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1 Introduction

In recent years, gauge-string duality [1, 2] has been useful in exploring properties of strongly
coupled field theories in regimes where their duals may be truncated to classical gravity. In
particular, application of gauge-string duality to the hydrodynamic regime of these field the-
ories has led to a “fluid-gravity correspondence” [3]-[7]. Properties of solutions of classical
gravity then lead to predictions for interesting properties of the dual fluid, the most celebrated
example being the ratio of shear viscosity to the entropy density of a conformal fluid [3].

In this note we use the fluid–gravity correspondence in the opposite direction. We use
properties of supersonic fluid flows to predict interesting properties of fluctuations around a
class of deformed black brane spacetimes in asymptotically AdS spacetimes. These spacetimes
are duals of inhomogeneous flows of conformal fluids where the fluid velocity exceeds the speed
of sound in some region. Unruh [8] showed that such flows lead to the formation of an “acoustic
ergoregion” and, under suitable conditions, to an “acoustic horizon”. The same physics which
leads to Hawking radiation from black holes in General Relativity now leads to a Hawking-like
radiation of quantized sound waves (or phonons) with a thermal spectrum, the temperature
being proportional to the gradient of the velocity field at the acoustic horizon [10, 11]. Even
when an acoustic horizon is not present, the presence of an ergoregion leads to characteristic
properties like superradiance [13] . Fluid configurations with such acoustic horizons have been
termed “dumb holes”, and have been proposed as possible experimentally realizable systems
for testing the physics of Hawking radiation in the laboratory [14] .

We will show that the gravity duals of such supersonic flows are non-static black holes.
The duals of sound waves are then certain quasinormal modes around such black holes, and
it follows from the fluid-gravity correspondence that at the quantum level one should find
a Hawking-like radiation of these modes with an approximately thermal spectrum [4]. This
Hawking-like radiation is distinct from the usual Hawking radiation associated with the black
hole horizon, and would be present even when the background black hole is extremal and
hence at zero temperature. The temperature of this quasinormal mode radiation depends on
the properties of a “quasinormal mode horizon”, which is an extension into the bulk of the
acoustic horizon of the boundary fluid.

It should be emphasized that this phenomenon could have been found purely in General
Relativity (or its supergravity extensions relevant to our considerations) by studying the fluc-
tuation problem around these non-static black holes. However, without the fluid gravity corre-
spondence and knowledge of acoustic Hawking radiation, there would not have been an obvious
motivation to look for quasinormal mode horizons in non-static black brane backgrounds.

While we believe that the phenomenon of Hawking radiation or super-radiance of quasi-
normal modes is quite general, it turns out to be rather difficult to come up with examples
within a controlled approximation scheme. The simplest and perhaps most interesting back-
ground where such a phenomenon could be present is a Kerr black hole in asymptotically AdS5

spacetime. The dual of such a background is a rotating conformal fluid on S3 [17, 18]. There
is a regime of parameters of the black hole geometry for which the dual rotating fluid has
supersonic velocities in a band around the equator of the S3, thus producing an ergoregion for
sound modes. The physics of sound waves around such a rotating fluid background would have
a dual description in terms of quasinormal modes of gravitational perturbations around the
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Kerr black hole in AdS5. However, this flow has vorticity, and the existence of acoustic Hawk-
ing radiation has been demonstrated mostly for irrotational flow. In the presence of nonzero
vorticity, the sound modes get mixed up badly with other modes and analysis becomes difficult
[19].

The situation simplifies, however, if the flow is irrotational. As shown in [8] for non-
relativistic perfect fluids, and extended to relativistic perfect fluids in [20], the velocity poten-
tial then obeys the wave equation for a minimally coupled massless scalar field propagating on
a curved background, the metric of which is determined by the underlying flow. The mathe-
matical problem of quantizing sound waves or phonons around such a flow is then quite similar
to that of quantizing a massless scalar field in an ordinary black hole background. This implies
the existence of an acoustic analog of Hawking radiation.

Known examples of supersonic flows of perfect fluids often lead to infinite “acoustic surface
gravity” (which is proportional to the gradient of the velocity at the acoustic horizon). The
presence of viscosity usually regulates this divergence and renders it finite [16]. The incorpo-
ration of viscosity, however, makes the analysis complicated.

In this paper we find simple examples of acoustic horizons in ideal relativistic conformal
fluids with finite acoustic Hawking temperature. The simplest example involves a fluid moving
in a background spacetime of the form

ds2B = −dt2 + dz2 +R(z)2(dθ2 + sin2 θdφ2) (1)

where R(z) is a slowly varying function which has the behavior R(z) → |z| as |z| → ∞.5

The fluid flow is steady and the only nonzero component of the fluid velocity is vz(z), with all
derivatives bounded. Starting with vz = 0 at z = −∞ we will show that vz reaches the speed of
sound – producing an acoustic horizon – at minima of R(z). If the function R(z) has only one
minimum, e.g. R(z) =

√

(z2 + z20), the assumption of a smooth solution of the fluid equations
of motion implies that the fluid velocity continues to increase beyond the acoustic horizon
until it reaches the speed of light at z = ∞. However, if R(z) has multiple extrema, e.g. two
minima separated by a maximum, we will find smooth flows where the fluid velocity reaches a
maximum supersonic value at the maximum of R(z) and then decreases, then turns subsonic
at the second minimum, and finally reaches zero at z = ∞. Sound waves cannot escape to the
asymptotic region z = −∞ from beyond the first acoustic horizon (which is therefore like a
black hole horizon), and cannot cross the second acoustic horizon (which behaves more like a
white hole horizon) from the z = ∞ asymptotic region .

We also study flows in a warped R1,1 × T 2 geometry

ds2 = −dt2 +R(z)2(dθ21 + dθ22) + dz2 (2)

and find very similar phenomena.
The acoustic Hawking radiation that arises when the sound modes of these flows are quan-

tized will be easiest to detect if the acoustic Hawking temperature TH is larger than the
ambient temperature of the fluid, TH > T . For an uncharged conformal fluid, the only scale is

5The precise meaning of a slowly-varying R(z) is given in the discussion above Eqn.(87). R(z) is some
function in the metric (1), for which all invariants constructed out of the curvature and its derivatives are small
compared to the basic scale in the problem.
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the temperature, so that hydrodynamics is valid only when all derivatives are small compared
to the temperature. However TH itself is proportional to the gradient of the velocity field,
TH ∼ dvz

dz
|z=z̄. Thus it is not possible to have Hawking radiation at a temperature higher

than the ambient temperature in an uncharged conformal fluid. We will therefore look for
charged fluid solutions satisfying the rather stringent criterion of TH > T , in order to ensure
detectability of Hawking radiation.6 Note that the solutions we will find all have well-defined
uncharged limits and satisfy all criteria other than TH > T under the replacement of T → T
and q → 0.

