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Abstract
Several researchers have analyzed brain activities by investigating brain networks. How-

ever, there is a lack of the research on the temporal characteristics of the brain network dur-

ing a stroke by EEG and the comparative studies between motor execution and imagery,

which became known to have similar motor functions and pathways. In this study, we pro-

posed the possibility of temporal characteristics on the brain networks of a stroke. We ana-

lyzed the temporal properties of the brain networks for nine chronic stroke patients by the

active and motor imagery tasks by EEG. High beta band has a specific role in the brain net-

work during motor tasks. In the high beta band, for the active task, there were significant

characteristics of centrality and small-worldness on bilateral primary motor cortices at the

initial motor execution. The degree centrality significantly increased on the contralateral pri-

mary motor cortex, and local efficiency increased on the ipsilateral primary motor cortex.

These results indicate that the ipsilateral primary motor cortex constructed a powerful sub-

network by influencing the linked channels as compensatory effect, although the contralat-

eral primary motor cortex organized an inefficient network by using the connected channels

due to lesions. For the MI task, degree centrality and local efficiency significantly decreased

on the somatosensory area at the initial motor imagery. Then, there were significant correla-

tions between the properties of brain networks and motor function on the contralateral pri-

mary motor cortex and somatosensory area for each motor execution/imagery task. Our

results represented that the active and MI tasks have different mechanisms of motor acts.

Based on these results, we indicated the possibility of customized rehabilitation according

to different motor tasks. We expect these results to help in the construction of the custom-

ized rehabilitation system depending on motor tasks by understanding temporal functional

characteristics on brain network for a stroke.
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Introduction
Strokes, which occur when the vessels are ruptured or blocked, are the second leading cause of
death and a major cause of adult disability [1]. Neuro-imaging technology in the form of func-
tional Magnetic Resonance Imaging (fMRI), Magnetoencephalography (MEG), and Electroen-
cephalography (EEG) have been used to identify changes in the brain after a stroke [2–4]. Even
though fMRI and MEG are useful to identify the mechanism of a stroke by the high spatial res-
olution, they have shortcomings, such as low temporal resolution, and require bulky equip-
ment, such as huge devices and shield rooms. Compared to fMRI and MEG, EEG makes it easy
to find temporal brain activity due to its high temporal resolution. This characteristics of EEG
is useful to analyze the temporal change of the brain activity, which reflects the brain function
[5, 6]. Previous studies have analyzed the spectral power of EEG data during motor tasks for
the stroke [7, 8]. However, they have focused less on communication among the brain that
change organically [9]. The nervous system is a complex network that is able to interact and
produce real-time information frommultiple external and internal sources. Functional connec-
tivity indicates the statistical functional associations among brain regions in this nervous sys-
tem [10]. Brain networks change rapidly by reflecting subsets and pathway in various brain
regions according to cognitive and behavioral tasks [11, 12]. For these reasons, we focused on
the brain network related to functional connectivity of a stroke using EEG.

Next, we hypothesized the brain activity of chronic stroke patients who are in nearly the last
stage of rehabilitation, from a different viewpoint compared to previous studies [13–15]. The
spontaneous recovery after a stroke occurs within a month after onset [16–19]. Based on these
results, we assumed that the chronic state of the stroke is minimally influenced by the outside
because the chronic state has lower regeneration of rehabilitation. Based on this assumption, to
focus on the motor activity, we found the temporal characteristics of the damaged network
after a stroke. For chronic stroke patients, several studies have researched brain networks dur-
ing each motor execution or motor imagery (MI) task. Fallani et al. observed the brain network
properties of the stroke during their finger tapping. Later, Fallani et al. and Yan et al. just ana-
lyzed the brain network properties of the MI tasks for their hand movement [20–22]. However,
there is a lack of research on two motor tasks together.

The active task, namely motor execution, involves motor intention and physical movement.
The MI task refers to the concept of rehearsal for motor function [23]. The activated brain area
of the MI task is similar to the area activated by motor execution. The MI task, also, is known
as an efficient way to improve motor functions like the active task [24, 25]. However, it is
unclear whether two tasks share the same or analogous cognate routes, although the MI task
has a similar function with that of the active task. Therefore, we need to find the brain network
properties of two motor tasks together and to identify whether the brain network properties of
the two motor tasks relate to motor function in the similar area. Next, there was a lack of stud-
ies to find the time-dependent characteristics of the brain network because previous studies
analyzed a fixed time window as a resting state or repeated movement on the brain network
[12, 20, 26–29].

In this study, we focused on the time-dependent characteristics of network properties for a
grasping movement in the active and MI tasks. Our main hypotheses were as follows.

