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Abstract

We make a perturbative calculation of neutrino scattering and absorption in hot and dense

hyperonic neutron-star matter in the presence of a strong magnetic field. We calculate that the

absorption cross-sections in a fully relativistic mean-field theory. We find that there is a remarkable

angular dependence, i.e. the neutrino absorption strength is reduced in a direction parallel to the

magnetic field and enhanced in the opposite direction. This asymmetry in the neutrino absorption

is estimated to be as much as 2.2 % of the entire neutrino momentum for an interior magnetic

field of ∼ 2 × 1017G. The pulsar kick velocities associated with this asymmetry are shown to be

comparable to observed velocities.

PACS numbers: 25.30.Pt,21.65.Cd,24.10.Jv,95.85.Sz,97.60.Jd,
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I. INTRODUCTION

Hot and dense hadronic matter is a topic of considerable current interest in nuclear

and particle physics as well as astrophysics because of its associated exotic phenomena. In

particular, many studies have addressed the possible exotic phases of high density matter.

Neutron stars are thought to be the most realistic possible sites to study the physics of high

density matter. For example, the possible existence of an anti-kaon condensation in neutron

stars has been suggested [1], and the possible implications for its astrophysical phenomena

have been widely discussed [2–5].

These discussions, however, heavily depend upon the nuclear-matter equation of state

(EOS), which governs both the static and dynamic properties of neutron stars. Hence,

many papers [6–13] have been devoted to the study of the neutron-star EOS. In particular,

the thermal evolution of neutron stars by neutrino emission is a topic of considerable interest

[14–20] regarding the dynamical evolution of neutron stars. For example, Reddy et al. [21]

studied neutrino propagation in proto-neutron stars (PNSs) as a means to examine the

hyperon phase in the high density region.

On the other hand, since the discovery of magnetars [22, 23], magnetic fields are thought

to play an important role in many astrophysical phenomena such as the development of

asymmetry in supernova (SN) remnants. Indeed, strong magnetic fields turn out to be a

crucial ingredient for the still poorly understood mechanism to produce non-spherical SN

explosions, pulsar kicks [24], i.e. the high velocity [25] that some PNSs receive at birth.

Although several post-collapse instabilities have been studied as a possible source of

non-spherical explosions and pulsar kicks, the unknown origin of the initial asymmetric per-

turbations and the uncertainties in the numerical simulations make this possibility difficult

to unambiguously verify [26, 27]. Another viable candidate is the possibility of asymmetric

neutrino emission either as a result of parity violation in the weak interaction [28, 29] or as

a result of an asymmetric magnetic field [30] in strongly magnetized PNSs.

In this work, we take the asymmetric neutrino emission as one of the main reasons for

the asymmetric phenomena observed in the PNS. This asymmetric neutrino emission is

assumed be caused by the two processes; one is the asymmetric production inside PNSs;

and the other is the damping of the neutrino luminosity through neutrino absorption in the

nuclear medium.
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The direct and modified URCA processes may play a role in neutrino emission, but

the main effect of these processes is in the neutron-star cooling [14, 31], where in-medium

effects play an important role [32, 33]. Of course, a strong magnetic field leads to an angular-

dependence of the neutrino production in the URCA process because of the spin polarization

of electrons and positrons in matter [34, 35]. Nevertheless, we assume here that the URCA

process is not important in the PNS stage.

Other effects, such as the Landau levels due to the magnetic field [36, 37], the angular

dependence of the neutrino production caused by a possible pion condensation phase [38, 39],

and a possible quark-matter color-super conducting phase [40] etc are also assumed to be

small in this work.

Over a decade ago, Lai et al. [41, 42] calculated the neutrino-nucleon scattering during

neutrino propagation inside a neutron star in the context of a non-relativistic framework [41].

Within that approximation they showed that even a ∼1% asymmetry in the total neutrino

luminosity of ∼ 1053 ergs could be enough to explain the observed pulsar kick velocities.

Kusenko, Segre and Vilenkin [43] criticized this conclusion and theoretically showed that

the asymmetry in the neutrino scattering cross-section does not lead to an asymmetry in the

neutrino emission if the system is in complete thermodynamic equilibrium. However, they

only considered only neutrino-neutron collisions and neglected the Fermi-Dirac statistics.

Hence, their proof is only applicable in the very low-density region. Furthermore, neutrino

scattering inside dense nuclear matter does not play a role in either the thermal evolution

or the propagation of the non-equilibrium part of the neutrinos. On the other hand, the

absorption part of the collisions may make a large contribution to the asymmetry [44]. That

is what we demonstrate here.

On the other hand, the past decades have seen many successes in the relativistic treatment

of the nuclear many-body problem. The relativistic framework has several advantages [45,

46]. Among them this formalism provides a useful Dirac phenomenology for the description

of nucleon-nucleus scattering [47, 48], a natural means to incorporate the spin-orbit force

[46], and a reliable means to compute the structure of extreme nuclei [49]. These results

have shown that there are large attractive scalar and repulsive vector fields, and that the

nucleon effective mass becomes small in the nuclear medium. This mechanism may drive

the self-suppression mechanism of kaon-condensation in in nuclear matter, and may lead to

a stable kaon condensation phase in neutron stars (NSs) [7].
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In Ref. [44] we reported results for the first time on the neutrino absorption cross-sections

in hot dense magnetized NS matter calculated in a fully relativistic mean field (RMF)

theory [45, 46] including hyperons. In that work we took into account the Fermi motion

of baryons and electrons, their recoil effects, distortion effects of the Fermi spheres by the

magnetic field, and effects from the energy difference of the mean field between initial and

final baryons in a fully relativistic framework. We found that even a few percent breaking

of isotropic symmetry in the neutrino absorption cross-section may cause an asymmetric

emissions of neutrinos from PNSs.

In this paper, we provide more detailed explanations of the neutrino scattering and ab-

sorption cross-sections in magnetized NS matter in the context of RMF theory. We then

solve the Boltzmann equation for neutrino transport in a 1D model and discuss implications

of our numerical results for pulsar kicks. In particular, we focus on the collision between

a neutrino and a particle in nuclear matter in the presence of a strong magnetic field and

a core temperature of 20 − 40MeV. Two-baryon process are not taken into account in the

present PNS calculation since they only play an important role at low temperature (∼ a few

MeV) [31].

In Sec. II we introduce our EOS for nuclear matter based upon the RMF theory. In Sec.

III we explain the neutrino scattering and absorption cross-sections in baryonic matter in the

presence of strong magnetic fields. Numerical results and detailed discussions of neutrino

reactions and propagation in baryonic matter at finite temperature are presented in Sec.

IV. Summaries are given in Sec. V with further arguments on the associated pulsar kicks of

magnetized PNSs. Finally, in Sec. VI, as topics for future work, we discuss other plausible

characteristics of PNS interiors that may affect the pulsar kicks.
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II. NEUTRON-STAR MATTER IN THE RELATIVISTIC MEAN-FIELD AP-

PROACH

In this work we calculate neutrino cross-sections in neutron-star matter in the RMF

approach. For this purpose we define the Lagrangian density as

L = LLep + LRMF + LMag + LW , (1)

where the first, second, third and fourth terms are the lepton, RMF, magnetic, and weak

interaction parts, respectively. We consider NS matter including nucleons, Lambdas, elec-

trons and electro-neutrinos (νe). Detailed expressions for the magnetic and weak parts are

explained in the next section.

The lepton and RMF parts of the Lagrangian density utilized in this work are given as

LLep = ψνiγµ∂
µψν + ψe(iγµ∂

µ −me)ψe, (2)

LRMF = ψ̄N (iγµ∂
µ −MN)ψN + gσψ̄NψNσ + gωψ̄NγµψNω

µ

+ψ̄Λ(iγµ∂
µ −MΛ)ψΛ + gΛσ ψ̄ΛψΛσ + gΛω ψ̄ΛγµψΛω

µ

−Ũ [σ] + 1

2
m2

ωωµω
µ − CIV

2M2
N

ψ̄NγµτaψN ψ̄Nγ
µτaψN , (3)

where ψν , ψe, ψN , ψΛ, σ, and ω are the electron neutrino, and electron, nucleon, Lambda,

sigma-meson and omega-meson fields, respectively, with corresponding masses me,MN ,MΛ,

and mω. Ũ [σ] is the self-energy potential of the scalar mean-field given in Refs. [7, 50]. The

last term describes the vector isovector interaction between two nucleons, which is equivalent

to ρ-meson exchange [45]. We adopt natural units, i.e. ~ = c = 1.