We will consider conformal fluids with global charge density q and conjugate chemical
potential µ. For such a fluid in equilibrium, the ambient temperature can be made to vanish
provided the charge density is chosen properly. In analogy with the gravitational duals of such
fluids considered below, we will call such a fluid “extremal”. We will consider isentropic flows of
such a fluid where the charge density q, energy density ǫ and the velocity vary slowly (in a sense
defined precisely below) but whose variations can themselves be O(1). In an isentropic flow, the
entropy density per unit charge density is, however, a constant. For such flows q ∝ ǫ3/4 where
ǫ is the energy density. Then T ∝ ǫ

1
4 is the only independent energy scale in the theory. T is

in general a function of the chemical potential µ and the temperature T . As shown below, the
isentropic condition allows us to keep the local temperature T to be always much smaller than
T , even though the other hydrodynamic quantities can change by O(1). In the limit of very
small temperature T ∝ µ. One would expect that the hydrodynamic approximation is valid so
long as all gradients are small compared to T . We will show that it is consistently possible to
construct fluid flows described above with all gradients dvz

dz
and all curvature invariants much

smaller than T , thus ensuring T ≫ TH ≫ T .
The spacetimes (1) and (2) may each be regarded as the boundary of an asymptotically

AdS5 near-extremal charged black brane geometry which is deformed due to a nonzero bound-
ary curvature. For generic spacetimes with arbitrary R(z), the boundary metric might not
admit a smooth bulk dual. However it has been shown in [7] that for slow-enough variations
in the boundary metric, the dual geometry is regular up to the bulk horizon and free of other
singularities. Our solution will admit a smooth bulk dual as long as all invariants constructed
out of the boundary curvature and its derivatives are much smaller than the radius of the
outer horizon R+ in AdS units.One should note that in spite of being slowly-varying, the de-
formations can still be large. Very close to extremality, R+ ∼ T ∼ µ, so that this condition
is in fact the condition for validity of hydrodynamics in the boundary theory. In the second
example, the boundary metric has two compact directions. This means that the nature of the
dual geometry depends on the size of the compact directions compared to R+ [23]. We will
choose R(z) ≫ R+ so that the dual is a near-extremal black brane rather than an AdS soliton
with a small temperature.

A fluid flow profile in the boundary theory is then described by a normalizable deformation
of this bulk metric. We construct the deformed bulk metric using a derivative expansion,
following [5], [21] and [22]. The straightforward derivative expansion breaks down in “tubes”

6We would like to thank the referee and also Dileep Jatkar for bringing our attention to the work of
Weinfurtner et.al. [26] where analogue Hawking radiation at a very low temperature has been observed in a
background that has a temperature several orders of magnitudes higher than the radiation.
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of constant retarded time where the geometry becomes exactly extremal; therefore, we consider
fluid flows where the local temperature is small but nonzero. We then consider the class of
linearized fluctuations around this background geometry - quasinormal modes - which are dual
to sound waves in the presence of the corresponding fluid flow. Note that while the deformations
of the bulk metric due to a nontrivial R(z) and a nontrivial velocity profile vz(z) are typically
large, the quasinormal mode amplitudes are small.

The behavior of the quasinormal modes clearly shows that at leading order in the derivative
expansion, the acoustic horizon of the fluid extends into the bulk in the following sense. Let
r denote the radial coordinate in the AdS space and let z = z̄ be the location of the acoustic
horizon in the boundary flow. We find that for any value of r, these quasinormal modes suffer
an infinite blue-shift as we approach z = z̄: modes which travel along the direction of the fluid
flow are smooth at z = z̄, while the modes which travel in the direction opposite to the flow
have rapid oscillations. Thus, in an eikonal approximation these quasinormal modes cannot
cross the quasinormal mode horizon at z = z̄, which extends radially from the acoustic horizon
into the bulk.

Standard arguments imply that upon quantization7, one would find a thermal distribution
of these quasinormal modes with a temperature TH , which is the gravity dual of the acoustic
Hawking radiation in the fluid. Only these specific quasinormal modes perceive the quasi-
normal mode horizon; other modes can cross it with ease. By the same token, the thermal
distribution will be made up only of these quasinormal modes; it exists independently of (and
at a different temperature from) the usual Hawking radiation associated with the event horizon
of the background black brane.

Our discussion is restricted to the lowest non-trivial order in the derivative expansion,
which is consistent with the perfect fluid approximation. However we expect that the physical
consequences should survive higher derivative corrections. Furthermore our discussion of fluc-
tuations, both in the boundary fluid and in bulk gravity, is restricted to the linearized limit.
We do not address the effect of nonlinear interactions of the sound waves and other modes.

Admittedly, our setup is a bit contrived and is meant to provide a simple toy model in
which this novel gravitational phenomenon can be studied in a controlled fashion. We expect,
however, that the phenomenon is quite general and would be present in more interesting
situations (e.g. the Kerr black hole mentioned above).

The paper is organized as follows. In Section 2, we give a self-contained discussion of
acoustic metrics and dumb holes for conformal relativistic fluids. In Section 3, we describe the
bulk dual. In Section 4 we discuss the regime of validity of our solutions.

2 Acoustic metric for relativistic conformal fluid

In this section we derive the equation governing the propagation of sound around gradient
flows of a perfect relativistic conformal fluid. For such fluids, the pressure p and the energy
density ǫ are related by

p =
ǫ

3
. (3)

7Quantization of bulk modes corresponds to 1/N corrections in the SU(N) gauge theory on the boundary.
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For a charged conformal fluid with charge density q, there is an additional equation of state
ǫ = ǫ(s, q), or equivalently s = s(ǫ, q), that relates the energy, entropy and charge densities. 8

We will eventually be considering charged fluids with gravity duals, and will write down an
explicit equation of state for such fluids in Section (3).