First, we hypothesized that the active and MI tasks would have the different brain network
properties according to intuitive movement and that the active task would show stronger char-
acteristics of the brain network on motor area than that of the MI task. Previous studies have
shown meaningful brain activity in the primary motor cortex during motor tasks [2, 12].
Because our experimental tasks involve motor tasks of the affected hand for stroke patients, we
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anticipated that the centrality and small-worldness of the brain network would have stronger
properties centered on the motor cortex in the active task than in the MI task.

Second, we hypothesized that there are time-dependent changes of the brain network prop-
erties. Previous studies have only analyzed networks having a fixed time window during the
resting state or repeated movements [12, 20, 26–29]. They did not consider the temporal char-
acteristics of the brain network. Therefore, we need to investigate the time-dependent changes
of brain networks during the single movement of grasping. Based on this single performance,
we expect to find the time-dependent properties of the brain networks to identify the brain
function similarly to EEG spectral power.

Third, we hypothesized that the network properties for a stroke in two motor tasks would
correlate with their motor function. In particular, the primary motor cortex of the affected
hemisphere in the active task would have stronger correlation with motor function than in the
MI task [2].

Methods

Participants
Nine chronic stroke patients who had a motor disturbance by unilateral stroke participated in
this study (mean age of 53.5 (4.3) years; 6 males; affected upper limb score of Fugl-Meyer
assessment (FMA-UL: 46.7)). The inclusion criteria are patients who had had their first ische-
mic or cerebral hemorrhagic stroke, which lasted over 3 months after onset, and who was
between 18 and 70 years old. The exclusion criteria were patients who had an intracranial
metal insertion, claustrophobia, pacemakers, or were prohibited from taking MRI. In this
study, we got the approval of the Institutional Review Board (IRB) of the Korea Institute of Sci-
ence and Technology (KIST) and Samsung Medical Center (SMC) (KIST IRB; KIST 2013–009,
SMC IRB; SMC 2013-02-091). All participants were asked to carefully read the informed con-
sent form, and they all voluntarily participated in the experiment. We obtained written consent
from all participants and analyzed all research materials under IRB guidance.

Experimental design
We instructed participants to grasp the haptic device using their affected hand in each motor
task. A haptic device in this study was controlled by a DSP processor and was connected with
stimulus software made by FlashTM. The stimulus software was connected to an EEG system
(64 ch, sampling rate: 2048 Hz; Active-two, BiosemiTM, Amsterdam, Netherlands) and induced
synchronization between the haptic device and EEG system. This system was described in
detail in a previous study [8].

We designed three motor tasks to find the characteristics of each motor task for chronic
stroke patients: an active task in which participants move their affected hand by themselves, a
passive task in which they move their affected hand by a haptic device, and an MI task that has
no movement and the participant just imagines this movement. This experiment involves a
total of 42 trials per each motor task. There is a temporal construction of the experiment for
each trial (Fig 1).

The haptic device was fixed onto the affected hand of participants by a wrist strap. The
other hand remained motionless on the arm of the chair on which the participants were seated.
Participants fixed their eyes on the monitor for 2 to 3 seconds and performed each motor task
during 2 seconds after a cue. After that, the participants maintained that motor state for 1 sec-
ond and the haptic device returned to its initial state during 2 seconds.
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EEG data analysis
EEG data preprocessing. EEG data were down sampled to 256 Hz and were band-pass fil-

tered between 1 and 80 Hz. After the data of each trial were extracted between -4 and 6 sec-
onds, we removed electrooculography (EOG) and electromyography (EMG) artifacts by the
Independent Component Analysis (ICA) using the EEGlab toolbox (Delorme &Makeig,
2004). Next, we removed trials with noise signals caused by the movement or sneezing of par-
ticipants. Finally, EEG signals were applied to the Common Average Reference (CAR). To find
the optimal frequency band related to motor tasks in a brain network, we divided frequency
bands that relate to sensorimotor rhythm as mu (8-12Hz), low beta (13-20Hz), high beta (21-
30Hz), and gamma (31-50Hz) bands.

Brain connectivity. We calculated phase locking value (PLV) of the EEG to find the func-
tional connectivity in the brain network [30]. In a previous study, Sakkalis et al. reviewed the
methodology for brain connectivity estimation [31]. They argued that PLV indicates the char-
acteristics of nonlinear, data-driven, stationarity-independent, and functionally-connective.
Generally, EEG distribution considers multivariate Gaussian process. This assumption is easily
violated during mental and physical activities because the brain state changes with arousal.
Therefore, EEG signals have quasi-stationarity. If stationarity is violated, many researchers use
PLV, which is a stationarity-independent measurement. Since many crucial neural processes
have different nonlinear characteristics, PLV is useful to measure the dynamics of EEG signals.
It is also useful to access data-driven systems because the brain is harder to analysis by a pre-
dictable model. Therefore, we estimated brain connectivity by PLV, which is useful to analyze
the functional connectivity of EEG.

