1âi+1 (for i = 2, . . . ,n − 1)
as well as defining the Fourier components of the nanoparticle
field operators as âi(t) = (2π )−1/2

∫ ∞
−∞ e−iωt âi(ω)dω,∀ i,

and we rewrite the source and drain operators
as ŝin(t) = (2π )−1/2

∫ ∞
−∞ e−iωt ŝin(ω)dω and d̂in(t) =

(2π )−1/2
∫ ∞
−∞ e−iωt d̂in(ω)dω [ŝin(ω) and d̂in(ω) are general

spectral operators]. Then, we find upon substitution into
Eqs. (A3), (A6), and (A7) the following set of coupled
equations for the frequency operators:[

i(ω − ω1) − gin

2

]
â1(ω) = ig1,2â2(ω) − √

ginŝin(ω),

i(ω − ωi)âi(ω) = igi−1,i âi−1(ω) + igi+1,i âi+1(ω)

for i = 2, . . . ,n − 1,[
i(ω − ωn) − gout

2

]
ân(ω) = ign−1,nân−1(ω) − √

goutd̂in(ω),

as well as boundary conditions from Eqs. (A10) and (A11):

â1(ω) = 1√
gin

[ŝin(ω) + ŝout(ω)],

ân(ω) = 1√
gout

[d̂in(ω) + d̂out(ω)].

Using the above set of coupled equations we can eliminate the
internal nanoparticle operators âi [52,53] to obtain

ŝin(ω) = R∗
s (ω)ŝout(ω) + T ∗

s (ω)d̂out(ω),

d̂in(ω) = T ∗
d (ω)ŝout(ω) + R∗

d (ω)d̂out(ω),

where the transmission Ts,d and reflectionRs,d coefficients are
functions of the system parameters gin, gout, gi,j , and ωi , and
the relation |Rs,d (ω)|2 + |Ts,d (ω)|2 = 1 holds.

APPENDIX B

Here we provide the analytical forms for the T (ω)’s for
n = 1, 2, 3, 5, and 7 nanoparticles, respectively (no damping),
where we have set gout = gin,

T1(ω) = gin

gin − i(ω − ω0)
,

T2(ω) = −4ignpgin

4g2
np + [gin − 2i(ω − ω0)]2

,

T3(ω) = −4g2
npgin([gin − 2i(ω − ω0)]{4g2

np

− (ω − ω0)[igin + 2(ω − ω0)]})−1,

063823-14



QUANTUM PLASMONICS WITH A METAL NANOPARTICLE . . . PHYSICAL REVIEW A 85, 063823 (2012)

T5(ω) = 4g4
npgin

[{
2g2

np[gin − 3i(ω − ω0)]

− [gin − 2i(ω − ω0)](ω − ω0)2
}

× {
2g2

np − (ω − ω0)[igin + 2(ω − ω0)]
}]−1

,

T7(ω) = −4g6
npgin

({
g2

np[gin − 4i(ω − ω0)]

− [gin − 2i(ω − ω0)](ω − ω0)2
}

× {
4g4

np + (ω − ω0)3[igin + 2(ω + ω0)]

− g2
np(ω − ω0)[3igin + 8(ω + ω0)]

})−1
.

APPENDIX C

Here we show how to obtain the output density matrix for
the qubit state entering the drain nanowire. This is done in the
general case of damping (see Sec. IV). To obtain the case of no
loss, simply set Si(ω) = 0,∀ i. Starting with the single-qubit
wave packet in the input modes of the source nanowire

|ψ〉s = a |0〉s + b

∫ ∞

−∞
dωξ (ω)ŝ†in(ω) |0〉s

and making use of Eq. (13) of Sec. IV [equivalent to Eq. (5)
of Sec. II, when Si(ω) = 0,∀ i], by substituting for ŝ

†
in(ω) one

obtains the state ρs,d,A = ∣∣φ〉s,d,A〈φ∣∣, which describes the total
state in the external output modes of the source-nanoparticle-
drain system, where

|φ〉s,d,A = a |0〉s,d,A + b

∫ ∞

−∞
dωξ (ω)

[
R(ω)ŝ†out(ω)

+ T (ω)d̂†
out(ω) +

n∑
i=1

Si(ω)Â†
out,i(ω)

]
|0〉s,d,A .

Removal of the source modes from the description of the state
ρs,d,A is achieved mathematically by tracing them out to give

ρd,A =s〈0| ρs,d,A |0〉s +
∫ ∞

−∞
dωs〈1ω| ρs,d,A |1ω〉s .