The first law of thermodynamics reads

dǫ = T ds+ µ dq , (4)

where T and µ are the intensive quantities temperature and chemical potential respectively
and can be obtained from the equation of state by taking derivatives:

T =
∂ǫ(s, q)

∂s

∣

∣

∣

∣

q

, µ =
∂ǫ(s, q)

∂q

∣

∣

∣

∣

s

. (5)

For a homogeneous system, it follows from extensivity that all thermodynamic variables are
related by a Gibbs-Duhem relationship, which using (3) may be written as

4
3
ǫ = Ts+ µq . (6)

In the following, we will define a quantity T with dimensions of energy by

p =
ǫ

3
= cT 4 , (7)

where c is a dimensionless constants depending on the underlying system. T will be a function
of T and µ (or q), which reduces to T in the uncharged limit. Our fluids will also admit
a zero-temperature, finite-µ limit, close to which T is proportional to µ. T sets the energy
scale of our conformal fluid, and will play an important role in defining limits in which our
approximations are valid.

The equations of motion of fluid dynamics are conservation of the energy momentum tensor
and conservation of the currents associated with any conserved charges, including the conserved
particle number:

∇µT
µν = 0

and ∇µj
µ
i = 0 . (8)

The stress tensor T µν depends on the 3 independent components of velocity v(xµ), the energy
density, the pressure and their derivatives. The currents jµi additionally depend on the densities
qi of the conserved charges. To leading order in the derivative expansion,

T µν = p gµν + (ǫ+ p)uµuν = cT 4 (gµν + 4uµuν) (9)

jµi = qiu
µ . (10)

Here uµ ≡ (γ, γv) and γ = 1√
1−v2

. Conformal invariance implies that the stress tensor is
traceless. In a general curved background there is a trace anomaly; however this is a higher

8For an uncharged conformal fluid, such a relation is trivial and s ∼ ǫ
4

3 .
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order effect in the derivative expansion and we have ignored it. We have also ignored the
viscous and diffusive terms – which are again higher order in the derivative expansion – and
we therefore work in the perfect fluid limit. In addition we will also restrict attention to the
case of a single charge of density q(xµ).

The parallel component of the equations of motion (8), uν∇µT
µν = 0, leads to the conser-

vation law
∇µ

(

T 3uµ
)

= 0 . (11)

In the uncharged case T 3 is proportional to the entropy density of the fluid and the above
equation is the conservation of the entropy current. The perpendicular component P λ

ν ∇µT
µν =

0 (where the projector P λ
ν ≡ δλν + uλuν) gives

uµ∇µ(T uν) = −∇νT (12)

which can be manipulated to yield

∇µ(T uν)−∇ν(T uµ) = −T ωµν , (13)

where ωµν ≡ P λ
µP

κ
ν (∂λuκ − ∂κuλ) = 0 is the vorticity of the fluid.9 Therefore, for an irrotational

flow, we can define a potential φ such that

T uµ = ∂µφ . (14)

Thus to solve for irrotational flows of an uncharged fluid, it is sufficient to solve (14) and
(11), along with an additional equation like (10) for every conserved charge. Note that since
uµuµ = −1, the equation (14) may be used to express T in terms of the potential φ

T 2 = −(∂µφ)(∂
µφ) (15)

so that φ determines both uµ and T .
In general, the charge density q is not related to T . We will, however, restrict ourselves

to solutions where q/T 3 is a constant. The current conservation equations (8) are then auto-
matically solved once the equation (11) is solved. For such flows T (x) is the only independent
dimensionful quantity that governs the flow. φ(x) determines all the hydrodynamic quantities
once the ratio q/T 3 is specified. In fact, substituting (15) in (14) and finally in (11) one gets
a single complicated nonlinear differential equation for φ(xµ).

Although the restriction that q ∼ T 3 might seem quite ad hoc at this stage, for fluids with
gravity duals that we will be considering in Section (3), this will turn out to imply that the
flow is isentropic. Isentropic flows also allow us to parametrically control the temperature of
the fluid. As discussed above, we need to consider fluids at low temperatures. In the flows we
consider, derivatives of the velocity, entropy etc. are small, even though their values can and
should change by O(1). The equation (65) shows that once we fix the ratio q/s so that T is
small at some time, it remains parametrically small at all times, since the change of s is of
order 1.

9It can be shown that the condition of vanishing vorticity is identical to the condition ∂µ(fuν) = ∂ν(fuµ)
for any scalar function f . In (14) f is simply the temperature T .
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Isentropic sound waves in such a gradient flow are described by small amplitude fluctuations
of the velocity potential φ → φ+δφ. This induces variations of uµ, T and qi, T → T +δT , uµ →
uµ + δuµ, qi → qi + δqi. Plugging these into the equations of motion (14), we get

(T + δT )(uµ + δuµ) = ∂µφ+ ∂µδφ

or uµδT + T δuµ = ∂µδφ . (16)

Using uµδu
µ = 0 we get

δT = −uµ∂µδφ
and T δuµ = P µν∂ν(δφ) . (17)

Plugging (17) in (11)

∇µ

[(

3T 2δT uµ + T 3δuµ
)]

= 0

=⇒ ∂µ
[√−gT 2 (gµν − 2uµuν) ∂ν

]

(δφ) = 0 (18)

For sound waves in a static equilibrium fluid in flat spacetime, this gives (−3∂2t + ∂2i )(δφ) = 0,
from which we can read off the speed of sound cs =

1√
3
.

More generally (18) is the Klein-Gordon equation of motion of a massless scalar field in a
non-trivial background metric,

∂µ

[√
−GGµν∂ν

]

(δφ) = 0 (19)

where
√
−GGµν =

√−gT 2 (gµν − 2uµuν)

Gµν =
√
3T 2

(

gµν +
2

3
uµuν

)

. (20)

The metric Gµν above, termed the “acoustic metric”, is described by the line element 10

ds̃2 =
√
3T 2

{

−(1 − 2

3
γ2)dt2 − 4

3
γ2vidx

idt+

(

gij +
2

3
γ2vivj

)

dxidxj
}

, (21)

where γ(z) = 1/
√

1− v(z)2 is the Lorentz factor for the moving fluid. If we make the trans-

formation dτ = dt +
2
3
γ2vi

1− 2
3
γ2dx

i, the metric becomes

ds̃2 =
√
3T 2

{

−(1 − 2

3
γ2)dτ 2 +

(

gij +
2
3
γ2

1− 2
3
γ2
vivj

)

dxidxj
}

. (22)

This is the most general form of the acoustic metric for a relativistic conformal fluid. Note

that the metric factors vanish or become singular at γ =
√

3
2
which precisely corresponds to

the speed of sound v = cs = 1√
3
. This indicates that an “acoustic horizon” is formed where

the flow becomes supersonic and sound waves do not emerge from out of that horizon.