PLV measures the functional connectivity by considering the characteristic of brain signals
that are acquired by various brain regions at the same time. PLV calculates the differences
between two signal phases by extracting the components of a phase for EEG data indepen-
dently. In this study, we extracted signals between -1 and 3 seconds that have an executive
phase in the experimental protocol.

In this study, we analyzed the estimated matrix by PLV for each subject after preprocessing
EEG data. We obtained the functional connectivity between each channel and all other chan-
nels (63) by considering all of the used channels (64) in this study (64×64–64). Next, the syn-
chronization values between two channels were applied according to a threshold
(density = 0.2783). This threshold was measured by 100 random graphs, and the details were
suggested in a previous study [32]. Finally, we analyzed only significant links of the estimated
matrix.

Fig 1. Experimental protocol. An experimental protocol was followed in each trial. Three motor tasks were represented by counter balancing
(P-A-M-A-M-P-M-P-A), and each motor task was run three times. Each motor task consisted of 42 trials, and 1 trial took approximately 7 or 8 seconds.

doi:10.1371/journal.pone.0139441.g001
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Next, we applied the brain network properties using graph theory shown below (Eqs 1 and
2) to the estimated matrix of functional connectivity per time window of 1 second. To find the
time-dependent characteristics of a brain network, we analyzed the changes of each brain net-
work properties by shifting the time window to the next 250 ms.

Graph theory analysis. In this paper, we modeled a brain network by adapting graph the-
ory centered on two parameters. These parameters were acquired by the Brian Connectivity
Toolbox (http://www.brain-connectivity-toolbox.net/).

First, there is degree centrality, which means the most important channel within a network
in graph theory and network analysis. A channel of high centrality represents that this builds a
network by connecting many channels [33]. In this study, we analyzed the node degree, which
is a basic parameter of centrality [34]. We referred to the node degree as degree centrality,
which is commonly used in complex network analysis.

Formula 1 indicates the degree centrality, and this formula calculates the number of connec-
tion with other channels for each channel. The degree centrality shows the number of connec-
tions emanating from a single channel in a network. The important brain regions interact with
other regions and play a key role in network resilience during a bout of illness. Therefore, the
high degree of centrality indicates that this channel acts as a hub in a network.

ki ¼
X

j2N
aij ð1Þ

ki : Degree of a node i
aij : The connection status between i and j
Second, small-worldness is useful to measure the self-organized critical dynamics [10].

Small-worldness is possible with segregated and integrated processing of the brain [34, 35]
Therefore, the high properties of small-worldness indicate that this network is able to construct
the powerful and effective network. In this study, we represented the local efficiency by means
of small-worldness, which measures the quantity local properties of the brain network.

Formula 2 indicates the local efficiency. The local efficiency is a kind of small-worldness
parameter that considers the information transfer in the subgraph of each node i [36]. High
values of this measurement indicate the efficiency of mutual information transfer and the ten-
dency of clusters in subgraph of node i. The local efficiency indicates how much this subgraph
of node i has fault tolerance and how well this subnetwork constructs powerful group to
exchange information [37]. There are often several ways to generalize a measure to weighted
networks. In the case of the local efficiency, the simplest generalization is to compute the har-
monic mean of the path length on the subnetwork induced by the neighborhood of the node.
This simple method, however, cannot distinguish a path between two weakly connected neigh-
bors from a path between two strongly connected neighbors, and our generalization was
designed to overcome this limitation.

Ew
loc;i ¼

1

2

X

j;h2N;j 6¼i

ðwijwih½dw
jhðNiÞ��1Þ13

kiðki � 1Þ ð2Þ

wij: Weight matrix value between i and j
Ew
loc;i: The local efficiency of node i

dw
jhðNiÞ: The length of the shortest path between j and h that contains only neighbors of i

Brain Network for Chronic Stroke Patients

PLOS ONE | DOI:10.1371/journal.pone.0139441 December 14, 2015 5 / 17

http://www.brain-connectivity-toolbox.net/


Statistical analysis for temporal brain network
In this paper, we compared the statistical difference between the brain network properties of
each time window and of the baseline and then normalized data of each time windows per
parameter by a one-sample Kolmogorov-Smirnov test.

The Kolmogorov-Smirnov Goodness of Fit Test is a common normalization test to confirm
whether data is parametric or nonparametric. This test distinguishes whether a sample distri-
bution is suitable for an assumed probability distribution by comparing the cumulative proba-
bility distribution between a sample and a population. As a result, our data did not have the
normalized distribution because the number of subjects is small. Therefore, we conducted a
Wilcoxon Rank-Sum test, which is a nonparametric statistical hypothesis test that considers
pair difference. Therefore, we found the significant change of each time window in comparison
with the baseline by a Wilcoxon Rank-Sum test.