From the Euler-Lagrange equation of the above Lagrangian, the Dirac spinor of the

baryon ub(p, s) is obtained as a solution to the following equation

[/p−M∗
b − U0(b)γ0] ub(p, s) = 0, (4)

where U0(b) is the time component of the mean-field vector potential. We hereafter introduce

the Feynman dagger /p ≡ γµp
µ for convenience. The baryon effective masses M∗

b are given

by

M∗
N = MN − Us(N),

M∗
Λ = MΛ − Us(Λ), (5)
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with the scalar mean-field potentials

Us(N) = gσ〈σ〉, Us(Λ) = gΛσ 〈σ〉. (6)

The scalar mean-field 〈σ〉 is given by

∂

∂〈σ〉 Ũ [〈σ〉] = gσ [ρs(p) + ρs(n)] + gΛσ ρs(Λ), (7)

with the scalar densities

ρs(b) ≡
2

(2π)3

∫
d3p

[
n
(+)
b [e

(+)
b (p)] + n

(−)
b [e

(−)
b (p)]

] M∗
b

E∗
b (p)

. (8)

Here, e
(±)
b are the single particle (+) and antiparticle (−) energies, E∗

b (p) =
√
p2 +M∗2

b ,

and the Fermi distributions, n
(±)
b (e

(±)
b ), are defined as usual,

n
(±)
b (e

(±)
b ) =

1

1 + exp[(e
(±)
b ± εb)/T ]

, (9)

in terms of the temperature T and the chemical potential εb.

In addition, the baryon single-particle energies are written as e
(±)
b (p) = E∗

b (p) ± U0(b),

with the U0(b) calculated as

U0(p) =
gω
m2

ω

{
gω(ρp + ρn) + gΛωρΛ

}
+
CIV

M2
N

(ρp − ρn), (10)

U0(n) =
gω
m2

ω

{
gω(ρp + ρn) + gΛωρΛ

}
− CIV

M2
N

(ρp − ρn), (11)

U0(Λ) =
gΛω
m2

ω

{
gω(ρp + ρn) + gΛωρΛ

}
(12)

in terms of the proton, neutron and Lambda number densities, ρp, ρn and ρΛ.

In this work, neutron-star matter at finite temperature includes protons, neutrons,

Lambdas(Λs), electrons and neutrinos. These are constrained by the conditions of charge

neutrality and beta equilibrium. Therefore, the proton number density is equal to the elec-

tron number density, ρp = ρe, and the chemical potentials obey the following condition

εn = εΛ = εp + εe . (13)

The lepton fraction is also fixed as YL = (ρe + ρν)/ρB with ρB = ρp + ρn + ρΛ.

Since we focus only on the asymmetry of neutrino emission caused by the presence of a

magnetic field and the existence of strange matter, we choose one parameter-set, PM1-L1
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FIG. 1: (Color online) Upper panels (a) and (c) show the density dependence of the total energy

per baryon ET /A in neutron-star matter for T = 20 MeV (a) and 40 MeV (c). Solid and long-

dashed lines represent results with and without Λ particles. Lower panels (b) and (d) show number

fractions of protons xp, Λ particles xΛ, and neutrinos xν for T = 20 MeV (b) and 40 MeV (d).

Solid, dot-long-dashed, and short-dashed lines represent proton, Lambda, and neutrino number

fractions, respectively. Long-dashed and dotted lines represent the calculated proton and neutrino

number fractions in a system without Λs. In the present calculations we use the parameter-set

PM1-L1 [51] for the RMF and the lepton fraction is set to YL = 0.4.

[51], in order not to distract the discussion. This parameter set gives the binding energy per

baryon BE = 16 MeV, a nucleon effective mass of M∗
N/MN = 0.7 and an incompressibility

parameter of K = 200MeV at ρ0= 0.17 fm−3 in nuclear matter. The sigma- and omega-

Lambda couplings are 2/3 of those for the nucleon, gΛσ,ω = 2
3
gσ,ω. Similar relations are used

in the quark meson coupling (QMC) model [52].

In Fig. 1 we show the energy per nucleon, which is a kind of the equation of state (EOS),

in the upper panels (a and c) and the proton and Lambda fractions in the lower panels (b

and d) at T = 20MeV (a and b) and T = 40MeV (c and d). In these calculations the lepton

fraction is taken to be YL = 0.4. Solid and dashed lines represent the results for matter with

7



and without Λs, respectively. Dot-dashed lines in the lower panels indicate the Lambda

fraction, which appears when ρB & 2ρ0 and significantly affects the EOS for ρB & 3ρ0.

Here we should comment about the anti-particle contribution. The density of anti-

neutrinos is less than 0.5 % of the neutrino density when ρB = ρ0 and T = 40MeV. This

ratio is much lower than other particles. With larger density and lower temperature, this

ratio becomes smaller. Thus, anti-particles does not significantly contribute to the EOS or

other observables as discussed below.

When Lambda particles are not included, the PM1-L1 EOS is sufficiently stiff [7] to

allow a neutron star with mass larger than the value observed observed for PSR J1614-

2230 of M = 1.97 ± 0.04M⊙ [53]. When the Lambda particles are included, however, the

EOS becomes softer and does not allow such a large maximum neutron-star mass. This

could be resolved if we introduce additional repulsive force between Λs [54] consistent with

hypernuclear data. Another possibility would be introducing a repulsive three-body force.

In this paper, however, our goal is to explore the effects of magnetic fields in generating

pulsar kicks and not to discuss the ambiguity of the mean-field EOS in regards to the

maximum neutron-star mass. In this work, therefore, only the Λ particle is introduced as

a hyperon. One could also introduce a Sigma (Σ) mean-field in matter, which is repulsive

[55] and appears at rather high density. However, its abundance fraction is small [56, 57].

Though the Xi (Ξ) particle may be attractive [58], we we do not have sufficient information

about the Xi (Ξ) particle and ignore its contribution.
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III. CROSS-SECTIONS FOR NEUTRINO REACTIONS IN MAGNETIZED

PROTO-NEUTRON STAR MATTER

A. Dirac Wave Function in a Magnetic Field

We assume a uniform magnetic field along the z-direction B = Bẑ with B<
∼10

18 G. For

this field strength the effect of the magnetic field on baryons is small enough to be treated

perturbatively. The magnetic part of the Lagrangian density is written as

LMag = LBM + LeM , (14)

where the first and second terms describe the magnetic interactions of baryons and electrons,

respectively.

Considering only the spin-interaction term, the baryon magnetic-interaction Lagrangian

density can be written as

LBM =
∑

b

µbψ̄bσµνψbF
µν =

∑

b

µbψ̄bσzψbB (15)

with the electromagnetic tensor given by F µν = ∂µAν − ∂νAµ, where Aµ is the electro-

magnetic vector potential, σµν = [γµ, γν ]/2i, σz = diag(1,−1, 1,−1) and µb is the baryon

magnetic moment. The baryon wave functions can be obtained by solving the following

Dirac equation

[/p−M∗
b − U0(b)γ0 − µbBγ0σz] ub(p, s) = 0 . (16)

The single particle energies eb(p, s) and the Dirac spinors in the limit of a weak magnetic

field are given as

eb(p, s) =

√

p2z +

(√
p2
T +M∗2

b + µbBs

)2

+ U0(b)

≈ E∗
b (p) + U0(b) + ∆E∗

b (p)s (17)

with

∆E∗
b (p) =

√
p2
T +M∗2

E∗
b (p)

µbB , (18)

and

ub(p, s)ūb(p, s) =
1

4E∗
b (p)

[E∗
b (p)γ0 − p · γ +M∗

b ](1 + sγ5/a(p))
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+
pzµbB

4E∗3
b (p)

(σ · p−M∗
b γ5γ0)

+
sµbB

8E∗
b (p)

√
p2
T +M∗2

b

(
−E∗

b (p)γ
0 +M∗

b + pzγ
3 − pxγ

1 − pyγ
2
)
,(19)

with

a(p) ≡ (a0,aT , az) =
1√

p2
T +M∗2

b

(pz, 0, 0, E
∗
b (p)) . (20)

Detailed derivations of these expressions of Eq. (19) are presented in appendix A. The

second and third terms of Eq. (19) do not appear in the non-relativistic framework, but

their contributions are negligibly small and can be omitted in the present work.

For the electron contribution in Eq. (14), we have to use another treatment. This is

because electron mass is very small, and its current is almost a Dirac current

LeM = −eψeγµψeA
µ, (21)

where ψe is the electron field. Also, the effect of a strong magnetic field on electrons may

not be a small perturbation. The electron energy in the presence of a strong magnetic field

is generally given by

ee(n, kz; s) =
√
k2z +m2

e + eB(2n + 1− s), (22)

where n stands for the Landau levels of the electrons.

But the electron wave function also becomes a plane wave in the limit of B → 0, so that

we can use the same expression as Eq. (19) for electrons, aside from the spin vector. The

upper component of the electron Dirac spinor is an eigenvector of the matrix σz. The spin

vector in the rest frame of the electron is then (0; 0, 0, 1). In the matter frame the boosted

spin vector can be written as

a(k) = ae(k) ≡
(
kz
me

,
kzkT

me(Ee(k) +me)
, 1 +

k2z
me(Ee(k) +me)

)
, (23)

where kz and kT are the components along the z-direction and perpendicular to the z-

direction, respectively.

When
√
2eB ≪ εe, the summation over n can be approximated as an integration over

energy, i.e.
∑

n

→ 1

2eB

∫
dxT , (xT = 2eB(n +

1

2
)) . (24)
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Note that the variable xT corresponds to k2
T in the limit of B → 0. Then, the expectation

value of an operator Ô is given by

< Ô >=
2eB

(2π)2

∑

s

∑

n

∫
dkzne (ee(n, kz, s))O(n, kz, s)

≈ 1

(2π)2

∑

s

∫
dxT

∫
dkzne (ee(xT , kz, s))O(xT , kz, s)

≈ 1

(2π)3

∑

s

∫
d3kne (ee(k, s))O(k, s), (25)

where the electron energy is approximately given as ee =
√

k2 +m2
e − eBs.