10We will use Gµν and ds̃2 for the acoustic metric to distinguish it from the spacetime metric. Here the
spacetime metric has the form ds2 = −dt2 + gijdx

idxj
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2.1 Steady flows leading to acoustic horizons

In this section we will find steady fluid flows with acoustic horizons when the background
spacetime has a metric of the form

ds2 = −dt2 + dz2 +R(z)2dΩ2
2 . (23)

R(z) = z corresponds to flat spacetime; we will later consider more general functions R(z)
and work on spacetimes that are asymptotically flat. We also assume that the thermodynamic
quantities depend only on z and that vz(z) is the only nonzero component of the velocity. The
form of the acoustic metric is then

ds̃2 =
√
3T 2

{

−(1− 2

3
γ(z)2)dτ 2 +

dz2

3(1− 2
3
γ(z)2)

+R(z)2dΩ2
2

}

(24)

=
√
3T 2

{

−c2s γ(z)2(1−
vz(z)

2

c2s
)dτ 2 +

dz2

γ(z)2(1− vz(z)2

c2s
)
+R(z)2dΩ2

2

}

.

The second line can be obtained from the first by using the definition of the Lorentz factor.
Up to an overall conformal factor the metric is remarkably similar to that of a Schwarzschild
black hole with a warp factor proportional to (1 − 2

3
γ(z)2) – an acoustic horizon is present

at the radius where the flow becomes supersonic. An acoustic Hawking temperature TH and
a surface gravity κ can be defined by the standard process of Euclidean continuation of the
acoustic metric near the horizon; then

TH =
κ

2π
=

3

4π

∣

∣

∣

∣

dvz
dz

∣

∣

∣

∣

zh

. (25)

Thermal radiation of quantized phonons is expected from the horizon since Hawking radiation
is a purely kinematic effect independent of the underlying dynamics [15].

In order to get an explicit solution, we need to solve the equations of motion (13) and (11)

∂z(T γ) = 0 =⇒ T γ = T∞ (26)

∂z
(

R(z)2T 3γvz
)

= 0 =⇒ R(z)2T 3γvz = ΦS (27)

where we have identified the integration constants as the “asymptotic temperature” T∞ and
the “entropy flux” ΦS. From (26) and (27)

vz(1− v2z) =
ΦS

T 3
∞

1

R(z)2
. (28)

From the isentropic condition q ∼ T 3 it follows that

q(z) =
q∞
γ3(z)

. (29)
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Figure 1: Plot of vz(z) for the spherically symmetric case given by Eqn.(31) with zh = 1. There
are two physical branches; neither is valid for z < zh. The third branch is superluminal.

2.1.1 Singular radially symmetric solution

If we take R(z) = z with z ∈ (0,∞), the metric (23) describes flat spacetime. The LHS of
Eqn.(28) has a maximum value of 2

3
√
3
for v = cs =

1√
3
, and therefore there is no solution for

z below a minimum value of

zh =

(

ΦS

T 3
∞

3
√
3

2

)
1
2

. (30)

⇒ vz(1− v2z) =
ΦS

T 3
∞

1

z2
=

2

3
√
3

z2h
z2
. (31)

This cubic equation for vz has two physical branches, one subsonic and the other supersonic;
the third branch is superluminal. The physical branches are plotted in Fig. 1. In the subsonic
branch, as z → ∞, vz → 0 which is consistent with the identification (26). At the horizon the
derivatives blow up:

− dvz
dz

=
ΦS

T 3
∞

2

3z3(1− 3v2z)
→ ∞ at z = zh. (32)

As a result, quantities like the Hawking temperature blow up and more importantly the hy-
drodynamic description breaks down. The pathology can possibly be cured by introducing a
viscosity [16], i.e. by going to higher orders of the hydrodynamic derivative expansion.

2.1.2 Solution in more general geometries

To obtain solutions of first order hydrodynamics that are valid globally, we can choose a more
general R(z) such that

• the spacetime is asymptotically flat, R(z) ∼ |z| for z → ±∞

10



• the maximum value of the RHS of (28) is 2
3
√
3
, the same as the maximum possible value

of the LHS. This condition implies that the minimum value attained by R(z) is

Rmin =

(

3
√
3

2

ΦS

T 3
∞

)1/2

. (33)

Then we can construct a smooth solution that changes over from subsonic to supersonic or
vice-versa every time R(z) attains the above minimum value. For a generic velocity profile,
the derivatives at the horizon do not blow up because the divergence of dvz

dR(z)
at the horizon is

canceled by the fact that

dR(z)

dz
= −R(z) 1− 3v2z

2vz(1− v2z)

dvz
dz

= 0 at z = zh. (34)

The simplest example is the wormhole geometry given by

R(z) =
√

z2 + z20 . (35)

There are two asymptotically flat sheets as z → ±∞ which are connected by a throat at z = 0,

where R(z) = Rmin = z0. From (33) we get the condition ΦS

T 3∞
=

2z20
3
√
3
, and (28) then gives

vz(1− v2z) =
ΦS

T 3
∞

1

R(z)2
=

2

3
√
3

z20
z2 + z20

. (36)

The cubic equation for can be solved for vz. Again there are two physical (subluminal) branches.
One of them smoothly increases from vz = 0 to vz = 1 for z ∈ (−∞,∞) while the other one
smoothly decreases. Both solutions have acoustic horizons at z = 0. A plot of the solutions is
given in Fig. 2. The velocity and its derivatives remain finite near the horizon, as seen from
the near-horizon expansion of the increasing solution:

vz =
1√
3
+

√
2

3

z

z0
(37)

and the acoustic Hawking temperature is

TH =
3

4π

∣

∣

∣

∣

dvz
dz

∣

∣

∣

∣

z=0

=
1

2
√
2πz0

. (38)

An obvious problem with this solution is that it reaches the speed of light asymptotically on
one of the sheets.

