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ABSTRACT The low-cost IoT seismometer (LCIS), which embeds a micro-electro-mechanical systems
accelerometer and LTE communication sensor, has been developed and deployed in South Korea. Currently,
approximately 7,000 stations (with an average density of 0.07/km2) with LCIS devices are operating in
real-time, which is about 25 times higher density than the national seismic network with high performance
seismometers. This study shows amethod for processing LCIS data and plotting an intensitymap considering
its installation characteristics and density. The majority of LCISs are installed inside buildings, so an
adjustment converting to the free-surface equivalent vibration is applied. Seismic intensity maps are derived
using only high-density LCIS network data, which showed very similar distributions to the maps from the
high-performance seismometer network. This validates the usefulness of the LCIS, a low-cost but new
technology on seismic network devices, for the generation of high-resolution seismic intensity map and
earthquake early warning systems.

INDEX TERMS MEMS,modifiedmercalli intensity (MMI)map, high density seismic network, SouthKorea
seismic network, ground motion model.

I. INTRODUCTION
Earthquake early warning (EEW) technologies include rapid
detection and public alert systems that aim to warn against
possible significant damages (i.e. human casualties as falling)
following an earthquake [1], [2]. One widely used approach
is network-based EEW, which estimates hypocenter informa-
tion by analyzing P waves from at least three seismic obser-
vatories [3], [4], [5]. Once an earthquake occurs, the closest
three observatories would detect the seismic signals first, then
EEW system is activated. Hence, EEW performance depends
on the density of the observation network because the faster
the P wave is observed at least three observatories, the more
rapid and efficient the EEW system is achieved [6].
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The denser seismic network also helps to create more
accurate intensity maps by earthquake events. It is essential
to determine the seismic intensity at either damaged loca-
tions or undamaged locations for immediate countermeasures
(e.g., locating administrative forces on damage-prone
regions) and seismic design studies (e.g., study of damage
severity of structure based on intensity measures). Note that
the Modified Mercalli intensity scale (MMI) is used as the
seismic intensity evaluation in South Korea. The MMI map
can provide the severity of ground shaking at desired loca-
tions. However, expanding seismic observatories is limited
for several reasons. First, it is difficult to identify loca-
tions with low-level background noise. Second, installation
and maintenance costs of real-time observatories with high-
performance seismometers are high. Finally, for some
locations, it is challenging to establish an observatory
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due to access restrictions such as privately-owned land.
These reasons could impede the establishment of dense
networks.

Micro-Electro-Mechanical Systems (MEMS) technology,
developing based on micromachining and advancements in
silicon processing, has been tremendously successful in phys-
ical sensing applications [7]. MEMS offer many benefits,
including high sensitivity, fast response, low power consump-
tion, and small form factor, which have made them popular in
various fields [8]. The MEMS acceleration sensor can record
ground shaking efficiently which was confirmed from the
shake table tests [9], [10], [11], [12]. In particular, MEMS
devices are advantageous in that they can be attached to
various types of equipment [13], [14].

MEMS sensors are used in EEW as auxiliary seismic
networks around the world. In the United States, the Quake-
Catcher Network (QCN) and Community Seismic Network
(CSN) projects use standalone MEMS accelerometers and
the MyShake project uses the MEMS accelerometer in the
smartphone to detect earthquakes [15], [16]. The limitation of
QCN andCSN is that they need to connectMEMS accelerom-
eters with other network-capable devices (e.g., laptop or desk-
top) [17]. The MyShake project uses smartphones allowing
anonymous users to record acceleration data and function
as potential seismometers. The MyShake was reported to
perform similarly to a real-time based-EEW system [17];
however, it requires users to install the application and run
it continuously which drains the battery. In regions where
earthquakes are infrequent, there are few MyShake users
with continuous running. Another example of using MEMS
for earthquake warning is the Taiwanese P-alert, which is
a MEMS-type accelerometer for EEW applications that are
distributed and in operation [18]. P-alert can successfully
generate alerts based on real-time signals processed at the
field site [19], and can be used individually or as part of
the national EEW network [20]. EEW systems utilizing
P-alert instruments are more efficient than conventional sys-
tems because of their low cost. The limitation of the P-alert
is that it requires a computer to process the data at each
point. In China, researchers are currently developing and
testing an integrated technology of EEW based on MEMS
sensors [21], [22].