Actual calculations are performed in the limit of me → 0, so that the electron energy and

the spin vector are approximated by

ee ≈
√
k2 +m2

e −
eBs

2
√
k2 +m2

e

≈ |k|+ me

|k|µeBs , (26)

ae(k) ≈
1

me

(
kz,

kzkT

|k| ,
k2z
|k|

)
, (27)

where µe = −e/2me .

As already commented at the end of Sec. III, the fractions of the anti-leptons and anti-

baryons are negligibly small, and these particles do not contribute to the neutrino reactions.

Therefore, we ignore the contributions from antiparticles, and omit the superscript ’+’ in

the single particle energies e
(±)
b (p) and the Fermi distribution n

(±)
b (p, s).

B. Neutrino Reaction Cross-Sections

In this subsection we consider neutrino reactions in NS matter consisting of electrons

and baryons (i.e. protons, neutrons and Λs). The weak interaction part of the Lagrangian

density LW in Eq. (1) is written as

LW =
GF

2

{
∑

α,β

ψαγµ(cV − cAγ5)ψβ

}2

, (28)

where the indices α and β indicate particles comprising the NS matter. The cV and cA are

the weak vector and axial coupling constants dependent on each channel.

We utilize the impulse approximation, i.e. individual collisions between the initial neu-

trino and the constituent particles. We consider both neutrino scattering (νe → ν ′e) channels

νe + p → ν ′e + p′, (29)
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νe + n → ν ′e + n′, (30)

νe + Λ → ν ′e + Λ′, (31)

νe + e− → ν ′e + e′−, (32)

and absorption (νe → e−) channels

νe + n → e− + p , (33)

νe + Λ → e− + p . (34)

As noted above, we consider rather low temperatures, T ≪ εb. Therefore, we may ignore

the contribution from antiparticles. In addition, we treat this system as partially spin-

polarized owing to the magnetic field. The cross-section can then be described in terms of

the initial and final lepton momenta ki and kf

d3σ

dk3f
=

G2
F

16π2
V
∑

α,β

∑

sl,si,sf

[1− nl(el(kf , sl))]

∫
d3pi
(2π)3

d3pf
(2π)3

WBL(ki, kf , pi, pf ;α, β)

× nα(eα(pi, si))[1− nβ(eβ(pf , sf))]

× (2π)4δ3(ki + pi − kf − pf)δ(|ki|+ eα(pi)− eβ(pf)− el(kf )), (35)

where V is the volume of the system, and index l denotes final lepton species. Indices α and

β denote initial and final baryons and electrons, which have momenta pi and pf , respectively.

The function WBL in Eq. (35) is defined as a product of lepton and hadron weak currents

WBL =
1

4|ki||kf |E∗
α(pi)E

∗
β(pf)

LµνNµν (36)

with

Lµν =
1

4
Tr {(/kf +ml)(1 + γ5/alsl)γ

µ(1− γ5)/kαγ
ν(1− γ5)} , (37)

and

Nµν =
1

4
Tr
{
(/pf +M∗

β)(1 + γ5/aβsf)γµ(cV − cAγ5)

× (/pi +M∗
α)(1 + γ5/aαsi)γν(cV − cAγ5)} , (38)

where ml is the mass of the final lepton.

Since we take the weak magnetic field limit, we treat this system as partially spin-

polarized owing to the magnetic field. Then the Fermi distribution and the delta function
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in the above equations can be expanded in terms of the magnetic field B. Finally, the cross-

section can be summarized as a sum of two contributions, σ0
S,A independent of B and ∆σS,A

depending on B,
d3σS,A
dk3f

=
d3σ0

S,A

dk3f
+
d3∆σS,A
dk3f

, (39)

where the indices S and A indicate the cross-sections for scattering or absorption, respec-

tively.

For the absorption process, we use the energy delta function in Eq. (35) to further separate

the magnetic part of the cross-section of Eq. (39) into two parts

∆σA = ∆σM +∆σel, (40)

where first and second terms are the contribution from target particle and outgoing electron,

which appear only in the absorption (νe → e−) process. Detailed derivations are written in

the appendix B.

The first term of Eq. (40), ∆σM , is calculated as

d2∆σM
dkfdΩf

=
4πG2

FB

(2π)6
|kf |
|ki|

(1− nl(|kf |))
∑

α,β

(TA + TB) , (41)

where

TA =
1

|q|

∫
d3pi
|pi|E∗

α

δ(t− tp)
{
n′
α(E

∗
α + U0(α))[1− nβ(E

∗
β + U0(β))]µαW̃ i

+ n′
β(E

∗
β + U0(β))nα(E

∗
α + U0(α))(µαW̃ i − 2µβW̃ f )

}
,

TB = − 1

q2

∫
d3pi
p2
iE

∗
α

(E∗
α + q0)δ(t− tp)nα(E

∗
α + U0(α))

×
[
1− nβ(E

∗
β + U0(β))

]
(
µα

∂W̃ i

∂t
− µβ

∂W̃ f

∂t

)
, (42)

with

W̃ i = c2V
{[
kf · (M∗

βpi −M∗
i pf )

]
(ki · bα)−

[
ki · (M∗

βpi −M∗
αpf)

]
(kf · bα)

}

+c2A
{[

−kf · (M∗
βpi +M∗

αpf)
]
(ki · bα) +

[
ki · (M∗

βpi +M∗
αpf )

]
(kf · bα)

}

−2cV cAM
∗
α {(kf · pf)(ki · bα) + (ki · pf )(kf · bα)} , (43)

W̃ f = c2V
{[
kf · (M∗

βpi −M∗
αpf )

]
(ki · bβ)−

[
ki · (M∗

βpi −M∗
αpf )

]
(kf · bβ)

}

+c2A
{[
kf · (M∗

βpi +M∗
αpf)

]
(ki · bβ)−

[
ki · (M∗

βpi +M∗
αpf)

]
(kf · bβ)

}

−2cV cAM
∗
β {(ki · pi)(kf · bβ) + (kf · pi)(ki · bβ)} (44)
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and

bα =

√
p2
T +M∗2

α

E∗
α(p)

aα(pα) . (45)

In these equations the four momenta pi and pf are defined by pi ≡ (E∗
α(pi),pi) and pf ≡

(E∗
β(pf),pf).

When the target particle is an electron, the above expression is slightly altered. When

both the initial and final particles are electrons, the above equations are written as

W̃ i/me = δβe
{
c2V [(kf · (pi − pf)) (ki · bi)− (ki · (pi − pf )) (kf · bi)]

+c2A [(−kf · (pi + pf)) (k · bα) + (ki · (pi + pf )) (kf · bα)]

−2cV cA [(kf · pf )(ki · bα) + (kf · bα)(ki · pf)]} , (46)

W̃ f/me = δαe
{
c2V [(kf · (pi − pf)) (ki · bβ)− (ki · (pi − pf)) (kf · bβ)]

+c2A [[kf · (pi + pf )] (ki · bβ)− [ki · (pi + pf)] (kf · bβ)]

−2cV cA [(ki · pi)(kf · bβ) + (kf · pi)(ki · bβ)]} , (47)

and

bi,f = be(kf) =
me

|pi,f |
ae(pi,f). (48)

In the actual calculation we take the limit of me → 0, keeping µeW̃i.f and bi,f finite.

The second term in Eq. (40), ∆σel, is calculated as

[
G2

FB

16π5|q||ki||kf |

]−1
d3

dk3f
∆σel

≈
∑

α,β

n′
l(|kf |)

∫
d3pi

|pi|E∗
αE

∗
β

δ(t− tp)(E
∗
α + ω)nα(E

∗
α + U0(α))

[
1− nβ(E

∗
β + U0(β))

]
W̃ e

+
∑

α,β

[1− nl(|kf |)]
∫

d3pi
|pi|E∗

α

δ(t− tp)nα(E
∗
α + U0(α))n

′
β(E

∗
β + U0(β))W̃ e

−
∑

α,β

[1− nl(|kf |)]
∫

d3pi
p2
iE

∗
α

δ(t− tp)(E
∗
α + ω)nα(E

∗
α + U0(α))

×
[
1− nβ(E

∗
β + U0(β))

] ∂W̃ e

∂t
(49)

with

W̃ e =
meµe

|kf |
We

= −c2V [(ki · pf)(pi · be) + (ki · pi)(pf · be)−MβMα(ki · be)]
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−c2A [(ki · pf )(pi · be) + (ki · pi)(pf · be) +MβMα(ki · be)]

+2cV cA [(ki · pf )(pi · be)− (ki · pi)(pf · be)] , (50)

where be = meae(kf)/|kf |.