Tracing out the i bath modes recursively in a similar way gives

ρd =
(

|a|2 + |b|2
∫ ∞

−∞
dω|ξ (ω)|2[1 − |T (ω)|2]

)
|0〉d〈0|

+ ab∗
∫ ∞

−∞
dωξ ∗(ω)T ∗(ω) |0〉d〈1ω|

+ a∗b
∫ ∞

−∞
dωξ (ω)T (ω) |1ω〉d〈0|

+ |b|2
∫ ∞

−∞
dω

∫
dω′ξ (ω)ξ ∗(ω′)

× T (ω)T ∗(ω′) |1ω〉d〈1ω′ | . (C1)

APPENDIX D

Here we derive the fidelity for the coherent-state transfer
described in Sec. III B. First, we consider two continuous-
mode coherent states defined as

|{α}〉 = exp(b̂†α − b̂α) |0〉 ,

|{β}〉 = exp(b̂†β − b̂β) |0〉 ,

where the photon wave-packet operators are given by
b̂†α = ∫ ∞

−∞ dωα(ω)b̂†(ω) and b̂
†
β = ∫ ∞

−∞ dωβ(ω)b̂†(ω), with∫ ∞
−∞ dω|α(ω)|2 = n̄α and

∫ ∞
−∞ dω|β(ω)|2 = n̄β . The operators

b̂†(ω) [b̂(ω)] represent the creation (annihilation) operators
associated with a field excitation, which obey the bosonic
commutation relation [b̂(ω),b̂†(ω′)] = δ(ω − ω′). In general,
the fidelity between the two continuous-mode coherent states,
defined as F = |〈{β}|{α}〉|2, is found by direct substitution to
be

F = exp[−
∫ ∞

−∞
dω|α(ω) − β(ω)|2].

The fidelity between the transferred coherent state |{αT }〉 in
Sec. III B and the ideal transferred state |{α′}〉, where α′(ω) =
α(ω)eikx , is then

F = exp

[
−

∫ ∞

−∞
dω|α(ω)|2[|T (ω)| − 1]2

]
.

APPENDIX E

Here we use input-output formalism for the nanoparticle
array under realistic conditions of loss at each nanoparticle,
where the damping is modeled by coupling of the field at each
nanoparticle to an independent bath mode. The interaction of
each nanoparticle with its bath mode takes the same form as
the coupling of the first nanoparticle to the source nanowire
tip, except with a coupling strength determined by the rate
of damping to match the classical case, as done previously
for the interparticle couplings gi,j . This approach assumes a
weak damping rate and Markov approximation for the bath
modes [52,53]. To mathematically incorporate the bath modes
into our model, the original coupled equations are modified to
become[

i(ω − ω1) − gin

2
− �1

2

]
â1(ω)

= ig1,2â2(ω) − √
ginŝin(ω) −

√
�1Âin,1(ω),[

i(ω − ωi) − �i

2

]
âi(ω)

= igi−1,i âi−1(ω) + igi+1,i âi+1(ω) −
√

�iÂin,i(ω),

for i = 2, . . . ,n − 1,[
i(ω − ωn) − gout

2
− �n

2

]
ân(ω)

= ign−1,nân−1(ω) − √
goutd̂in(ω) −

√
�nÂin,n(ω),

where �i corresponds to the electronic relaxation rate at
nanoparticle i. Extra boundary conditions are then imposed
on the system dynamics, given by

âi(ω) = 1√
�i

[Âin,i(ω) + Âout,i(ω)] for i = 1, . . . ,n. (E1)

As in the case of the source-and-drain nanowire system, the
bath operators Â(ω) obey the bosonic commutation relations
[Â(ω),Â†(ω′)] = δ(ω − ω′). By solving the above new set of
coupled equations and eliminating the internal nanoparticle

063823-15



LEE, TAME, LIM, AND LEE PHYSICAL REVIEW A 85, 063823 (2012)

operators âi , we obtain a scattering matrix linking the source, drain, and bath operators. Then for a given input state |ψ〉 from
the source, we take the bath modes (and drain) to be initially in the vacuum state |0〉. The scattering matrix is applied and the
bath modes are traced out to obtain the effective transmission in the array. In general one finds

ŝ†in(ω) = Rs(ω)ŝ†out(ω) + Ts(ω)d̂†
out(ω) +

∑
i

Ss,i(ω)Â†
out,i(ω),

(E2)
d̂†

in(ω) = Td (ω)ŝ†out(ω) + Rd (ω)d̂†
out(ω) +

∑
i

Sd,i(ω)Â†
out,i(ω),

where |Rs,d (ω)|2 + |Ts,d (ω)|2 + ∑
i |Ss,d,i(ω)|2 = 1.