Korea Meteorological Administration (KMA) in collab-
oration with SK Telecom (SKT) and Kyungpook National
University developed the next-generation EEW system,
which combines MEMS and national cellular network [23].
We developed a device detecting seismic motion through
the MEMS accelerometer and telecommunicating the real-
time data through the LTE Cat.M1 cellular network. This
pilot technology is the part of our broader effort to expand
the use of IoT devices, and we called it the low-cost IoT
seismometer (LCIS).

LCIS-based network system has some notable new features
from other MEMS instruments; 1) it uses an LTE wireless
communication network and does not require a separate GPS
sensor, 2) the system, called ‘‘CrowdQuake,’’ has been newly

established to process the large amount of real-time data [24],
and 3) it is scalable thanks to implementing SKT’s infrastruc-
ture resources.

CrowdQuake uses approximately 7,000 LCIS devices and
a deep-learning-based earthquake signal detection algorithm.
Currently, the beta version of CrowdQuake has been in oper-
ation over two years and, at the time of writing, has detected
41 small- and medium-magnitude earthquakes. From several
earthquake detections, we found that the LCIS records were
in accordance with the records of the existed national KMA
network. Therefore, in this study, we developed a method
to draw an MMI map using sole LCIS data. Previously we
verified the reliability of sensors used in CrowdQuake by
comparing seismograms from the devices used in the national
network [20].

P-alert effectively generates intensity measure (IM)
maps [26]; however, P-alert is based on the ShakeMap [25]
and usesMEMSmeasurement data without considering envi-
ronmental factors (e.g., installation location and ambient
noise). In a previous study [27], we showed that the MMI
of MEMS is affected by the installation environments such
as location or position. This study shows a data processing
method eliminating environmental effects and the generation
of an MMI map based on MEMS data without ShakeMap.

II. LCIS CERTIFICATION TEST AND INSTALLATION
We ensured the performance of the LCIS through certifica-
tion tests. Table 1 summarizes the Korean standard for the
accelerometer certification test, which outlines the required
ranges for sensitivity, frequency response, and linearity [28].

TABLE 1. Accelerometer criteria set from the KMA.

FIGURE 1. Snapshot of certification tests: (a) horizontal direction,
(b) vertical direction.

The LCIS can record acceleration in triaxial directions,
at a set range of ±2.5g. We tested dynamic responses of
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three LCIS devices for each direction and checked them
against the standard (Fig. 1). The results are summarized
in Table 2. The LCIS accelerometer satisfies requirements
of sensitivity, frequency response, and linearity. However,
it is not suitable for precise seismic observations because
of its low dynamic response level (−72 to −75 dB).
The high-performance accelerometer used in the KMA seis-
mic network has dynamic response level of −100 dB or less.
The LCIS offers two major advantages: 1) it can be con-

nected anywhere with an outlet and 2) there is no need for a
separate wire connection. We installed the LCISs in various
places, and representative cases are shown in Fig. 2. Some
devices were installed on the floor of seismic observatories
to compare the records with the KMA seismometer (Fig. 2a).
In most cases, the devices were installed on the wall outlet of
buildings (Fig. 2b). However, installing the LCIS on building
walls also means that it records not only seismic waves but
also building responses and artificial vibrations, which can
affect its performance. In particular, we observed high noise
levels when the device was installed in a steel box on a utility
pole (Fig. 2c) or temporary wall (Fig. 2d).

FIGURE 2. Examples of low-cost IoT seismometer (LCIS) installation
locations: (a) building floor, (b) wall outlet, (c) utility pole, (d) temporary
wall.