C. Non-Relativistic Limit

In order to clarify relativistic effects we take the non-relativistic limit, pα = (Mα; 0), pf =

(Mβ; 0), aα = (0, 0, 0, 1). Then the cross-sections become

d2σ0
dkfdΩf

=
G2

F

16π5
[1− nl(|kf |)]k2

f

[
(c2V + 3c2A) + (c2V − c2A)

ki · kf

|ki||kf |

]
R1 , (51)

d2∆σM
dkfdΩf

=
G2

F

16π5
B [1− nl(|kf |)]k2

f

{
cos θi

∑

α,β

[µαcA(cV + cA)R2 − 2µβcA(cV − cA)R3]

+
∑

α,β

cos θf [µαcA(cV − cA)R2 + 2µβcA(cV + cA)R3]

}
(52)

with

R1 =

∫
d3pδ(|ki| − |kf |+ Eα(p)−Eβ(p+ q))nα(Eα)[1− nβ(Eβ))] , (53)

R2 =

∫
d3pδ(|ki| − |kf |+ Eα(p)−Eβ(p+ q))

×
{
n′
α(Eα)[1− nβ(Eβ)] + nα(Eα)n

′
β(Eβ)

}
, (54)

R3 =

∫
d3pδ(|ki| − |kf |+ Eα(p)−Eβ(p+ q))nα(Eα)n

′
β(Eβ) , (55)

where Eα is the single particle energy of particle a, and θi and θp are the polar angles of the

initial and final leptons.

Lai and Qian [42] made a further approximation with the long wave length limit |ki| −
|kf | → 0, and made R1, R2 and R3 independent of θi and θf . Then, σM is a linear function

of θi and θf . This makes is possible to solve the Boltzmann equation analytically. However,

this approach does not include the effects of Fermi motion and cannot be used for the

electron contribution because its mass is taken to be zero. Therefore, this approximation is

only valid in the very low density regime, ρB . 0.1ρ0.
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IV. RESULTS AND DISCUSSION OF NEUTRINO CROSS-SECTIONS

In this section we present the cross-sections for neutrino scattering (νe → νe) and ab-

sorption (νe → e−) in matter with and without a magnetic field. We set the lepton fraction

to be fixed as YL = 0.4, and the neutrino incident energy is taken to be its chemical po-

tential, |ki| = εν , unless otherwise noted. In Eq. (28) we utilize the parameters for the

weak-interaction, cV and cA from Ref. [21].

A. Neutrino Cross-Sections without a Magnetic Field
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5ρ0

(a)νe →νe (c) νe →νe

T = 20 MeV
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A
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dΩ
/ A

  (
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2 ) (b)νe →e−

0 50 100 150
θf (degree)

(d)νe →e−

FIG. 2: (Color online) Density dependence of the scattering (a and c) and absorption differential

cross-sections (b and d) of neutrinos in neutron-star matter at T = 20 MeV without Λs (a and b)

and with Λs (c and d). The initial neutrino angle is taken to be θi = 0◦. Dotted, dashed and solid

lines represent the results for ρB = ρ0, 3ρ0 and 5ρ0, respectively.

In Fig. 2 we show the density dependence of the differential cross-section per baryon at

T = 20 MeV for the scattering (a and c) and absorption (b and d) of neutrinos in matter

without Λs (a and b) and with Λs (c and d). The subscripts ’S’ or ’A’ refer to the scattering

or absorption cross-sections, respectively. Solid and dashed lines show the results in matter

including Λs or no Λs, respectively. We see that the scattering cross-sections are forward

peaked, while the absorption cross-sections decrease at forward angles when ρB ≤ 3ρ0.
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FIG. 3: (Color online) Scattering (a and c) and absorption differential cross-sections (b and d) for

neutrinos for θi = 0 versus the final lepton angle θf with various incident neutrino energies in PNS

matter at ρB = 3ρ0 and T = 20 MeV. Dotted, dashed and dot-dashed lines show the results for

incident neutrino energies |ki| = 100, 150, and 250 MeV, respectively. Solid lines show results for

the incident neutrino energy equal to the neutrino chemical potential, i.e. |ki| = εν .

In Fig. 3, we show the energy dependence of the differential cross-sections per baryon

at ρB = 3ρ0 and T = 20 MeV for various incident neutrino energies. The solid lines show

the results for the incident neutrino energies equal to the neutrino chemical potentials,

i.e. |ki| = εν . Dotted, dashed and dot-dashed lines represent the results at |ki| =100, 150

and 250 MeV, respectively.

For |ki| = 100 MeV, the cross-sections show a minimum at forward angles. With the

increase of incident energy, however, the cross-sections gradually become larger and finally

become peaked at forward angles. This behavior arises from the the difference in Fermi

distributions between the spin-up and spin-down particles, as was discussed in Ref. [44].

This Pauli blocking affects the results at all angles, and, in particular, manifests itself at

forward angles. However, this Pauli blocking effect becomes smaller at higher incident

energies as shown in Fig. 3. We have confirmed that the cross-sections always show forward

peaks when we turn off the Pauli blocking term for the final lepton, (1 − nl). We can

therefore conclude that the Pauli blocking effect is clearly exhibited at low incident energy
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as a suppression of the differential cross-sections at forward angles.

B. Differential Neutrino Cross-Sections in a Magnetic Field

In this subsection we discuss effects of a magnetic field on the neutrino reactions in

neutron-star matter. For illustration, we first calculate the differential cross-sections per

baryon, dσS,A/dΩ/A with an initial neutrino angle of θi = 0◦ at a matter density of ρB = 3ρ0

and a magnetic field of B = 2×1017G. This gives µNB = 0.63 MeV, where µN is the nuclear

magneton. The initial momenta are taken to be equal to the chemical potential in each case,

i.e. |ki| = εν .
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16
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FIG. 4: (Color online) Effects of magnetic fields on the differential cross sections per baryon

dσ/dΩ/A, from Eq. (39) in units of 10−16 fm2. This figure is obtained at a density of ρB = 3ρ0 at

T = 20 MeV (a and b) and 40 MeV (c and d). Upper (lower) panels are for neutrino scattering

(absorption). Initial momentum and angle of incident neutrinos are taken to be |ki| = εν and

θi = 0◦. Solid and short-dashed lines represent results including Λs with and without a magnetic

field B = 2× 1017G, respectively. Dot-dashed and dotted lines represent results without Λs.

In Fig. 4 we show the neutrino scattering (νe → νe) cross-sections in the upper panels (a

and c) and the absorption (νe → e−) cross-sections in lower panels (b and d), in Eq. (39). Left

and right panels are for temperatures T = 20 and 40 MeV, respectively. Solid and dashed
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lines show the results with and w/o Λs, respectively. For reference, we also plot results

without a magnetic field for both cases, and including (dot-dashed lines) and excluding

(dotted lines) Λs.
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FIG. 5: (Color online) Magnetic parts of the differential cross-sections per baryon, d∆σ/dΩ/A,

corresponding to the 2nd term in Eq. (39), in units of 10−16 fm2 for neutrino scattering (νe → νe)

at ρB = 3ρ0 for T = 20 MeV without Λs (a) and with Λs (c). Lower panels (b and d) are the same

as the upper panels but for neutrino absorption (νe → e−) in a system without (b) and with Λs

(d). Initial momentum and angle of the incident neutrinos are taken to be |ki| = εν . Solid, dashed

and dotted lines represent results for θi = 0◦, 90◦ and 180◦, respectively.

This figure beautifully indicates that the magnetic field does not much affect the scattering

cross-sections when B ≈ 2×1017G. Actually the contributions from each individual particle

such as protons and neutrons are not so small. These contributions, however, tend to cancel

each other out. However, the magnetic field suppresses the absorption cross-section in the

forward direction and enhances it in the backward direction. In particular, near θf ≈ 0◦, the

suppression from the magnetic field is as much as 20 −30 %. This contribution is almost as

large as that from the Λ particles.

In Fig. 5 we show the magnetic parts of the differential cross-sections, ∆σ of Eq. (39), at

ρB = 3ρ0 and T = 20 MeV. Upper panels are for neutrino scattering (νe → νe) and lower
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panels (b and d) are for absorption (νe → e−). Right and left panels are for matter including

and excluding Λs, respectively. Solid, dashed and dotted lines represent results for incident

angles, of θi = 0◦, 90◦ and 180◦, respectively. In these calculations we keep the difference of

the azimuthal angle between the initial and final leptons equal to zero, i.e. φf − φi = 0.

These calculations show that the magnetic field enhances the scattering cross-sections in

the direction along the magnetic field (arctic direction). For absorption an enhancement

appears in the opposite direction (antarctic direction). These asymmetries of the scattering

and absorption cross-sections of neutrinos by the magnetic field would lead to the coherent

effect of enhancing the neutrino drift in the arctic direction while suppressing it in the

antarctic direction, as will be discussed below.

C. Angular-integrated Neutrino Cross-Sections in a Magnetic Field and The

Asymmetries

In order to discuss the effects of neutrino transfer inside the PNS at subsection E, we here

calculate the scattering cross-sections integrated over the momenta of the initial neutrinos

σS(|kf |, θf) = σ0
S(|kf |, θf ) + ∆σS(|kf |, θf)

=
1

ρB

∫
d3ki
(2π)3

nν(|ki|)
d3σ0

S(ki,kf)

dk3f
+

1

ρB

∫
d3ki
(2π)3

nν(|ki|)
d3∆σS(ki,kf)

dk3f
.(56)

The absorption cross-sections are however integrated over the momenta of the final electrons

as

σA(|ki|, θi) = σ0
A(|ki|, θi) + ∆σA(|ki|, θi)

=

∫
d3kf

d3σ0
A(ki,kf)

dk3f
+

∫
d3kf

d3∆σA(ki,kf)

dk3f
. (57)

Note that the non-magnetic parts of the integrated cross-sections, σ0
S,A, are also integrated

the same way.