Select ROIs for brain networks
We selected ROIs based on previous studies that examined motor tasks. In previous studies,
neuronal signals activate in primary motor cortices, premotor cortices (PMC), the supplemen-
tary area (SMA), and parietal areas during upper extremity movement (Fig 2). Bai et al. argued
that neuronal activities of the EEG spectral power were activated in the primary motor cortex
and parietal area during motor executive tasks. Grefkes et al. asserted that the brain activity of
stroke patients activated at the bilateral primary motor cortices, whereas that of healthy people
activated at the contralateral primary motor cortex in fMRI study [2]. In addition, Grefkes
et al. showed a meaningful connection among PMC, SMA, and primary motor cortices during
motor execution [7]. Jin et al. identified that the local efficiency of the healthy group in the
EEG study increased at the bilateral primary motor cortices and contralateral sensory area and
decreased at the somatosensory cortex (SMC) in the beta band of the brain network during fin-
ger tapping [29]. There are studies in which the MI task is related to the primary motor cortex,
SMA, parietal area, and cingulate cortex in the brain network for a stroke [38–42].

Based on these results, we analyzed the time-dependent brain network around the primary
motor cortices, PMC, SMA, somatosensory cortex, and parietal area during two motor tasks.
In accordance with the calculated value of brain network properties based on 64 channels, we
interpreted a pattern of brain network properties depending on selected ROIs in the brain

Fig 2. ROIs (Regions of Interest). In this study, we selected 9 ROIs in primary motor cortices (C3, C4),
premotor cortices (FC3, FC4), a supplementary motor area (Fz), somatosensory cortices (CP3, CP4), and
parietal areas (P3, P4) based on previous studies on motor tasks. Existing studies found meaningful
characteristics on PMA, M1, SMA, the somatosensory area, and parietal area for brain networks. As in
previous results, we found meaningful patterns on bilateral primary motor cortices during the active task and
on bilateral somatosensory area during the MI task. For comprehension of location on ROIs, we represented
9 ROIs using the EEGlab toolbox.

doi:10.1371/journal.pone.0139441.g002
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network of the two motor tasks. In other words, we wanted to find the meaningful regions and
their roles in the brain networks according to motor tasks, although we selected ROIs.

Results

Significant frequency band
In this study, we normalized each brain network property of every participant on the basis of
the baseline (-1 to 0s) considering the possibility of individual differences.

We found a significant frequency band to analyze temporal changes of the brain network
properties during the active and MI tasks compared with the baseline. To find a significant fre-
quency band on the brain network during motor act, the brain network properties on each
time window were compared statistically with the baseline per ROIs by the Wilcoxon Rank-
Sum test (p<0.05). We used this test, because our data did not have a standard normal distri-
bution and had a small sample size (Single Sample Kolmogorov-Smirnov test, p<0.05). As a
result, there were the significant changes comparing with the baseline in the high beta band at
most ROIs (C3, Fz, FC4, CP3, CP4, P3, P4) at the initial motor task. The details of SMA that
had the significant changes of two motor tasks in a high beta band was indicated in Table 1,
and we represented significant changes of the active and MI tasks as stars in Table 1 (Wilcoxon
Rank-Sum test, p<0.05). Compared to the other channels, the brain network properties on
SMA in the initial motor task showed the significant difference in comparison with the base-
line. Although the mu band also had significant changes in the active task, the high beta band
showed statistical patterns in both the active and MI tasks. Based on these results, we analyzed
the brain network properties of the two motor tasks in the high beta band.

Characteristics of brain network properties in ROIs
In this study, we found the temporal characteristics of the brain network properties on each
motor task.

Active task. There are temporal changes of the degree centrality and local efficiency in the
active task (Fig 3).

First, there were temporal changes of the degree centrality in the active task. In the initial
motor execution phase, the degree centrality on bilateral primary motor cortices increased ([0-
1s]-[0.5–1.5s]). In particular, the degree centrality increased significantly in the contralateral
primary motor cortex ([0-1s]-[1-2s]). These results were in line with the spectral power analy-
sis on bilateral primary motor cortices within the same time window. Also, the degree central-
ity in the SMA significantly decreased in the similar time window ([0-1s]-[0.5–1.5s]). Next,
there were characteristics at the end of motor execution. Unlike the initial motor execution, the
degree centrality in the SMA and contralateral PMC increased after the end of the motor

Table 1. Significant Frequency Band in [-0.5–0.5s] of SMA.