Due to the installation condition and the surrounding envi-
ronment, the LCIS has wide range of noise levels. Fig. 3
shows levels of response spectrum for local earthquakes with
magnitude 2.5, 3.5, and 7 with source-to-site distance of
10 km (brown lines, based on Clinton and Heaton [29]), high-
noise ambient vibration (red line, proposed by Peterson [30]),
and dynamic response with noise of LCISs in operation
(black lines) and its median level (blue line). The range of
LCIS noise levels is from −70 to −10 dB, with average of
−63 dB. With this average noise level, vibrations lower than
intensity grade of II cannot be detected. Note that to detect
an earthquake signal, the noise level of seismometers should
be lower than the response spectrum of the seismograms.
Considering the proposed noise level from the empirical
analysis by Cauzzi and Clinton [31], the LCIS can detect
the earthquake signal with a magnitude of 3.5 within 10 km

TABLE 2. Results of KMA certification test of the LCIS.

distance in average. In the case of low-noise LCIS, it can
detect the signal with a magnitude of 2.5, but in the case of
high-noise LCIS, only signals with magnitude greater than
3.5 within 10 km distance can be detected.

FIGURE 3. Noise characteristics for low-cost IoT seismometer (LCIS;
black) responses to earthquake data at 10 km (brown lines). Blue and red
lines show the median and high-noise models.

III. PRE-PROCESSING OF LCIS SEISMIC DATA
More than 7,000 LCISs have been installed in various loca-
tions in South Korea and are currently in operation. Rather
than strictly control the installation following suggested con-
ditions (i.e., on the 1st floor in low-rise building), LCISs have
been spread out and installed if security and maintenance can
be kept. The post office, fire station, and cellular network
station are majority of host buildings. From these installation
conditions, we identified three primary issues. The first is
that the position of the triaxial sensor is not orthogonal to
the gravity, and the second is that the background noise
impairs sensor readings. Third, the building response alters
the amplitude of motions.

To resolve the first issue, we applied the rotation
transformation matrix to accelerometer vectors [32], [33].
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Since the MEMS accelerometer in LCIS can detect the grav-
ity, the rotation angle (θ) required to set the sensor position
orthogonal to the gravity direction can be calculated at static
condition. Once θ is calculated, we can compute the transfor-
mationmatrices that map the signals in horizontal and vertical
directions as follows [34]:

Rx(θ ) =

 1 0 0
0 cos (θ ) −sin (θ )
0 sin (θ ) cos (θ )

 (1)

Ry(θ ) =

 cos (θ ) 0 sin (θ )
0 1 0

−sin (θ ) 0 cos (θ )

 (2)

Rz(θ ) =

 cos (θ ) sin (θ ) 0
sin (θ ) cos (θ ) 0

0 0 1

 (3)

where Rx(θ ), Ry(θ ), Rz(θ ) denote transformation matrix for
two horizontal directions (x and y) and a vertical direction (z).
By rotating the axes as amount of θ , the new acceleration
vector can be calculated as follows: a′

x
a′
y
a′
z

 = Rz(θ )Ry(θ )Rx(θ )

 ax
ay
az

 (4)

where ax , ay, and az are original acceleration vectors, a′
x and

a′
y are horizontal acceleration vectors, and a′

z is the verti-
cal acceleration vector. Following this process, we can esti-
mate horizontal accelerations regardless of sensor installation
position.

The second issue is the high background noise. The
LCIS data includes building shaking, the device’s self-noise,
and environmental noise near the sensor. Since the LCIS
has a high level of self-noise (Fig. 3), the noise vibration
boosts the signal so that we obtain IMs higher than those
of the high-performance sensor from the national seismic
network even though two sensors are collocated. Therefore,
the impact of noise on data needs to be minimized before
an MMI map is computed. We propose to do it with appro-
priate bandpass filters. The range of the bandpass filter is
decided by comparing Fourier amplitude spectrum of noise
windows and signal windows [35], [36]. This method is
widely used when performing signal processing on seismic
motions [37], [38], [39].

The third issue is the building response. Since the LCIS is
installed inside a building, the recorded motion includes the
building response as well as the free-surface ground motion.
The building response can amplify or de-amplify the accel-
eration of the LCIS, depending on the natural frequency of
the building and the frequency content of the ground motion.
Multi-degree of freedom (MDOF) analysis can be used to
eliminate this response. MDOF analysis models a building to
a multi-degree of freedom structure, calculates the structure’s
response to a groundmotion, and from the result, the response
for a particular floor can be estimated. Therefore, we could
understand the response of a multi-floor building to ground
motion, then transform the amplitude of the LCIS into the

FIGURE 4. Procedure diagram of Crowdquake-intensity-map.

free-surface equivalent amplitude by applying the inverse of
the amplification ratio [40].