Figures 6 and 7 show ∆σS/σ
0
S with |ki| = εν and ∆σA/σ

0
A with |kf | = εν as functions

of θf and θi, respectively, for matter densities, ρ0 ≤ ρB ≤ 5ρ0. We plot results for matter

without Λs (upper panels) and with Λs (lower panels) at T = 20 MeV (left panels) and

T = 40 MeV (right panels). Similar to the differential cross-sections, the magnetic field

enhances the integrated scattering cross-sections and suppresses the integrated absorption

cross-sections in the arctic direction parallel to the magnetic field B. The magnetic field
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FIG. 6: (Color online) Ratios of the magnetic part of the scattering cross-sections (∆σS) to the

cross-sections without a magnetic-field (σ0
S) without Λs (a and c) and with Λs (b and d) at T = 20

MeV (a and b) and at T = 40 MeV (c and d). Dotted, dashed and solid lines represent the results

for densities of ρB = ρ0, 3ρ0 and 5ρ0, respectively.

has an opposite effect in the anti-parallel antarctic direction. Therefore, we may conclude

that a magnetic field increases the neutrino emission in the arctic direction and decreases it

in the antarctic direction.

In Fig. 8, we show the contribution of each constituent particle to the scattering cross-

sections without Λs (upper panels) and with Λs (lower panels) at ρB = 3ρ0 (left panels) and

ρB = 5ρ0 (right panels). Only the contribution from the protons is opposite to those from

electrons, neutrons and Λs because of the different signs of the magnetic moments. These

contributions tend to cancel to each other, and the magnetic parts of the scattering cross-

sections become slightly smaller. However, when one allows Λs to appear in the system, the

proton fraction decreases and in this case the cancellation is not as large as the case without

Λs (see Fig. 1).

Solid and dashed lines in Fig. 9 show the contributions from the n → p and Λ → p

neutrino absorption processes, respectively. Upper and lower panels exhibit the results at

ρB = 3ρ0 and ρB = 5ρ0, respectively. Results in the left and right panels are divided by

the non-magnetic parts of the integrated cross-sections and their respective non-magnetic
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FIG. 7: (Color online) Ratios of the magnetic part of the absorption cross-sections (∆σA) to the

cross-sections without a magnetic-field (σ0
A) without Λs (a and c) and on matter with Λs (b and d)

at T = 20 MeV (a and b) and at T = 40 MeV (c and d). Dotted, dashed and solid lines represent

the results for ρB = ρ0, 3ρ0 and 5ρ0, respectively.

contributions.

Contributions from the Λ → p process seem to be much smaller than those from the

n→ p in the left panels, but in the right panels the former contributions are as large as the

latter. This apparent difference is because of the small Cabibbo angle, sin2 θC ≈ 5.0× 10−2.

Since the non-magnetic part of the Λ → p process is associated with a strangeness change of

∆S = 1, its transition probability is ∼ sin2 θc times smaller than that of the n→ p, ∆S = 0,

process. As a result, contributions from the Λ → p process to the total non-magnetic

part becomes very small. However, when one divides the small contributions by the small

quantities from respective non-magnetic parts, the ratio shows an interesting difference as

illustrated in the right panels. With Λs present, the proton fraction becomes smaller as

the density changes, and the contribution from the magnetic parts of the Λ → p process

becomes remarkably larger.
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FIG. 8: (Color online) Contributions from each constituent particle to the magnetic part of the

scattering cross-sections (∆σS) at T = 20 MeV divided by the integrated cross-sections without a

magnetic-field (σ0
S). Upper(lower) panels exhibit the results without (with) Λs at ρB = 3ρ0 (left)

and ρB = 5ρ0 (right), respectively. Dashed, solid, dot-dashed and long dashed lines represent

contributions from electrons, neutrons, protons and Λs, respectively. Dotted lines represent a sum

of the contributions. In panel (d), solid and long dashed lines are indiscernible.

D. Neutrino Mean-Free-Paths

In order to apply the above results to astronomical phenomena, we discuss the neutrino

mean-free-paths (MFPs). In Fig. 10, we show the density dependence of the neutrino MFPs,

λS,A = V/σS,A with the system volume V, for the scattering (a) and the absorption (c)

processes at T = 20 and 40 MeV for B = 0. For this illustration, the incident neutrino

energy is fixed to be equal to its chemical potential.

The scattering and absorption MFPs rapidly decrease as the density increases up to

ρB ≈ (2 − 3)ρ0. When the system does not include Λs, both MFPs (dashed and dotted

lines) decrease monotonically even beyond ρB ≈ (2 − 3)ρ0. When the system includes Λs,

the scattering MFPs also decrease, but the absorption MFPs increase in ρB & 3ρ0, because

the cross-sections for νe + Λ → p+ e− are smaller than those of νe + n→ p+ e−.
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FIG. 9: (Color online) Contributions from each constituent particle in the magnetic part of the

absorption cross-sections (∆σA) at T = 20 MeV with Λs at ρB = 3ρ0 (upper) and ρB = 5ρ0

(lower panels). Left and right panels exhibit results divided by the non-magnetic parts of the total

cross-sections (σ0
A) and their non-divided respective contributions (σ0

A(i)). Solid and dashed lines

represent the contributions from the n → p and Λ → p processes, respectively.

In addition, we show the magnetic contributions to the MFPs, ∆λS,A ≡ [V/σ(0◦) −
V/σ(180◦)]/2, in the lower panels (b and d). We should note that the σ contribution from

the scattering process is calculated by an integration over final angle, which is not the same

as σS defined in Eq. (56). We see, again, that the contribution of the magnetic field is

∼ 1− 2% of the non-magnetic parts.

The slopes of the magnetic parts of the neutrino cross-sections ∆σS,A are almost con-

stant as a function of cos θi,f (see Figs. 6 and 7). Hence if we define the slopes as

SS,A = (∆σS,A/σ
0
S,A)/ cos θi,f , the integrated cross-sections ∆σS,A can be approximately

written as

σS,A ≈ σ0
S,A(1 + SS,A cos θi,f ). (58)

The discrepancy in the use of this formula is estimated to be less than 1 %.

Since SS > 0 and SA < 0, the neutrinos scatter and absorb in the arctic direction due

to the magnetic field. In Fig. 11, we show the density dependence of SS (a) and SA (b). It
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FIG. 10: (Color online) Upper panels show the neutrino MFP for scattering (a) and absorption

(c) without a magnetic field. The lower panels show the magnetic contribution to the MFP for

scattering (b) and absorption (d). Here the neutrino incident energy is fixed as the chemical

potential. Since the magnetic part of the MFP for scattering is negative, we multiply by (−1).

Solid and dashed lines represent the results at T = 20 MeV with and without Λs, respectively.

Dot-dashed and dotted lines represent the results at T = 40 MeV with and without Λs, respectively.

is evident that the effects of the magnetic field become smaller as the temperature and the

density increase. This density dependence arises from the fact that ∆σ is approximately

proportional to the fractional area of the distorted Fermi surface caused by the magnetic

field. Hence, the relative strength ∆σS,A/σ
0
S,A diminishes with increasing density.

However, the density dependence of SS including Λs exhibits a local minimum around

ρB ≈ 3ρo and increases again in the density region, 3ρ0 . ρB . (5 − 6)ρ0. As commented

before, the Lambda fraction rapidly increases for ρB & ρ0, and its contribution enhances SS

(see Fig. 1 and Fig. 8).
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FIG. 11: (Color online) Density dependence of SS when |ki| = εν (a) and SA when |kf | = εν (b).

Various lines show the results without Λs at T = 20 MeV Dashed) and without Λs at T = 40

MeV(dotted), with Λs at T = 20 MeV (solid) and with Λs at T = 40 MeV (dot-dashed).

E. Neutrino Transport and Pulsar Kick Velocities

Next we discuss implications of these findings for neutrino transport in a strongly magne-

tized PNS. It has been pointed out that asymmetric neutrino emissions may cause the pulsar

kicks of magnetars [22, 23]. Most of the explosion energy is emitted as neutrinos. In this

subsection, we estimate the momentum transfer from the asymmetric neutrino emission.

In the interpretation of actual phenomena, many different effects may contribute to the

generation of pulsar kicks. One must, therefore, solve the time evolution of PNSs with a

numerical simulation. However, our purpose is to examine qualitatively the effects from our

asymmetric cross-sections on the kick velocity. Therefore, we we can limit our discussion to

only effects of the asymmetric cross-section discussed above.

For this purpose we can assume that the PNS is in local equilibrium, and that the neutri-

nos propagate through the dense nuclear matter in the presence of a strong magnetic field,

and that eventually the neutrinos are emitted asymmetrically. Along with these assump-

tions, we ignore the effects of other neutrino processes, such as the direct and moderate
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URCA processes [35–37], and also the momentum transfer to the medium at each local

position.