Mu (8–12 Hz) Low beta (13–20 Hz) High beta (21–30 Hz) Gamma (31–50 Hz)

Active MI Active MI Active MI Active MI

Degree centrality -1.11(2.37)** 0.22(2.73) -0.44(2.19) 0.22(1.56) 1.56(1.74)* -1.22(0.44)** -1.11(3.02) -0.56(2.96)

Local efficiency 6.66(8.80)** -0.26(5.29) 1.60(4.42) 1.06(3.32) -5.98(2.86)** 2.24(1.77)** 3.53(6.85)* -1.50(5.32)

There are the averaged value and standard deviation of each graph indices (Mean (SD)). One asterisk indicates the 5% significant level between time

window in [-0.5–0.5s] and baseline (-1-0s). Two asterisks are the 1% significant level between the same times. A unit of “Local efficiency” is 10−3 due to

the small change of this parameter between time window and the baseline.

doi:10.1371/journal.pone.0139441.t001
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execution phase but not significantly ([1-2s]-[2-3s]). Additionally, the contralateral somato-
sensory area showed significantly decreased patterns ([1.75–2.75s]-[2-3s]).

Second, there were temporal characteristics of small-worldness on the active task. The local
efficiency on the ipsilateral primary motor cortex increased in the initial motor execution
phase, but not significantly ([0-1s]-[0.5–1.5s]). Next, the local efficiency in the bilateral
somatosensory area decreased after the intermediate step of the motor execution phase, espe-
cially in the ipsilateral area ([0.5–1.5s]-[1.5–2.5s]). The local efficiency in the SMA also
decreased, but it is not statistically significant ([0.75–1.75s]-[1.5–2.5s]).

MI task. There are time-dependent characteristics of the degree centrality and local effi-
ciency in the MI task (Fig 4).

First, the degree centrality in the MI task indicated temporal patterns. There were meaning-
ful reduction patterns on bilateral somatosensory areas at the initial motor imagery phase ([0-
1s]-[0.75–1.75s]). After that, the degree centrality of the contralateral somatosensory area sig-
nificantly decreased. In the same time window, the degree centrality in the ipsilateral primary
motor cortex showed growing patterns, but not significantly ([0-1s]-[0.5–1.5s]). After that, the
degree centrality in the SMA significantly decreased ([0.5–1.5s]-[1.5–2.5s]).

Second, there are the characteristics of the local efficiency on the MI task. In the initial
motor imagery phase, the local efficiency of the ipsilateral primary motor cortex gradually
increased ([0-1s]-[0.5–1.5s]). On the other hand, the contralateral somatosensory area slightly

Fig 3. The degree centrality, local efficiency, and spectral power distribution in the active task. This
figure shows the degree centrality, local efficiency, and spectral power distributions of ROIs in the active tasks.
The black circles of network properties on topoplot represent significant channels that have statistical
increments in comparison with the baseline (Wilcoxon Rank-Sum test, p<0.01). The black squares show
significant channels that have decrement in comparison with the baseline (Wilcoxon Rank-Sum test, p<0.01).
As control patterns, we represented spectral power distributions in the last row. The degree centrality and ERD
patterns were significant changed in the contralateral motor cortex in comparison with the baseline (-1-0s) at the
initial motor execution phase. The local efficiency decreased in bilateral somatosensory areas after the
intermediate stage of the motor execution phase.

doi:10.1371/journal.pone.0139441.g003

Fig 4. The degree centrality, local efficiency, and spectral power distribution in the MI task. This figure
shows the degree centrality, local efficiency, and spectral power distributions on ROIs in MI tasks. The black
circles of network properties on the topoplot represent significant channels that have a statistical increment in
comparison with the baseline (Wilcoxon Rank-Sum test, p<0.01). The black squares indicate significant
channels that had decrement in comparison with the baseline (Wilcoxon Rank-Sum test, p<0.01). As control
patterns, we represent spectral power distributions in the last row. Degree centrality decreased in bilateral
somatosensory areas after the initial motor imagery phase. The local efficiency increased the ipsilateral
motor cortex just as with patterns of the active task.

doi:10.1371/journal.pone.0139441.g004
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decreased, and the ipsilateral somatosensory area increased but not significantly. Besides those,
there was no significant pattern.

Correlation between brain networks and motor function
We analyzed the correlation between the Fugl-Meyer Assessment Scale-Upper Limb
(FMA-UL) scales of the affected hand and the value of each brain network property to find the
significant channel and time window related to the motor function of chronic stroke patients
(Fig 5). As results, we found the significant channels between brain network property and
motor function according to each motor task. The degree centrality and local efficiency of the
contralateral primary motor cortex (C3) in the active task represented significant correlation
with the motor function of chronic stroke patients. In the MI task, the degree centrality and
local efficiency of the contralateral somatosensory area (CP3) had the significant correlation
with the motor function of a stroke. The significant channels (C3 and CP3) were in the contra-
lateral motor area of chronic patients in this study. Based on these results, we represented that
the contralateral primary motor cortex and somatosensory area reflected the motor function of
a chronic stroke patient in both the active and MI tasks.