Our solution to calculate the IM for removing the build-
ing response and for correcting the sensing directions are
available at the GitHub website (https://github.com/knusslab/
crowdquake-intensity-map). This algorithm is called
Crowdquake-Intensity-Map (CIM) and follows a specific
data processing sequence; 1) a user inputs the epicenter
and origin time of the earthquake information; 2) a DB
server provides the LCIS records by collecting LCIS data
within a 150 km radius around the epicenter and checking
the quality of the LCIS data (i.e., disregard bad signals
checking the noise level of the pre-event records with 1 hour
duration ahead the event); 3) the data is trimmed with −10 to
150 seconds from the origin time; 4) horizontal component
records are processed using the processing method presented
in Section III; 5) the average intensity is decided in a hexag-
onal grid presented in Section IV; 6) as the final step, the
MMI map is output. This data processing sequence creates
accurate and reliable intensity map. In addition to an intensity
map, earthquake records are provided on the web after being
converted into data [41]. These data are provided in two
forms for user convenience—MiniSEED [42] and CSV—to
use in analyses, for example, PostreSQL [43], site response
computation [44], data science, and so on.

Fig. 5 illustrates the change of LCIS acceleration through
the conversion process. The seismic record is from an earth-
quake with ML 4.9 that occurred on 14 December, 2021,
and recorded at the GOS2 and SGP seismic observatories
on Jeju island (Fig. 5a). In the GOS2, a high-performance
seismometer was on the ground surfacewith collocated LCIS.
The original LCIS data showed that the baselines were not
zero for the X and Z directions and not the gravity for the
Y direction, even though the position was the same as the
seismometer (Fig. 5b). We found the directions of the gravity
and the north pole and rotated axes to have two horizontal
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FIGURE 5. Comparison of high-performance seismometer of KMA and LCIS data at GOS2 (upper row) and SGP (lower row)
observatories: (a) KMA seismometer record; (b) original LCIS data; (c) mapped LCIS data in east–west, north–south, and up–down
directions; (d) filtered LCIS data.

FIGURE 6. Number of LCIS devices in hexagonal grids.

components (north-south and east-west) and one vertical
component using Eqs. 3-4. After rotation, the LCIS wave-
form for each direction became similar with the seismometer
data (Fig. 5c). After that, we applied a bandpass filter to

the waveform to remove background noise from the LCIS
record. We did not consider the building response in this case
because the LCIS was installed on the ground. As a result,
the amplitude of the processed waveform did not differ from
that recorded by the high-performance seismometer (Fig. 5d).
The calculated PGAs are summarized in Table 3. The north-
south direction (NS) horizontal PGA value recorded by the
high-performance seismometer was 0.342 m/s2, while the
LCIS was 0.308 m/s2 smaller than that of the seismometer.
For the SGP case, the NS horizontal PGA from the high-
performance seismometer was 0.079 m/s2 and the LCIS was
0.072 m/s2. In both cases, the difference was less than 10%.
These case histories confirmed that the LCIS was useful for
estimating seismic intensity, at least for PGA values greater
than 0.08 m/s2.

IV. SEISMIC INTENSITY MAP
Although nearly 7,000 LCIS devices have been deployed
nationwide, they were not uniformly distributed because
the deployment locations were restricted to cellular network
stations, post offices, and fire stations. Hence, the number
of LCIS devices is proportional to the population density.
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FIGURE 7. Comparison of seismic intensity maps between the KMA and LCIS networks. Upper row: ML 4.9 coast of Seogwipo
event. Lower row: ML 4.1 Goesan event. (a) Map from official KMA report; (b) map from unprocessed LCIS data; (c) map from
rotated LCIS data; (d) map from filtered LCIS data.

TABLE 3. Comparison of PGA at GOS2 and SGP observatories (unit:m/s2).

Considering this biased distribution of LCISs, we developed a
method for generating an evenly weighted MMI map without
ShakeMap [45], as explained next.