The time scale for PNS evolution is much larger than that of the emitted neutrino prop-

agating inside the PNS. Therefore, to estimate the neutrino momentum transport, we can

conjecture that PNS is static, and that the neutrino transfer makes a continuous current in

the equilibrium matter. Furthermore, we simplify the PNS as having a fixed temperature

and magnetic field. These simplifying assumptions for the purpose of this work, which is

to qualitatively examine effects of a magnetic field on the PNS momentum. Clearly, more

investigation beyond the present assumptions is warranted and will be the subject of future

work as discussed in Sec. VI.

1. Boltzmann Equation

We start with the phase-space neutrino distribution function fν(r,k) and calculate the

asymmetric neutrino emission from the fν function. This fν satisfies the following Boltzmann

equation (
∂

∂t
+ k̂ · ∂

∂r

)
fν(r,k) = Icoll (59)

with

Icoll =
∑

i,j

∫
d3kl
(2π)3

d3pi
(2π)3

d3pj
(2π)3

Wif {fl(kl)fj(p2) [1− fν(k)] [1− fi(p1)]

− fν(k)fi(p1) [1− fl(kl)] [1− fj(p2)]} , (60)

where Wif is the reaction probability. The index l denotes leptons, electrons or neutrinos,

and the indices 1 and 2 label the target particles, e.g. baryons and electrons. In the above

equations, we omit the contribution from the neutrino mean-field because its depth is about

a few ten eV (GFρ0 ≈ 15 eV), and the magnetic contribution is much less.

Here, we introduce several assumptions to obtain a solution to the Boltzmann equation.

First, we assume that the system is almost in equilibrium, and that fν(r,k) can be separated

into two parts

fν(r,k) = f0(r,k) + ∆f(r,k) =
1

1 + exp[(|k| − εν(r))/T ]
+ ∆f(r,k) , (61)

where the first and the second terms are the local equilibrium part and the deviation from

the equilibrium, respectively, with the neutrino chemical potential εν(r) at the position
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r. The phase-space distribution functions of other particles are assumed to have local

thermodynamic equilibrium distributions. In addition, we also omit the contribution from

e− +B → B′ + νe. The collision term can thus be written as

Icoll ≈
∑

ij

∫
d3kl
(2π)3

d3pi
(2π)3

d3pj
(2π)3

(
WS

{
∆f(kl) [(1− f0(k))fi(1− fj)− f0(k)fi(1− fj)]

−∆f(k) [(1− f0(kl))fi(1− fj)− f0(kl)fi(1− fj)]
}

−WA∆f(k) [f1 (1− fe(kl)) (1− f2)]) , (62)

where WS and WA are the scattering and absorption probabilities.

We make the further assumption that only the absorption process makes a dominant

contribution to the neutrino momentum transport. When the Icoll in Eq. (62) is integrated

over k, the term proportional to WS, which represents the contribution from the scattering,

becomes zero, i.e. this part does not change the number of emitted neutrinos. The scattering

process enhances the asymmetry, but the magnetic field contribution to the scattering cross-

section is small. Hence, the approximation of ignoring the scattering process may slightly

underestimate the asymmetry, but does not significantly change the estimated effect.

By ignoring the scattering contributions, we can treat the neutrino trajectory as the

straight line and simply express the Boltzmann equation for the neutrino transport as

k̂ · ∂
∂r
fν(r,k) = k̂ · ∂εν

∂r

∂f0
∂εν

+ k̂ · ∂∆f
∂r

= −σA(r,k)
V

∆f(r,k), (63)

where the absorption cross-section σA is a function of k and ρB(r).

In the present approximation the neutrinos are taken to propagate along a straight line,

which gives us an analytical solution for the above Boltzmann equation as explained below.

First, we define a plane A0 that is perpendicular to the neutrino momentum k. This plane is

constructed to intersect the center of the neutron star, which we take to be the origin of the

coordinate system r ≡ (0, 0, 0). Then, we introduce xL and RT such that r = xLk +RT ,

where xL is the component of r parallel to k and RT ⊥ k. In terms of xL and RT , Eq. (63)

can then be written as

∂εν
∂xL

∂f0
∂εν

+
∂∆f

∂xL
= −σA

V
∆f(xL, RT ,k) , (64)

where RT ≡ |RT | and ∂εν/∂xL = (k̂ · r̂)∂εν/∂r. The solution is given by

∆f(xL, RT ,k) =

∫ xL

0

dy

[
−∂εν
∂y

∂f0
∂εν

]
exp

[
−
∫ xL

y

dz
σA
V

]
. (65)

28



102

103

104

105

106

107

λ S
 (

cm
)

(a)

1 2 3 4

100

101

102

103

104

105

ρB / ρ0

λ A
 (

cm
)

20MeV

40MeV

100MeV
(b)

FIG. 12: (Color online) The neutrino mean-free-paths for scattering (a) absorption (b) with a

neutrino energy Eν = 20 MeV (solid line), 40 MeV (dashed line) and 100 MeV (dotted line) in

neutron-star matter at T = 20 MeV without a magnetic field. Thick and thin lines represent

results with and without Λs, respectively.

As neutrinos are created inside a PNS and propagate through the matter, their intensity

will be attenuated by absorption. The exponential in Eq. (65) accounts for this feature. If

σA/V were sufficiently large, we would expect that very few neutrinos produced deep inside

the PNS could reach the surface. That, however, is not the case.

2. Mean-Free-Path in NS matter

To give a more concrete picture we next analyze the mean-free path of neutrinos. Fig. 12

shows the neutrino MFPs for scattering and absorption λS,A = (σS,A/V )
−1 for neutrino

energies of Eν = 20 MeV (solid line), Eν = 40 MeV (dashed line), and Eν = 100 (dotted

line) in neutron-star matter at a temperature of T = 20 MeV without a magnetic field.

Thick and thin lines represent the results with and without Λs, respectively. The MFPs

for the absorption are less than a few km so that most of the neutrinos produced in the
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FIG. 13: (Color online) The magnetic slope parameter Eq. (67) of the neutrino absorption versus

incident energy at T = 20 MeV. Open and full circles show the results in the present calculation

at ρB = ρ0 without and with Λs, respectively. Open and full squares indicate those at ρB = 3ρ0

without and with Λs. Dotted, dot-dashed, dashed and solid lines show results of the fitting function

at ρB = ρ0 without and with Λs, and those at ρB = eρ0 without and with Λs, respectively.

central region are absorbed. However, the neutrinos produced at the surface contribute to

the net emission of neutrinos; this fact is qualitatively the same as the result obtained in

Ref. [41]. In addition, we see that the neutrino MFP is longer when its energy is large

because of the Pauli blocking of the final electron. As a result lower energy neutrinos are

absorbed more efficiently.

Furthermore, we should note that λA ≫ λs above nuclear matter density ρB
>
∼ρ0. This

highlights the fact that the absorption rate is much larger than the scattering rate. This is

consistent to our approximation of ignoring the scattering process.

In order to solve Eq. (65), we need to know σA/V as a function of the density ρ, the

magnetic field B, the initial neutrino energy Eν , and the angle between the magnetic field

and the initial neutrino momentum, θν . For this calculation we have made a data base of

σ0
A as a function of the baryon density ρB and the incident neutrino energy Eν .

However, it is not easy to make a data base of the magnetic part of ∆σM because it is

a function of ρB, Eν and θν as well as B. This leads to a computationally intensive five

dimensional integration. Therefore, we introduce a fitting function for the magnetic part
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deduced as follows.

TABLE I: Parameters of Eqs. (67) − (70) fitted to theoretical results in Fig. 13

p, n p, n,Λ

A0 7.28 × 10−2 6.43 × 10−2

A1 4.07× 10−2 −3.22× 10−2

γ 0.355 0.392

B0 2.96 × 10−3 −2.62× 10−3

B1 7.21 × 10−3 2.36 × 10−2

B2 5.94 × 10−3 −7.01× 10−3

B3 −2.02 × 10−7 7.544 × 10−4

C0 (MeV2) 1.16× 10−5 −1.05× 10−5

C1(MeV2) 2.29 × 10−7 −2.57× 10−6

C2 (MeV2) −5.62 × 10−6 −3.35× 10−6

C3 (MeV2) 1.14 × 10−6 8.61 × 10−7

From Eq. (58), the angular dependence can be approximately written as

σA = σ0
A(1 + SA cos θν), (66)

where, SA obeys the following approximate function:

− SA = AM + BMe
−CME2

ν (67)

with

AM = A0 +A1

(
ρB
ρ0

)γ

, (68)

BM = B0 + B1

(
ρB
ρ0

)
+ B2

(
ρB
ρ0

)2

+ B3

(
ρB
ρ0

)3

, (69)

CM = C0 + C1
(
ρB
ρ0

)
+ C2

(
ρB
ρ0

)2

+ C3
(
ρB
ρ0

)3

. (70)

All quantities except ρB and Eν are constant and adjusted to reproduce the theoretical

results shown in Fig. 13 as described in the figure caption.
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3. Proto Neutron-Star Model

To estimate the kick velocity in our model, we need baryon density profiles of PNS. Here,

we assume an isothermal PNS mode which is easily calculated and effective for our purpose

in this work. Baryon density profiles of our PNS model at T = 20 MeV are shown in

Fig. 14. We choose 20 MeV as a reasonable average isothermal approximation to a PNS.