To fix this problem, we can choose, for example

R(z) = (z4 − 2z2z20 + z40 +R4
min)

1
4 (39)

which is smooth for Rmin > 0 and has minima at z = ±z0 where R(z) = Rmin. (33) sets
ΦS

T 3∞
=

2R2
min

3
√
3
. This is geometry where two asymptotically flat regions separated by a wormhole

with two throats. For the velocity profile, we have

vz(1− v2z) =
ΦS

T 3
∞

1

R(z)2
=

2

3
√
3

R2
min

√

z4 − z2z20 + z40 +R4
min

. (40)

Now we can find a solution that crosses over from subsonic to supersonic and back to subsonic
at the horizons and remains subluminal for all z, as shown in Fig. 3.
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Figure 2: Plot of vz(z) for the wormhole geometry (35) with z0 = 1. There are two physical
branches, making a subsonic to supersonic (supersonic to subsonic) transition at the acoustic
horizon at z = 0.

Figure 3: Plot of vz(z) for the geometry with two throats given by Eqn.(39) with z0 = 1,
Rmin = 1. There are two horizons located at zh = ±z0. The red branch remains subluminal
for all z.
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Figure 4: Velocity profile (in red) for the nozzle geometry given by Eqn.(42) with vmin = 0.1,
vmax = 0.9, z0 = 1 and the corresponding R(z)/Rmin (in green). The minima in R(z) at
z = ±z0 correspond to v = cs.

2.1.3 Nozzle geometry

We can also choose the spatial section of the metric to be asymptotically cylindrical with
R(z) → constant at z → ±∞. For variety we consider geometries with a toroidal cross-section

ds2 = −dt2 + dz2 +R(z)2(dθ21 + dθ22). (41)

The form of the acoustic metric (23) remains very similar with the replacement of dΩ2
2 by

dθ21 + dθ22. The acoustic Hawking temperature is still given by (25). As an example, we can
take the following profile for v(z) and then solve (28) for R(z):

vz = vmin + (vmax − vmin) sech

(

z

z0

)

. (42)

The vmin term ensures that R(z) → constant and remains finite for large |z|. The profiles of
v(z) and R(z) are shown in Fig. 4. There are two horizons located at

z± = ±z0 cosh−1 vmax − vmin

cs − vmin

. (43)

Assuming vz > 0, the fluid passes the speed of sound at the left horizon z− and again returns
to subsonic speeds as it crosses the right horizon z+.

2.2 Sound waves

In this subsection we examine the behavior of sound waves around the background flows
described in the previous subsections. Sound waves are fluctuations of the velocity potential
φ which satisfy a massless Klein-Gordon equation in the background acoustic metric (24). We

13



will consider background flows on a simple wormhole geometry - more complicated wormholes
or nozzle geometries can be treated along similar lines.

Near the acoustic horizon (chosen at z = 0), the metric is similar to the usual Schwarzschild
metric, so we expect a large blueshift effect for outgoing modes. To display this, it is sufficient
to consider modes in the s-wave. Let us first rewrite the metric in terms of null coordinates
u, v as follows

ds̃2 =
√
3T 2(z)

{

−(1 − 2

3
γ2)dudv +R2(z)(dθ2 + sin2 θdφ2)

}

, (44)

where

du = dτ − dz√
3(1− 2

3
γ2)

= dt+
2
3
γ2v dz

1− 2
3
γ2

− dz√
3(1− 2

3
γ2)

= dt− dz

v+(z)

dv = dτ +
dz√

3(1− 2
3
γ2)

= dt+
2
3
γ2v dz

1− 2
3
γ2

+
dz√

3(1− 2
3
γ2)

= dt− dz

v−(z)
. (45)

Here v±(z) =
v(z)±cs
1±v(z)cs

is the relativistic sum of the local fluid velocity and the velocity of sound

cs = 1/
√
3. Then close to the acoustic horizon R(z) → R(0) is finite, and the s-wave solutions

of the Klein-Gordon equation are approximately

ψ+ ∼ e−iωu ψ− ∼ e−iωv . (46)

In the asymptotic region, where the velocity becomes constant, we obtain the usual spherical
Bessel functions. To analyze the near-horizon behavior, we can expand the velocity field near
the horizon as v(z) ≈ cs +

2
3
κz + . . ., where κ = 3

2

∣

∣

dv
dz

∣

∣

zh
is the surface gravity at the horizon.

Using this in (46), we find

ψ+ ∼ e
−iω

[

t− 2z√
3
+O(z2)

]

(47)

ψ− ∼ e
−iω

[

t− 1
κ
ln|z|+ z√

3
+O(z2)

]

(48)

The ψ+ mode is continuous at the horizon and is right moving with a velocity
√
3
2
, which is the

relativistic sum of 1√
3
with itself. The ψ− mode has rapid oscillations near the horizon:

z . 0 : ψ− ∼ e−iω[t− 1
κ
ln(−z)] (left-moving)

z & 0 : ψ− ∼ e−iω[t− 1
κ
ln(z)] (right-moving)

indicating that inside the horizon, both modes are right-moving.
To extend these modes away from the horizon, we employ an eikonal approximation. We

decompose the sonic fluctuation into a rapidly varying phase or “eikonal” (here λ ≫ 1) times
a slowly varying envelope

ψ(xµ) = A(xµ)e−iλS(xµ) (49)
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and plug it into the wave equation ∂µ
[√

−GGµν∂ν
]

ψ = 0 with the acoustic metric (21) written
out in the original t-z coordinates

ds̃2 = T 2

{

−(1 − 2

3
γ2)dt2 − 4

3
γ2vzdtdz + (1 +

2

3
γ2v2z)dz

2 +R(z)2(dθ2 + sin2 θdφ2)

}

. (50)

We then get a sequence of differential equations for S(xµ) and A(xµ) by expanding the wave
equation order by order in λ:

O(λ2) : ∂µS(x
α)∂µS(xα) = 0 (51)

O(λ) : 2∂µS(x
α)∂µA(xα) + A(xα)∇2S(xα) = 0 (52)

...