APPENDIX F

Here we provide the analytical forms for the T (ω)’s for n = 1, 2, 3, 5, and 7 nanoparticles, respectively, with damping, where
we have set gout = gin,

T1(ω) = 2gin

2gin + � − 2i(ω − ω0)
,

T2(ω) = −4ignpgin

4g2
np + [gin + � − 2i(ω − ω0)]2

,

T3(ω) = −8g2
npgin

(
[gin + � − 2i(ω − ω0)]

{
8g2

np + [� − 2i(ω − ω0)][gin + � − 2i(ω − ω0)]
})−1

,

T5(ω) = 32g4
npgin

[{
4g2

np + [� + 2i(ω − ω0)][gin + � − 2i(ω − ω0)]
}(

4g2
np{2gin + 3[� − 2i(ω − ω0)]}

+ [� − 2i(ω − ω0)]2[gin + � − 2i(ω − ω0)]
)]−1

,

and

T7(ω) = −128g6
npgin

[(
4g2

np{gin + 2[� − 2i(ω − ω0)]} + [� − 2i(ω − ω0)]2[gin + � − 2i(ω − ω0)]
)(

32g4
np

+ 4g2
np{3gin + 4[� − 2i(ω − ω0)]}[� − 2i(ω − ω0)] + [� − 2i(ω − ω0)]3[gin + � − 2i(ω − ω0)]

)]−1
.

APPENDIX G

In our discussion of two-plasmon interference we needed
to evaluate the probabilities for finding plasmons in the
output state given in Eq. (14). For an arbitrary state |ψ〉,
the probability of detecting one plasmon in a given mode
at any frequency ω is given by P (1) = ∫ ∞

−∞ dω|〈1ω|ψ〉|2,
where |nω〉 is the continuous-mode number state, as previously
defined. The probability of detecting two plasmons in a
given mode, one at any frequency ω and the other at any
frequency ω′, is then P (2) = ∫ ∞

−∞ dω
∫ ∞
−∞ dω′|〈2(ω,ω′)|ψ〉|2,

where |2(ω,ω′)〉 = 1√
2
ŝ
†
out(ω)ŝ†out(ω

′)|0〉 is the continuous-mode
pair state [44], which allows for each plasmon to have
a different frequency profile. Thus we have the following
probabilities

P (2s ,0d )

= 1

2

∫ ∞

−∞
dω

∫ ∞

−∞
dω′|s,d,A〈0|ŝout(ω

′)ŝout(ω)|ψ〉out|2,
P (0s ,2d )

= 1

2

∫ ∞

−∞
dω

∫ ∞

−∞
dω′|s,d,A〈0|d̂out(ω

′)d̂out(ω)|ψ〉out|2,
P (1s ,1d )

=
∫ ∞

−∞
dω

∫ ∞

−∞
dω′|s,d,A〈0|ŝout(ω)d̂out(ω

′)|ψ〉out|2,

P (1s ,0d ) =
∫ ∞

−∞
dω|s,d,A〈0|ŝout(ω)|ψ〉out|2,

P (0s ,1d ) =
∫ ∞

−∞
dω|s,d,A〈0|d̂out(ω)|ψ〉out|2,

P (0s ,0d ) = |s,d,A〈0|ψ〉out|2.

These may be evaluated by using the relationship between
the input and output field operators given in Eq. (E2) and the
following commutation relations:

[ŝout(ω),ŝ†out(ω)] = δ(ω − ω′) = [d̂out(ω),d̂†
out(ω)],

[ŝout(ω),d̂†
out(ω)] = [d̂out(ω),ŝ†out(ω)] = 0,

[ŝout(ω),F̂ †
s (ω)] = [ŝout(ω),F̂ †

d (ω)]

= [ŝout(ω),F̂s(ω)]

= [ŝout(ω),F̂d (ω)] = 0,

and

[F̂s(ω),F̂ †
s (ω′)] = δ(ω − ω′)[1 − |Rs(ω)|2 − |Ts(ω)|2],

[F̂d (ω),F̂ †
d (ω′)] = δ(ω − ω′)[1 − |Rd (ω)|2 − |Td (ω)|2],

[F̂s(ω),F̂ †
d (ω′)] = −δ(ω − ω′)[R∗

s (ω)Td (ω) + T ∗
s (ω)Rd (ω)],

[F̂d (ω),F̂ †
s (ω′)] = −δ(ω − ω′)[T ∗

d (ω)Rs(ω) + R∗
d (ω)Ts(ω)].
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By straightforward substitution, one finds