Even though the core temperature could be much more and the temperature at the neutrino

sphere much less, 20 MeV is a reasonable average temperature encountered by neutrinos as

they transport from the core to the neutrino-sphere.

For this illustration, we fix total gravitational mass of the PNS to be 1.68 M⊙. The

appearance of Λ particles when ρB & 2ρ0 softens the EOS. This increases the baryon den-

sity and the neutrino chemical potential. The density profiles with Λs are sensitive to the

temperature.
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FIG. 14: (Color online) PNS Density distribution versus radius. Solid and dashed lines represent

the results with and without Λs at T = 20 MeV, respectively.

4. Momentum transfer

We use these density distributions of the PNS to the calculation of the neutrino momen-

tum transport. We define the effective spherical surface SN where ρB = ρ0, and estimate
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the kick velocity from the angular dependence of the emitted neutrino momentum at this

surface. The total momentum per unit time of the neutrinos emitted along the direction n

is then calculated as

P =

∫

SN

dr

∫
d3k

(2π)3
∆f(r,k)(k · n)δ (k − (k · n)n) . (71)

The momentum P can be approximately written as

P = P0 +∆P ≈ P0 + P1 cos θ (72)

in terms of the polar angle θ. The asymmetry of the neutrino momentum ∆P/P0 is shown

as a function of θ in Fig. 15.
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FIG. 15: (Color online) The variation of emitted neutrino momentum versus the polar direction.

Solid and dashed lines represent the results in a system with Λs and without Λs at T = 20 MeV,

respectively.

We use the momentum distribution in Eq. (72) to calculate the ratio of the average

momentum in the direction of the magnetic field < Pz > to the total emitted neutrino

energy ET , i.e. < Pz > /ET = P1/3P0. Our results are estimated as < Pz > /ET = 0.0194

and 0.0176 with and without the Λs at T = 20 MeV.

We assume that the total energy emitted in neutrinos is ET ≈ 3 × 1053erg [42]. For the

MNS = 1.68 M⊙ isothermal model with T = 20 MeV, the calculated kick velocities are

vkick =< Pz > /MNS = 580 km s−1 or 520 km s−1 in neutron-stars with or without Λs,

respectively.
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In actual observations, the average value of the kick velocity is about vkick = 400 km s−1,

and the highest reported value is ∼ 1500 km s−1. Our values are thus close to the observed

average pulsar kick velocity. We note that Lai and Qian [42] obtained a similar result

(vkick =280 km s−1). However their result was calculated in a non-relativistic framework

without Λ particles.

In the central region, high energy neutrinos up to Eν & 100 MeV are copiously produced,

but their MFP is only about several 103 cm. They are, therefore, almost completely absorbed

in the transport process. The average energy of the emitted neutrino is about 20 MeV, and

most of neutrinos with energy < 50 MeV contribute to the pulsar kick because the MFP

for these neutrinos is larger (Fig. 12). If one presumes that the thermalization process

is faster than the time scale at which the neutrino absorption process directly affects the

collective motion of the PNS, then the cross-section in the low density region affects the

final asymmetry of the neutrino emission.

Neutrinos are continuously further absorbed in the lower density regions before they are

emitted outside the neutron-star, and the asymmetry should be retained. Indeed, when we

extend the calculation to much lower density ρB = 0.5ρ0, we find that the asymmetries are

almost the same as the above results, but that the energy of the emitted neutrinos is small.

We caution, however, that in such low density regions, both the magnetic field and

temperature may be lower than those assumed in the present isothermal model. If, instead

of an isothermal neutron-star model, one were to use a an isoentropic model with uniform

entropy, then the kick velocity may be smaller. In the surface region of magnetars, the

magnetic field is still as high as 1015 G. That is, however, only about 1/100 of the value

adopted in the present calculation. A lower magnetic field may reduce vkick, but the lower

density and temperature may enhance it. In such a subtle situation the scattering process

which we ignored in the present calculation should also be included as it enhances the

neutrino asymmetry. This could tend to increase the kick velocity.
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V. SUMMARY AND DISCUSSION

We have studied the neutrino scattering and absorption processes in strongly magnetized

proto-neutron stars (PNSs) at finite temperature and density. We used a fully relativistic

mean field (RMF) theory for the hadronic sector of the EOS including hyperons. We solved

the Dirac equations for all constituent particles, p, n, Λ, e, and ν, including a first order

perturbation treatment of a poloidal magnetic field with B ∼ 1017G. We then applied the

solutions to obtain a quantitative estimate of the asymmetry that emerges from the neutrino-

baryon collision processes. We took into account the Fermi motion of baryons and electrons,

the momentum dependence of their spin vectors, their recoil effects, and the associated

energy difference of the mean fields between the initial and final particles exactly. We thus

included the most important effects of the distortion of the Fermi spheres made by the

magnetic field in this fully microscopic framework, i.e. the asymmetric neutrino scattering

and absorption cross-sections.

We found that the differential neutrino absorption cross-sections are suppressed in the

arctic direction parallel to the poloidal magnetic field B in both cases with and without

Λs, while the differential scattering cross-sections are slightly enhanced. On the other hand,

as expected from the sign of the couplings between the magnetic moments of baryons and

the external field, the neutrino absorption and scattering cross-sections are respectively

enhanced and suppressed in the antarctic direction. This is completely opposite to those in

the arctic direction. The differential cross-sections were integrated over the momenta of the

final electrons for absorption and over the momenta of initial neutrinos for the scattering,

respectively. Quantitatively, when B = 2× 1017G, the reduction for the absorption process

is about 2%, and the enhancement for the scattering process is about 1% in the forward

direction along the direction of B.

Several interesting facts are evident in the angular distributions of both cross-sections,

which depend on the magnetic field, the baryon density, and the temperature of the PNS

matter. Among them, we find, an appreciable forward suppression and backward enhance-

ment in the differential absorption cross-sections due to the difference in Fermi distributions

between the spin-up and spin-down particles. This effect is larger at lower neutrino incident

energy. The asymmetry becomes smaller as the density increases because the asymmetry

arises from the magnetic part of the cross-sections which is proportional to the distortion
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of the Fermi surfaces caused by the magnetic field. This tends to diminish with increasing

matter density.

Using these cross-sections, we calculated the neutrino mean-free-paths (MFPs) as a func-

tion of the baryon density and temperature within a PNS. We then applied the above results

to a calculation of pulsar-kicks in core-collapse supernovae. We solved the Boltzmann equa-

tion using a one-dimensional attenuation method, assuming that the neutrinos propagate

along an approximately straight line and that the system is in steady state. We only in-

cluded the MFPs for neutrino absorption which dominates over scattering in producing the

asymmetric momentum transfer to the PNS.

We estimated pulsar kick velocities from the calculated total momentum per unit time

that is transferred from the emitted neutrinos to the PNS along the direction parallel to the

poloidal magnetic field B. For a 20-MeV isothermal neutron-star with MNS = 1.68M⊙ and

a total energy in emitted neutrinos of ET ≈ 3 × 1053erg, the estimated kick velocities are

vkick = 580 km s−1 and 520 km s−1 at T = 20 MeV, including Λs or no Λs, respectively.

These values are in reasonable agreement with the observed average pulsar-kick velocity of

vkick = 400 km s−1.

VI. FUTURE WORK

In the present calculations we have adopted several assumptions which we summarize

here both as a caveat for the reader and as a summary of issues to be addressed in future

work. One such assumption is ignoring the neutrino scattering process in the solution of the

Boltzmann equation. This scattering might enlarge the kick velocity. The one-dimensional

attenuation method to solve the Boltzmann equation is also a coarse approximation. We

have assumed that the asymmetry in neutrino emission is dominated by the emission from

low-density regions with ρB . 3ρ0 where the neutrino opacity changes drastically. We have

also assumed that the internal high-density region only contributes to the neutrino diffusive

flux. This diminishes the expected neutrino asymmetry. However, as was discussed in the

last section, if the thermalization process is considered dynamically the asymmetric neutrino

scattering and absorption in the high-density region might also contribute to an aligned drift

flux along the direction of B. This could generate a gradual acceleration of the pulsar-kick.

Numerical simulations of the neutrino transport inside a PNS coupled to our microscopic
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calculations of the asymmetric neutrino scattering and absorption cross-sections are highly

desirable in order to address to this critical question. It has been pointed out by Arras and

Lai [41] that the neutrino distribution tends to be asymmetric only near the surface of PNS.

This is consistent with the picture adopted in the present attenuation approximation for the

neutrino transport. The issue becomes more subtle, however, if the thermalization process is

considered. It would be interesting to clarify by numerical calculations the extent to which

the asymmetric neutrino scattering and absorption contribute to the drift velocity as well

as the diffusive velocity of outgoing neutrinos considered here. Other important questions

are to address the link among asymmetric neutrino-baryon collisions, neutrino drift, and the

collective response of the PNS to the pulsar kick. Further investigations must be done by

numerically solving the Boltzmann equation for the neutrino transport inside a PNS without

approximations, although we believe that our adopted scheme of attenuation is more or less

consistent with the microscopic picture. Numerical calculations including several dynamical

effects are now underway.