Discussion

Significant frequency band
The active and MI tasks showed structurally significantly changes at the initial motor task phase
in comparison with the baseline (-1-0s) in the high beta band (21-30Hz). To find a significant fre-
quency band for changes of brain network properties using graph theory in two motor tasks, we
performed aWilcoxon Rank-Sum test (p<0.05) between network properties of the baseline and
that of each time window. As a result, the high beta band of the sensorimotor area showed signifi-
cant changes of the degree centrality and local efficiency in the initial motor task phase.

In existing studies of EEG for stroke patients, there are significant results in the beta band.
Bai et al. show that there is the change of EEG spectral power of bilateral motor cortices during
motor tasks in the beta band (16-24Hz) [7]. Lalo et al. argue that the beta band (13-35Hz)
influences cortical sensory processing, and Gross et al. show significant differences between
static and dynamic tasks in the beta band (13-24Hz) during motor executive tasks [43, 44]. As

Fig 5. Correlations between network properties andmotor functions for stroke patients (FMA-UL)
during the significant motor execution period. In the active task, the degree centrality and local efficiency
of the contralateral motor cortex (Contra.M1) showed positive correlation with FMA-UL at the initial motor
execution phase. In the MI task, the degree centrality had negative correlations and local efficiency had
positive correlations with the FMA-UL on the contralateral sensorimotor cortex (Contra.SMC) in the motor
execution phase.

doi:10.1371/journal.pone.0139441.g005
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with our study, there are significant results relating to the EEG brain network in the beta band.
Mima et al. argue that the beta band (14-20Hz, 22-30Hz) has a role during the movement [45].
Fallani et al. observe that the stroke have significant patterns of brain networks in the beta
band (13-29Hz) [20].

In addition, there are meaningful results for motor tasks in the high beta band. Roopun
et al. show the significant activities of the somatosensory and motor cortices during motor exe-
cution in the high beta frequency (20-30Hz) oscillation [46]. Zhang et al. explain that there are
significant changes for coherence and Granger causality during motor executive tasks for mon-
keys in the high beta band (20-30Hz) [47]. Accordingly, our results in this frequency (21-
30Hz) supported the findings of such existing studies that the high beta band has a specific role
in network analysis during motor tasks.

Temporal characteristics of a brain network
In this study, we found different temporal characteristics of the brain network during hand
motor task of a stroke. Our main network properties are the degree centrality and the local effi-
ciency of small-worldness. Whereas previous studies analyzed the brain network of a fixed
time window, we studied the temporal characteristics of the network by shifting the time win-
dow. As a result, this study showed the different temporal patterns of the brain networks for
the stroke depending on two motor tasks. These results represented that the temporal network
analysis of EEG would be able to understand the characteristics of a stroke such as spectral
power analysis and the different mechanism between the active task and MI task.

Active task. First, there were changes in the network properties of the bilateral primary
motor cortices. In this study, the degree centrality and local efficiency increased on each con-
tralateral and ipsilateral motor cortex. The increased degree centrality of the contralateral pri-
mary motor cortex are in line with previous studies. Wang et al. showed that the increased
degree centrality of the contralateral primary motor cortex is correlated with the recovery of
motor functions in the case of a stroke [12]. The increased degree centrality on bilateral pri-
mary motor cortices was also related to existing studies that show neural activities of bilateral
primary motor cortices during motor execution of a stroke [2, 7, 13, 48]. Jin et al. found
increased the local efficiency of the bilateral motor cortices for the healthy group during finger
tapping [29]. Because the ipsilateral motor cortex in this study was an unaffected area, we
argue that the efficiency of the ipsilateral primary motor cortex increased, as it did for the
healthy group. In this study, we found that a brain network for the stroke has significant char-
acteristics of bilateral primary motor cortices, as was found in previous studies. We hypothe-
sized that each region constructs the subnetwork with the linked channels. The channel having
high local efficiency might work in the constructed subnetwork with the linked other channels
during the evoked or proposed motor task. If the subnetwork is normal, this channel might
deal with the motor task by uniting the connected channels and transferring the information
with other channels in subnetwork. The contralateral primary motor cortex, however, did not
construct a subnetwork sufficiently because of the presence of a lesion. Therefore, the contra-
lateral area showed a higher degree centrality and lower local efficiency than the other side
because this region might just combine the weak linked channels abnormally without the infor-
mation transfer. On other hand, the degree centrality and local efficiency of the ipsilateral pri-
mary motor cortex increased. We argue that these patterns of degree centrality and local
efficiency indicate compensation for the affected lesion by constructing powerful subnetwork
in that channel as healthy. These patterns of the ipsilateral primary motor cortex were the
same in principle as those of healthy people, showing an increment of the local efficiency in the
contralateral primary motor cortex.
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Second, there were temporal changes of the network properties on the SMA. The degree
centrality in the SMA showed a significant reduction in the initial motor execution phase.
Since then, the SMA showed an increase of the degree centrality and a decrease of the local effi-
ciency, but no statistically significant changes. The SMA had an important role in the program-
ming and planning of motor activities [49]. We regarded that reduction of the degree centrality
in the SMA as being caused by the decreased importance of the SMA after motor execution.
We assumed that the SMA represented the deactivated patterns after motor execution by sig-
nificantly increasing the role of SMA until execution because we compared changes of the net-
work properties between each time window and the baseline [50]. Based on these assumptions,
we regarded that the degree centrality significantly increased and the local efficiency decreased
during initial motor execution in the SMA. We also assumed that the increased degree central-
ity in the SMA after movement is to reset the mechanism for the next motor task.