The leading equation (51) can be used to solve for S(xα). Let us consider s-wave solutions
independent of θ, φ. With the ansatz

λS(xα) = ωt− f(z) (53)

we can solve for the phase,

λS±(x
α) = ωt+ ω

∫

dz

2
3
γ2v ∓ 1√

3

1− 2
3
γ2

= ωt− ω

∫

dz
1± v√

3

v ± 1√
3

(54)

The momenta of the wavepackets are given by derivatives of the eikonal 11 pµ ≡ −∂µ[λS(xα)]
giving

pt = ω

pz = ω
1± vcs
v ± cs

=
ω

v±
, (55)

where v± has been defined above. The upper and the lower signs would normally correspond
to right- and left-moving sound modes. However, if the fluid (assumed to be right moving) has
a velocity greater than the speed of sound, then both the modes become right-moving. Using
the ansatz A(xα) = A(z) in the subleading equation (52), a full solution is obtained:

ψ± =
A0

T R(z)e
−iω[t−

∫

dz
v±(z) ] (56)

3 Gravity dual of acoustic solution

The fluid-gravity correspondence [3, 4, 5, 6, 7, 21, 22] provides a correspondence between
solutions of certain fluids with classical solutions of suitable Einstein-Maxwell equations in a
4 + 1 dimensional spacetime with a negative cosmological constant. In our case the fluid is a

11The leading order equation (51) is thus a null geodesic equation, pµp
µ = 0 for the phonons.
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conformal fluid with a global U(1) charge and the higher dimensional bulk theory is given by
the five-dimensional action

S =
1

16πG

∫

d5x
√−g

[

R + 12− FABF
AB − 4κ

3
ǫEABCDAEFABFCD

]

(57)

where G is the five dimensional Newton constant, the indices A,B run from 0 to 4, AB is a
U(1) gauge field, and we have chosen units in which the cosmological constant is Λ = −6. The
above action is a consistent truncation of IIB supergravity for κ = 1/(2

√
3). We will, however,

allow arbitrary values of κ.
A uniform charged black brane solution of this action is given in a boosted reference frame

by

ds2 = −2uµdx
µdr − r2V (r,m, q̃)uµuνdx

µdxν + r2Pµνdx
µdxν

A =

√
3q̃

2r2
uµdx

µ (58)

where uµ are constant 4-velocities (the indices µ, ν = 0 · · ·3) and Pµν = ηµν + uµuν is the
spatial projection operator. The function V (r,m, q̃) is given by

V (r,m, q̃) = 1− m

r4
+
q̃2

r6
(59)

where m and q̃ are parameters of the solution and we are using the notation of [22].
This solution is dual to a charged fluid in equilibrium living on the flat boundary of the

five-dimensional spacetime. The fluid is strongly-coupled N = 4 SU(N) Yang-Mills theory,
viewed in a boosted frame with coordinates xµ. The temperature T , charge density q, energy
density ǫ and entropy density s of the fluid are given by [22]

T =
R+

2π

(

2− q̃2

R6
+

)

, q =
√
3αq̃, ǫ = 3αm, s = 4παR3

+, α ≡ 1

16πG
(60)

where R+ denotes the radius of the outer horizon, i.e. the largest root of the equation
V (r,m, q̃) = 0. The energy momentum tensor Tµν and the charge current Jµ of the fluid
are given by

Tµν =
ǫ

3
(ηµν + 4uµuν) Jµ = quµ (61)

The expressions (60) and (61) involve the bulk parameter G. In our units, G is related to the
rank of the gauge group of the boundary theory by

G =
π

2N2
, α =

1

16πG
=
N2

8π2
. (62)

With the substitutions in (60), the equation of state ǫ(s, q) becomes identical to the condition
V (R+(s), m(ǫ), q̃(q)) = 0. The equation of state for a charged conformal fluid with a gravity
dual is thus

1− ǫ

3αR4
+

+
q2

3α2R6
+

= 0, with R+ =
( s

4πα

)
1
3

(63)

⇒ ǫ(s, q) = 3α
( s

4πα

)
4
3
+
q2

α

(

4πα

s

)
2
3

(64)
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The temperature and chemical potential can be obtained by taking derivatives of ǫ(s, q) using
(5):

T =
1

π

( s

4πα

)1/3
(

1− 8π2q2

3s2

)

µ = 2
( q

α

)

(

4πα

s

)2/3

(65)

This temperature reproduces the value quoted in (60). In the uncharged limit R+ = πT , and
one can fix the value of c defined in (7) by comparing it with (63) and requiring that T = T
for uncharged fluids; this gives c = απ4 and hence

ǫµ=0 = 3α(πT )4 , sµ=0 = 4πα(πT )3 . (66)

For charged fluids at finite µ there is a zero-temperature limit, reached when R+ = µ/(2
√
6)

and T = µ/(192
1
4π). In this limit,

qT=0 =
α

48
µ3 , ǫT=0 =

α

64
µ4 , sT=0 =

πα

12
√
6
µ3 . (67)

As discussed in Section 2 we restrict our attention to isentropic flows. For such flows q/T 3

is constant and since ǫ = 3απ4T 4, it follows from the equation of state (63) that T /R+ is a
constant, and therefore that for such flows the entropy per unit charge s/q is constant. The
first equation in (65) shows that by choosing

1− 8π2

3

(

s

q

)2

≪ 1 (68)

we can keep the temperature T ≪ R+ everywhere and at all times.
The gravity dual of a general fluid motion is then constructed in a derivative expansion

as follows. First, we replace the parameters of the solution by functions of the boundary
coordinates xµ, uµ → uµ(x), m → m(x), q̃ → q̃(x) which respectively represent the velocity
field, energy density field and the charge density field of the fluid. We also replace the flat
boundary metric ηµν with a curved metric gµν(x). With these replacements, (58) is no longer
a solution of the bulk equations of motion. Second we need to add correction terms to the
metric and the gauge field so that the full metric and the gauge field now solve the equations
of motion. This second step is of course impossible to perform in an exact fashion. However,
these corrections can be calculated systematically in a derivative expansion, provided that the
derivatives of uµ(x), m(x), q̃(x) with respect to xν are small compared to the outer horizon
radius R+. To lowest nontrivial order in the derivative expansion, the modified metric and
gauge fields are

ds2 = −2uµdx
µdr − r2V (r,m, q̃)uµuνdx

µdxν + r2Pµνdx
µdxν

+
2

3
r(∇αu

α)uµuνdx
µdxν +

2r2

R+
σµνF2(ρ,M)dxµdxν

− 2ruµu
α(∇αuν)dx

µdxν

− 2uµ

(√
3κq̃3

mr4
lν +

6r2

R7
+

(P λ
ν ∂λq̃ + 3(uλ∇λuν)q̃)F1(ρ,M)