We also should take account of neutrino reactions in the much lower density region,

ρB ≫ ρ0, although we did not include that in the present study because of the numerical

difficulty in calculating thermodynamic quantities of the EOS in the RMF theory. In such

low density regions, the magnetic field is weaker, but the width of the Landau level,
√
2eB,

could be of the same order as the electron Fermi momentum, and it may affect the neutrino

reactions.

The strength of the magnetic field inside the PNS can easily reach 3 − 4× 1018G in the

high-density region according to the scalar virial theorem. This could make considerable

effects, and a non-perturbative treatment of the magnetic field must be applied for this high

field strength [59]. We may again need to take account of the Landau levels.

In this work we do not consider any magnetic contributions in the neutrino production

[34–39]. This also makes a contribution to the asymmetry of neutrino emissions. As for the

density profile of the PNS, we need to use an isoentropical model, in which the temperature

becomes smaller in lower density region. This effect may enhance the kick velocity.

We also did not take account of the resonant spin-flavor conversion [60] in the magnetized

PNSs, and the neutrino-flavor conversion due to the MSW effect [61] or the self-interaction

effect [62] in the present calculations. All of these could alter the asymmetric neutrino

emission. A quark-hadron phase transition [63] or a hyper-nuclear matter phase [64] un-
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der a strong magnetic field is also considered to be another source to affect the neutrino

asymmetry.

If a poloidal magnetic field exists in the progenitor stars for SNe, a stable toroidal mag-

netic field also is created in the core-collapse and explosion. In this case, the angular de-

pendence of the neutrino reactions may show a more complicated and interesting behavior.

Thus, there are many open questions to be addressed in the future studies which are beyond

the scope of the present article.
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Appendix A: Dirac Spinor in a Magnetic Field

In this appendix, we explain the detailed expressions of the Dirac spinor under a magnetic

field. The Dirac spinor u(p) can be obtained by solving the following Dirac equation

K̂(p)u(p, s) ≡ [/p−M − U0(b)− UTσz] u(p, s) = 0, (A1)

where UT = µB. Here we defined the Green function S(p) as

K̂(p)S(p) = 1 . (A2)

Then the Green function is written as

S(p) = det K̂(S0 + S1UT + S2U
2
T + S3U

3
T ) , (A3)

with

det K̂ = p40 − 2p20(p
2 +M2 + U2

T ) + (p2 +M2)2 + 2U2
T (p

2
z − p2

T −M2) + U4
T ,

S0 = (p20 −E2
p)(/p +M) ,

S1 = (p20 + E2
p)σz + 2Mp0σzγ0 − 2pz(p · σ)γ0

+ 2Mpzγ5γ0 + 2ip0pyγ
0γ1 − 2ip0pxγ

0γ2 ,

S2 = −p0γ0 + pzγ
3 − pxγ

1 − pyγ
2 +M ,

S3 = −σz . (A4)

Here the single particle energy of this Dirac spinor , which is obtained from det K̂ = 0,

becomes

e(p, s) =

√

p2z +

(√
p2
T +M2 + sUT

)2

=

√
E2

p + 2sUT

√
p2
T +M2 + U2

T , (A5)

where s = ±1, and Ep =
√
p2 +M2. Then, det K̂ is rewritten as

det K̂ = (p20 − e2(p, 1))(p20 − e2(p,−1)) . (A6)

Furthermore, the Green function for this particle is written as

S(p) = K̂−1(p) =
∑

s=±1

u(p, s)ū(p, s)

p0 − e(p, s)± iδ
+
∑

s=±1

v(−p, s)v̄(−p, s)

p0 + e(p, s) + iδ
, (A7)
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where u(p, s) and v(−p, s) are the Dirac spinors of the positive and negative energy states,

respectively.

By using the above quantities, we can obtain the Dirac spinor as

u(p, s)û(p, s) = lim
p0→e(p,s)

(p0 − e(p, s))S(p) . (A8)

Now we expand S with respect to UT and determine the Dirac spinor in first order

perturbation theory. Here we define

De ≡ lim
p0→e(p,s)

p0 − e(p, s)

det K̂
=

1

8e(p, s)
(
sUT

√
p2
T +M2

) . (A9)

When |UT | ≪ 1, we can substitute p0 = e(p, s) ≈ Ep + sUT

√
p2
T +M2/Ep into Eq. (A4)

and obtain

DeS0 ≈ s

4Ep

(
1− sUT

√
p2
T +M2

E2
p

)(
1 +

sUT

2
√
p2
T +M2

)

×
{
(/p +M) +

sUT

√
p2
T +M2

Ep

γ0

}

≈ 1

4Ep

{
(/p +M) +

[√
p2
T +M2

Ep

γ0

+
p2z − p2

T −M2

2E2
p

√
p2
T +M2

(/p +M)

]
sUT

}

p0=Ep

(A10)

UTDeS1 ≈ s

8Ep

√
p2
T +M2

(
1− sUT

√
p2
T +M2

E2
p

)

×
{
S1 + 2(Epσz +Mγ0σz + ipyαx − ipxαy)

s
√
p2
T +M2

Ep

UT

}

p0=Ep

≈ 1

4Ep

{
S1√

p2
T +M2

+ UT

[
− S1

2E2
p

+
1

Ep

(Epσz +Mγ0σz + ipxσx − ipyσy)

]}

p0=Ep

≈ 1

4Ep

{
s(/p +M)γ5/a+

pz
E2

p

(βσ · p−Mγ5)UT

}

p0=Ep

U2
TDeS2 ≈ sUT

8Ep

√
p2
T +M2

(
−Epγ

0 +M + pzγ
3 − pxγ

1 − pyγ
2
)

, (A11)

with

a =
1√

p2
T +M2

(pz, 0, 0, Ep) . (A12)
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Then, the Dirac spinor is written as up to the first order in UT

u(p, s)ū(p, s) ≈ (/p +M)(1 + γ5/a(p)s)

4Ep

+
pzUT

4E3
p

(σ · p−Mγ5γ0)

+
sUT

8Ep

√
p2
T +M2

(
−Epγ

0 +M + pzγ
3 − pxγ

1 − pyγ
2
)

. (A13)

Appendix B: Neutrino Reaction Cross-Sections

In this appendix, we derive Eqs. (41) and (49). We start from the product of leptonic

and hadronic weak currents in Eq. (36). By considering the spin-dependence, we express

the WBL in Eq. (36) as follows

WBL =W0 +Wisi +Wfsf +Wesl +W2sisf +W3slsi +W4slsf . (B1)

Note that We, W3 and W4 only appear when the final lepton is an electron.

When |µbB| ≪ εb − U0(b), the baryon Fermi distribution function can be expanded as

nb(eb(p, s)) ≈ nb(E
∗
b (p) + U0(b)) + n′

b(E
∗
b (p) + U0(b))∆Eb(p)s, (B2)

and the electron distribution is written as

ne(ee(k)) ≈ ne(|k|) + n′
e(k)

me

|k|µeBsl, (B3)

where n′
b(x) = ∂nb(x)/∂x. In addition, the energy delta-function in Eq. (35) is also expanded

as

δ(|ki|+ ei(pi, si)− el(kf , sl)− ef(pf , sf))

≈ δ(|ki|+ E∗
α(pi) + U0(α)− |kf | −E∗

β(pf )− U0(β))

+δ′(|ki|+ E∗
α(pi) + U0(α)− |kf | −E∗

β(pf)− U0(β))∆E , (B4)

where δ′(x) ≡ ∂δ(x)/∂x, and

∆E = ∆Eα(pi)si −∆Eβ(pf )sf −
me

|k|µeBslδl,e . (B5)

Here, we define the momentum transfer q = (q0, q) as

q ≡ (|ki| − |kf | −∆U0;ki − kf) (B6)

41



with ∆U0 = U0(β)− U0(α), and rewrite the energy delta-function as

δ(|ki|+ E∗
α(pi) + U0(α)− |kf | −E∗

f (pi + q)− U0(β))

= δ(E∗
α(pi) + q0 − E∗

β(pi + q)) =
E∗

β

|pi||q|
δ(t− tp) , (B7)

where t ≡ q · pi/(|q||pi|), and

tp =
2q0E

∗
α(pi) + q2 +M∗2

i −M∗2
β

2|q||pi|
. (B8)

Furthermore we write

δ′(E∗
α(pi) + q0 − E∗

β(pi + q)) =
1

|pi||q|
δ(t− tp) +

E∗2
β

p2
iq

2

∂

∂t
δ(t− tp) . (B9)

Note that the terms proportional to sκ (κ = l, i, j) vanish in Eq. (B5), and the W2,3,4 do

not contribute to the final results to first order in µbB. In view of this fact, we can further

separate the magnetic part of the cross-section of Eq. (39) into two parts as

∆σ = ∆σM +∆σel, (B10)

where the first and second terms are the contributions from the target particle and the out-

going electron, which appear only in the absorption (νe → e−) process. Detailed expressions

of each term are presented at the Eqs.(41) ∼ (50) in text.
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