First, South Korea was divided into hexagonal grids. The
length of the one side of the hexagon was set to 8.54 km to
facilitate the division of administrative districts. Fig. 6 shows
the number of sensors for each hexagon grid. Regionswith six
or more sensors in the grid are densely populated area. Some
mountainous areas do not have any LCIS sensors. Second,
we calculate the average PGA of LCISs in the hexagonal
grid and convert to the MMI for the representative value.
When an earthquake occurs, seismic waves were propagated
at variable-sized amplitudes in a zone (i.e. grid) because of the
site and path effects making it unreliable to rely solely on one
seismic sensor to represent an entire area when determining
MMI. Additionally, the accuracy of LCIS data is less sophis-
ticated compared to high-performance seismometers, making
it more dependent on the installation environment. Therefore,
we are not recommended to rely on a single LCIS to provide
a representative value of MMI at a hexagonal grid. Thus,
we calculate only if the number of sensors was greater than
two. We applied an interpolation algorithm based on MMI
values from six connected grids for grids with less than three
sensors. Note that earthquake signals detected using the Khan
and Kwon [46] model are only counted for representative

MMI calculation, and by user the representative value can be
set as the median instead of the average.

Fig. 7 shows MMI distribution maps for two earthquakes
in South Korea. Fig. 7a show the official KMA MMI map
for the ML 4.9 coast of Seogwipo earthquake that occurred
in the Seogwipo area on December 14, 2021 (upper row)
and the ML 4.1 Goesan earthquake that occurred in the Goe-
san area on October 29, 2022 (lower row). Fig. 7d show
the corresponding MMI maps generated from LCIS data.
The KMA map is generated by first estimating IMs using
a ground motion model (GMM) [47] and next interpolating
observations from low-density network of high-performance
seismometers. The LCIS maps use only LCIS data and inter-
polation, not GMM.

We found that if the LCIS data were used without rotation
and filter, the MMIs would be overestimated (Fig. 7b). More-
over, the processed LCIS-based map shows an MMI value
about 1 to 2 grades higher than the KMA map (Fig. 7a and
7d). The KMA map uses borehole seismometers, and the site
amplification factor applying to the borehole records is often
biased producing biased distribution [48]. Fig. 7d shows the
MMI values from high-performance seismometers located at
surface (black dots). We found that the seismic intensities
from the LCIS map are closer to the observed MMI.

V. CONCLUSION
More than 7,000 stand-alone LCIS devices encompassing
a MEMS accelerometer and an LTE communication sen-
sor with real-time connectivity have been distributed across
South Korea and are in operation as a seismic network. This
network is 25 times denser than the existing national seismic
network, and is expected to function as an intensity map
generator with improved resolution and a faster EEW system.
However, due to high background noise levels of LCISs and
installation conditions, it is necessary to pre-process the LCIS
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data to use for MMI map estimation. We propose three pre-
processing steps to calculate the MMI and to reduce biased
estimates.

First, we rotate the axes of the LCIS to have two horizon-
tal and one vertical components. Second, we apply a band-
pass filter to minimize high level background noise. Third,
we remove the building response using a transfer function
from the building floor to the ground surface, which is deter-
mined through MDOF analysis. Pre-processed LCIS data
are comparable to those of high-performance seismometers
based on case histories.

For MMI map generation, owing to the biased density of
LCIS installations, we divided South Korea into hexagonal
grids and used the average PGA for the representative MMI
for each grid. If no LCISs were within one grid, the MMI for
the grid was found by interpolating six encompassing grid
values. We confirmed that this approach was effective for
intensity map generation by validating it with MMI distri-
butions from two earthquake events. The limitation was that
I and II of MMI values could not be estimated because of the
high background noise of LCIS.

Due to high density of LCIS devices, the MMI map can be
generated without use of ground motion prediction models
that depend on earthquake source, path, and site information,
which includes prediction uncertainty. Direct use of observed
LCIS records provides less uncertain seismic intensity esti-
mation especially to high population area where the LCIS
devices are densely distributed.

The results of this study confirm the suitability of MEMS-
based IoT sensors as an alternative to conventional seismic
observation networks. Information technology keeps evolv-
ing, so we expect that the advancement of sensors and net-
works will beneficially influence earthquake monitoring and
warning systems.
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