)

dxµdxν , (69)
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A =

[√
3q̃

2r2
uµ +

3κq̃2

2mr2
lµ −

√
3r5

2R8
+

(P λ
µ ∂λq̃ + 3(uλ∇λuµ)q̃)

]

dxµ (70)

where we have defined the quantities

M =
m

R4
+

Q =
q̃

R3
+

ρ =
r

R+

. (71)

∇µ is a covariant derivative with boundary metric gµν , and

lµ = gµγǫ
ναβγuν∇αuβ , σµν =

1

2
P µαP νβ (∇αuβ +∇βuα)−

1

3
P µν(∇αu

α) . (72)

The functions F1(ρ,M,Q) and F2(ρ,M) are defined as

F1(ρ,M,Q) =
1

3

(

1− M

ρ4
+
Q2

ρ6

)
∫ ∞

ρ

dp
1

(1− M
ρ4

+ Q2

ρ6
)2

(

1

p8
− 3

4p7
(1 +

1

M
)

)

, (73)

F2(ρ,M) =

∫ ∞

ρ

dp
p(p2 + p+ 1)

(p+ 1)(p4 + p2 −M + 1)
(74)

Note that in the above expressions m, q̃, R+,M,Q, ρ are also functions of the boundary coor-
dinates xµ since m and q̃ are functions of xµ.

This is a solution of the bulk equations of motion, provided that m(x), q̃(x) and uµ(x) are
such that the energy momentum tensor and current

Tµν =
m(x)

16πG
(gµν(x) + 4uµ(x)uν(x)) Jµ =

√
3q̃(x)

16πG
uµ(x) (75)

are covariantly conserved,
∇µT

µν = ∇µJ
µ = 0 (76)

Thus every solution of fluid dynamics leads to a bulk solution.

3.1 Gravity duals of dumb holes

We now apply the results of the preceding subsection to construct gravitational duals of the
fluid flows with acoustic horizons that were studied in Section 2. These flows are special in
several ways: first, the background spacetime metric of the fluid is of the form (23) or (41)
where the only inhomogeneity is in the z direction. Second, both the background flow and
the sound wave fluctuations have vanishing vorticity. Third, the background flows as well
perturbations around them are isentropic.

It follows from the isentropic condition that the quantities M and Q are constants. As ar-
gued above (see discussion following equation (15)), for isentropic flows there is just one length
scale, and all quantities are related to this length scale by dimensional analysis. In particular,
the dimensionless quantities M and Q must be constant. In addition, the inhomogeneous parts
of all quantities which appear in the bulk metric and the gauge field are determined in terms
of a single scalar field φ(x).
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As discussed in the introduction, in order for the acoustic Hawking radiation to be de-
tectable we need to consider fluids which have a very small ambient temperature. This means
that the constant quantities Q and M need to be close to their extremal values, Q ≈

√
2 and

therefore M ≈ 3. While the various quantities like ǫ(x), q(x) can change by O(1) amounts
(only their derivatives are small), the isentropic condition ensures that if the fluid temperature
is initially small it will remain small (see the discussion in Section 2 above).

To construct the background fluid flow, we simply need to insert the velocity potential
φ0 for the solutions of Section 2 into the general metric and gauge field in (69) and (70).
The conditions of vanishing vorticity and isentropic flow simplify these general expressions
somewhat. The most drastic simplification appears in the expression for the gauge field,
equation (70). In fact the first order corrections (in the derivative expansion) to the gauge
field vanish for isentropic gradient flows. To see this we note first that ∇αuβ can be replaced
by ∂αuβ in the expression lµ of (72). Then using T uµ = ∂µφ we get

lµ = gµγǫ
ναβγ ∂νφ

T [− 1

T 2
∂αT ∂βφ+

1

T ∂α∂βφ] = 0 (77)

due to antisymmetry of the epsilon symbol. The third term on the RHS of (70) also vanishes,
as can be seen by applying the isentropic condition q/T 3 =constant and the relations (14) and
(15) to the expression

P λ
µ∇λq̃ + 3(uλ∇λuµ)q̃ = 3aT

[

T ∂µT + T uλ∇λ(T uµ)
]

= 3aT
[

−1

2
∂µ(∂αφ∂

αφ) + ∂λφ∇λ∂µφ

]

= 0 (78)

Thus, to first order in the derivative expansion, the bulk gauge field is given by the first term
of the right hand side of (70), which is just the term which would have resulted from a simple
boost of the original black brane solution. In our case the charge density and the 4-velocity
appearing in (70) are functions of z, as determined by the fluid flow on the boundary. So there
is a nonzero electric field component along the z direction, given by

F0z = −
√
3q̃∞
r2

vz∂zvz (79)

where we have used (29) to express q(z) in terms of the velocity vz.
The expression for the bulk metric simplifies as well. In the fourth line of (69), the first

term is proportional to lµ which vanishes for our flows. The second term is proportional to Hµ

defined in (78) and vanishes as shown above.
In the derivative expansion, the relationship between the boundary and the bulk becomes

essentially local. The bulk solution can in fact be constructed approximately by patching
together tube geometries obtained by extending the boundary data in a given region of the
boundary to the bulk using the radial equations of motion. Consequently we expect that the
acoustic horizon of the fluid flow on the boundary extends trivially into the bulk. We will
explicitly verify this in the next subsection.

However, this tubewise approximation breaks down in regions where the local geometry is
exactly extremal. This is apparent in the results of [21] and [22]. Furthermore, recent work
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on perturbations around extremal black holes shows that the relevant low energy expansion is
different from the naive derivative expansion [24]. Our results hold close to extremality, but
not exactly at extremality.

3.2 Gravity duals of phonons

The gravity duals of phonons in the fluid are quasinormal modes of metric and gauge field
perturbations. Once again, construction of these modes is trivial. We need to write

φ(xµ) = φ0(x
µ) + βδφ(xµ), (80)

compute T (x) and hence m(x), q(x), uµ(x) in terms of δφ, substitute into (69) and (70), and
consider the terms which are linear in β. By construction, these modes satisfy ingoing boundary
conditions at the bulk horizon.