P (2s ,0d ) = 1

2

∫ ∞

−∞
dω

∫ ∞

−∞
dω′|ψ(ω,ω′)Rs(ω)Td (ω′) + ψ(ω′,ω)Rs(ω

′)Td (ω)|2,

P (2s ,0d ) = 1

2

∫ ∞

−∞
dω

∫ ∞

−∞
dω′|ψ(ω,ω′)Ts(ω)Rd (ω′) + ψ(ω′,ω)Ts(ω

′)Rd (ω)|2,

P (1s ,1d ) =
∫ ∞

−∞
dω

∫ ∞

−∞
dω′|ψ(ω,ω′)Rs(ω)Rd (ω′) + ψ(ω′,ω)Ts(ω

′)Td (ω)|2,

P (1s ,0d ) =
∫ ∞

−∞
dω

∫ ∞

−∞
dω′{|ψ(ω,ω′)|2|Rs(ω)|2[1 − |Rd (ω′)|2 − |Td (ω′)|2] + |ψ(ω′,ω)|2|Td (ω)|2[1 − |Rs(ω

′)|2 − |Ts(ω
′)|2]

−ψ∗(ω,ω′)ψ(ω′,ω)R∗
s (ω)Td (ω)[T ∗

d (ω′)Rs(ω
′) + R∗

d (ω′)Ts(ω
′)]

−ψ∗(ω′,ω)ψ(ω,ω′)T ∗
d (ω)Rs(ω)[R∗

s (ω′)Td (ω′) + T ∗
s (ω′)Rd (ω′)]},

P (0s ,1d ) =
∫ ∞

−∞
dω

∫ ∞

−∞
dω′{|ψ(ω,ω′)|2|Ts(ω)|2[1 − |Rd (ω′)|2 − |Td (ω′)|2] + |ψ(ω′,ω)|2|Rd (ω)|2[1 − |Rs(ω

′)|2 − |Ts(ω
′)|2]

−ψ∗(ω,ω′)ψ(ω′,ω)T ∗
s (ω)Rd (ω)[T ∗

d (ω′)Rs(ω
′) + R∗

d (ω′)Ts(ω
′)]

−ψ∗(ω′,ω)ψ(ω,ω′)R∗
d (ω)Ts(ω)[R∗

s (ω′)Td (ω′) + T ∗
s (ω′)Rd (ω′)]},

P (0s ,0d ) =
∫ ∞

−∞
dω

∫ ∞

−∞
dω′{|ψ(ω,ω′)|2[1 − |Rs(ω)|2 − |Ts(ω)|2][1 − |Rd (ω′)|2 − |Td (ω′)|2]

+ψ∗(ω′,ω)ψ(ω,ω′)[T ∗
d (ω′)Rs(ω

′) + R∗
d (ω′)Ts(ω

′)][R∗
s (ω′)Td (ω′) + T ∗

s (ω′)Rd (ω′)]},
where only terms making a nonzero contribution have been retained. Considering the case where the transmission coefficients
are approximately constant over the range of frequencies for which |ψ(ω,ω′)| is significant, one finds

P (2s ,0d ) ≈ |Rs |2|Td |2(1 + I),

P (0s ,2d ) ≈ |Ts |2|Rd |2(1 + I),

P (1s ,1d ) ≈ |Rs |2|Rd |2 + |Ts |2|Td |2 + (RsRdT ∗
s T ∗

d + R∗
sR∗

dTsTd )I,

P (1s ,0d ) ≈ |Rs |2(1 − |Rd |2 − |Td |2) + |Td |2(1 − |Rs |2 − |Ts |2) − (2|Rs |2|Td |2 + R∗
sR∗

dTsTd + RsRdT ∗
s T ∗

d )I,

P (0s ,1d ) ≈ |Ts |2(1 − |Rd |2 − |Td |2) + |Rd |2(1 − |Rs |2 − |Ts |2) − (2|Rd |2|Ts |2 + T ∗
s T ∗

d RsRd + TsTdR∗
sR∗

d )I,

P (0s ,0d ) ≈ (1 − |Rs |2 − |Ts |2)(1 − |Rd |2 − |Td |2) + (T ∗
d Rs + R∗

dTs)(R∗
sTd + T ∗

s Td )I,

where we have introduced the (real) overlap integral

I =
∫ ∞

−∞
dω

∫ ∞

−∞
dω′ψ(ω,ω′)ψ∗(ω′,ω).
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