Third, there were patterns of the degree centrality of the contralateral PMC. The degree cen-
trality of the contralateral PMC increased after the end of the motor execution phase. This
result was related to the role of PMC, which is related with voluntary movement in response to
sensory input by motor execution [51]. Therefore, we assumed that the results of PMC in this
study were also caused by the sensory input mechanism from movement.

Fourth, there were temporal changes of the network properties of the somatosensory area.
After the intermediate motor task, the local efficiency of the bilateral somatosensory area
showed significantly decreasing patterns centered on the ipsilateral somatosensory area. After
that, the degree centrality of the contralateral somatosensory area significantly decreased.
These reductions of the degree centrality of somatosensory support the results of the study of
Mauguiere et al. They argued that a deficiency in the somatosensory area is caused by periph-
eral neuropathy due to a cortical injury [52]. Like this result, the local efficiency of the bilateral
somatosensory area decreased during motor tasks because stroke patients also have a cortical
injury.

MI task. First, there were characteristics of the brain network properties in the bilateral
somatosensory area. These areas are activated during motor imagery tasks with the presupple-
mentary motor cortex, anterior cingulate cortex, premotor cortex, and dorsolateral prefrontal
cortex [39]. These decreased patterns of degree centrality on somatosensory area are because of
the motor pathways via the lateral cerebellum such as another motor pathway through area 6
(SMA, PMA) [53, 54]. This motor pathway through the lateral cerebellum sends signals for
movement in the following order: somatosensory, cerebellum, ventral nucleus of the thalamus
(VLc), and primary motor cortex. The effects in this motor pathway have a role for the proper
movement of planned and voluntary actions because the cerebellum indicates the signals for
movement with respect to motor direction, timing, and movement intensity to the primary
motor cortex. Also, previous studies have argued that the MI task includes kinesthetic sensa-
tion and the cerebellum has an important role in sensorimotor integration and motor learning
[55]. Therefore, we assumed that the significance of SMA was increased by the lateral motor
pathway because of the rising an importance on the cerebellum during the MI task. We noted
that the degree centrality in the SMA and somatosensory was decreased after motor imagery
by having a weighted importance during the baseline. Therefore, the degree centrality in the
SMA decreased during motor imagery relatively. It was because of that the weighted role on
the cerebellum during the MI task was greater than that during the active task. In particular,
the contralateral somatosensory area could have ineffective information transmission in their
subnetwork by the lesion although this area constructed the weighted network with the linked
channels. Thus, the local efficiency on the contralateral somatosensory area did not represent
meaningfully decreased patterns in comparison with the baseline. If the informative transmis-
sion is easy during baseline, the local efficiency could show significantly the decreased patterns.
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In addition, the degree centrality and local efficiency on the ipsilateral somatosensory could
slightly increase during the baseline as a compensation effect. Accordingly, the network prop-
erties on the ipsilateral somatosensory might have somewhat reduced patterns after motor
imagery. Also, Liu et al. argued that the contralateral somatosensory area has a great role in the
functional reorganization of motor functions by mental practice [56]. The significant results of
the somatosensory area in this study support the concept that this area has a meaningful role in
the brain network during the MI task.

Second, Hanakawa et al. argued that SMA is the predominant area for the MI task [42].
This area also relates to the planning of motor activities. The reduction of the degree centrality
in the SMA indicates a diminished role for the planning of movement after the intermediate
motor imagery phase. Like as the active task, the SMA could have a weighted importance dur-
ing the baseline because the SMA transfers motor signals to the primary motor cortex until
onset of the motor imagery. Thus, we regarded that the degree centrality on SMA decreased
during motor imagery in comparison with the baseline. The degree centrality on SMA during
the MI task, however, gradually decreased, unlike the active task, which showed the decreased
degree centrality at initial motor execution and the increased degree centrality after that. This
result has relevance with a characteristic of the MI task, which has no immediate response
because it does not require real movement and is unfamiliar to task for stroke patients.

Third, there were changes in the network properties of the ipsilateral primary motor cortex
in the initial motor imagery phase. MI is the mental rehearsal of motor execution [23, 38]. Just
as with the active task, the local efficiency had significant patterns on the ipsilateral primary
motor cortex. We regarded that these patterns of the ipsilateral primary motor cortex were
compensation patterns by constructing powerful subnetwork, as with the active task, because
this area did not have a lesion.