The fluctuations of the gauge field Aµ obtained by this procedure have a particularly simple
form

δAµ = −β
√
3a

2r2
[(∂βφ0)(∂

βφ0)δ
α
µ + (∂µφ0)(∂

αφ0)]∂α(δφ) (81)

For the background flows considered in Section 2, we have found solutions to the wave equation
(18) for δφ in the region close to the acoustic horizon. Upon inserting these solutions into (81),
we see that the fluctuations δAµ have a characteristic behavior near the acoustic horizon, viz.
ingoing waves are smooth while outgoing waves have rapid fluctuations. This is the precise
sense in which the fluctuations perceive the acoustic horizon, which has now extended into the
bulk. From the nature of the solution that the extension of the acoustic horizon into the bulk
is rather trivial - i.e. the horizon perceived by these modes is at the same value of z as the
acoustic horizon on the boundary, and for all values of r.

The fluctuations for the components of the metric can be similarly worked out and also
see a horizon structure at the same value of z. We therefore conclude that there are certain
quasinormal modes of the bulk metric and the gauge field which perceive a horizon. If these
bulk modes are quantized, one should find a thermal bath of such modes characterized by the
temperature of the acoustic horizon on the boundary.

4 Regime of validity

It is important to check that the fluid flow described above is consistent with the standard
conditions for validity of hydrodynamics. Roughly speaking, hydrodynamics is valid when the
gradients of velocities, temperature and charge densities are small compared to the inverse
mean free path lm. For charged conformal fluids considered above, there are two scales - the
temperature T and the chemical potential µ ≡ νT , so that lm ∼ f(ν)/T . The function f(ν)
is of order one for generic values of ν, but there is an upper bound on ν, νc where f(ν) has a
simple zero. It is possible to take the limit of ν → νc simultaneously with T → 0 such that
lm is finite - the dual of this is in fact the extremal black hole. For the flow described in the
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previous section, in this limit we have
∣

∣

∣

∣

dvz(z)

dz

∣

∣

∣

∣

≪ 1

lm
∣

∣

∣

∣

1

T
dT (z)

dz

∣

∣

∣

∣

≪ 1

lm
(82)

In particular, since the acoustic Hawking temperature TH is 3
4π

∣

∣

dvz
dz

∣

∣

z∓
, this implies that

TH ≪ 1

lm
(83)

For observable acoustic Hawking radiation, the Hawking temperature should be higher than
the fluid temperature. So we require

T . TH (84)

Furthermore, the frequency of the sound waves should also be small compared to the basic
scale, ω ≪ 1/lm. However, the finite Hawking temperature is going to introduce an upper
bound on the allowed wavelengths, due to periodicity in Euclidean time; thus ω > TH . Thus
we need

T . TH < ω ≪ 1

lm
(85)

For fluids with no conserved charge, there is only one energy scale, namely, the temperature
T ; thus 1/lm ∼ T and (84) cannot be satisfied. Although the solution is otherwise valid, the
Hawking radiation, at a temperature much lower than the ambient temperature, is not going
to be observable. For fluids with a conserved charge the condition (84) does not pose a problem
because now we have two length scales, the temperature T and the chemical potential µ. For
fluids very close to zero temperature, the mean free path will be governed only by µ. We can
thus have

0 ≈ T . TH < ω ≪ 1

lm
≈ T ≈ µ (86)

The ability to construct a gravity dual using a derivative expansion imposes further con-
ditions. In the presence of a nonconstant R(z), the validity of the derivative expansion of
the solutions of the bulk equations of motion requires that the curvature invariants and all
invariants constructed out of the derivatives of curvature be small. An example of such an
invariant is gµν∇µR∇νR, where R is the Ricci scalar and we require for this example

(gµν ∇µR∇ν R)
1
6 ≪ 1

lm
. (87)

We get additional conditions if some of the boundary directions are compactified as in the
nozzle geometry of Section (2.1.3). If one boundary direction of a AdS × S geometry is made
compact with a radius R(z), the dual is an AdS soliton [25] which caps off the geometry at
a value of the radial coordinate r = 1/(2R). For a black brane geometry, compactification of
a boundary direction would lead to a similar modification of the usual black brane geometry.
However if R(z) ≫ 1/(2R+), where R+ is the location of the black brane horizon, the place

21



where the bulk geometry would cap off is far inside the black brane horizon. In this situation we
can continue to use the standard black brane geometry with a compact longitudinal direction.
We will therefore require that for all z,

R(z) ≫ 1/R+ (88)

for the solution of Section (2.1.3). Finally we require for the nozzle solution that R(z) be finite
for large z. The geometry is then asymptotically R× T 2 and has an AdS dual.

4.1 Validity of our solutions

Finally, we determine the range of parameters for which our approximations are valid, for the
specific flows studied in Section 2. Let us first discuss the wormhole solution of equations (39)
and (40). The solution has four parameters, T∞, q∞, z0 and Rmin. ΦS is fixed by (33) once Rmin

is chosen. Since v < 1, γ remains finite for all z. T = T∞
γ
> 0 and we can have a valid derivative

expansion w.r.t. T∞. In order that the curvatures are small, we require Rmin ≫ 1/T∞. The
derivatives dvz

dz
, 1

T
dT
dz

and the derivatives of the curvature are all proportional to 1
z0
. Thus we

require 1
z0

≪ T∞. q∞ can be chosen such that we are always at very low temperatures, following
the discussion around equation (68). To summarize, the conditions for our wormhole solution
to be valid are:

T → 0,
1

z0
< ω ≪ T∞ ,

1

Rmin

≪ T∞. (89)

For the nozzle solution described by (42), the parameters are z0, vmax, vmin, T∞, q∞ and ΦS.
As in the previous case, all derivatives in the solution are proportional to 1

z0
. We need vmax < 1

for the derivative expansion to be valid (so that γ remains finite and T remains non-zero) and
we obtain the same conditions as in (89). The condition (88) is same as the requirement that
the background curvature remains small: Rmin ≫ 1/T∞. Since Rmin is given in terms of T∞
and ΦS by (33), this implies ΦS ≫ T∞. Moreover, we need vmin > 0 in order that R(z) be
finite at large z – the asymptotic geometry remains R × T 2, and we have an asymptotically
AdS gravity dual. Summarizing, the conditions for validity of our nozzle solution are:

T → 0,
1

z0
< ω ≪ T∞ ≪ ΦS , 0 < vmin < vmax < 1. (90)
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