Correlation between the brain network and motor function
There was a relation between the brain network properties of each motor task and the motor
function of stroke patients. In the active task, the degree centrality and local efficiency on the
contralateral motor cortex (C3) had the significant correlations with the motor functional
score during the initial execution period. We found that these results were in line with those of
a previous study that argues the degree centrality of the primary motor cortex of the affected
hemisphere is related to FMA-UL in brain networks for strokes [21]. In the MI task, there were
the significant correlations between the degree centrality or local efficiency on the contralateral
somatosensory cortex (CP3) and motor function. Liu et al. showed that brain activities on the
contralateral somatosensory are enhanced and have meaningful positive correlation with
motor function [56]. Also, Ward et al. argued that the increased somatosensory input on the
affected hand by stimulating the somatosensory area was related to motor functions of a stroke
[48], and Jang et al. showed that brain activation on the contralateral somatosensory during
the MI task had an important role for hand functional reorganization after mental practice
training [57]. We anticipated that the characteristics of the brain network properties on the
somatosensory area during the MI task had significant correlation with the motor function of
the stroke in this study. Based on these results, we confirmed that the active and MI task just
did not share the same mechanism correlated with the motor function although the contralat-
eral sensorimotor area reflected the motor function of stroke patients and these regions were
located nearby.

Conclusion
In this study, we formulated three hypotheses.
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First, the active task will have strong characteristics on network properties around the pri-
mary motor cortex in comparison with the MI task. Like our hypothesis, the active task showed
significant changes in the degree centrality and local efficiency of the bilateral primary motor
cortices, and the MI task represented significant patterns of the network properties in the
SMA, ipsilateral primary motor cortex, and bilateral somatosensory cortex. Although the two
motor tasks showed the significant characteristics in similar areas, the quantity of temporal
network properties in the MI task were lower than those of the active task and the significant
characteristics on brain network were different according to each motor task. We regarded that
these characteristics indicate the possibility of the difference in the mechanism of motor execu-
tion or motor imagery. Based on these different mechanisms of each motor task, we found the
significant characteristics of the brain network. Although there were different characteristics
on the damaged subnetwork of the significant region on each motor task, this problem has in
common on that the subnetwork was not constructed normally.

Second, the two motor tasks will have temporal change of the brain network properties. The
active task had the significant changes in the degree centrality and local efficiency around the
bilateral primary motor cortices during the initial motor executive phase. The MI task, also,
showed the significant characteristics of two network properties around the SMA and somato-
sensory cortex. After that, the significant patterns disappeared. Based on these results, we
argued that brain network could have temporal characteristics, such as EEG spectral power,
and could show the properties of neuroscience in each region. Network analysis could appre-
hend the organic construction of a brain network and the location of meaningful characteristics
according to each task. Therefore, we anticipate this study of the brain network might influence
the rehabilitation for the stroke by understanding damaged networks that show which areas
are important and have influence over motor functions.

Third, the sensorimotor area of the affected hemisphere correlates with the motor function
of stroke patients. Like our hypothesis, the contralateral primary motor cortex in the active
task and the contralateral somatosensory cortex in the MI task were correlated with the motor
function of patients. This result indicates that the motor function and the patterns of the con-
tralateral sensorimotor area on the brain network for the stroke have a significant correlation,
and the network characteristics of each motor task have different significant areas related with
motor function.

In this study, we analyzed the temporal brain network properties of chronic stroke patients
in the active and the MI tasks. These results showed the possibility to interpret the temporal
construction of a brain network unlike just observing activated patterns, such as EEG spectral
power or brain activities, by fMRI. This analysis is useful to understand the activated patterns
and the functional characteristics on brain network. However, we analyzed the brain network
according to limited ROIs based on previous studies. Despite these limitations, we obtained the
following significant results in this study.

1. The possibility of analyzing time-dependent changes on network properties during motor
tasks.

2. The significant characteristics of the brain network during motor task in the high beta band.

3. Important roles of the ipsilateral primary motor cortex as compensation for an affected
lesion.

4. The ineffective subnetwork construction on the contralateral primary motor cortex/somato-
sensory area with linked other channels due to a lesion during initial motor execution in the
active or the MI task.
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5. Significant characteristics of bilateral primary motor cortices for the active task and patterns
on the somatosensory area and SMA for the MI task in the brain network. The statistically
significant correlation between the network property of the significant region on each
motor task and the motor function after a stroke.

Our results indicate that the characteristics of the brain networks differ according to the
motor task. These results may support to apply an adaptive rehabilitation system after a stroke
by understanding the functional characteristics according to the different motor task. We
anticipate that these characteristics of the brain network during a stroke might help to improve
rehabilitation by focusing on areas that have significant correlation with motor function
depending on the motor task.
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