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ABSTRACT
In modern society, software is ubiquitous and very complex and
diverse. Examples of complex modern software include medical
systems, flight systems, and high-reliability systems. A resilient
system means a system that can continue to maintain or recover its
function even if a problem occurs in the system. Elemental technolo-
gies of the resilience system include resistance, detection, reaction,
and recovery. The combination of each technology constitutes a re-
silience system. In this paper, a hot-patching tool was designed and
implemented as a recovery technique. Hot-patching is a technology
that allows new features to be added and deleted without restarting
the application. Based on this, an imprecise patch image was created
and it was verified whether the application’s computing resource us-
age could be dynamically adjusted using hot-patching. Through the
experimental results, applicable mixed-criticality system example
scenarios were described.
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1 INTRODUCTION
In modern society, software is ubiquitous and very complex and
diverse. Examples of complex modern software include medical
systems, flight systems, and high-reliability systems. Such soft-
ware must have safety thresholds and must not be interrupted, and
must be designed considering high performance and high resilience
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Figure 1: Resilience technique work flow in cps system.

even in situations such as disasters. However, even if a program
planned with the best quality is written, damage to the system due
to unpredictable external events is unavoidable.

Cyber-physical system (CPS) is a next-generation system that
combines computing, communication, and control technologies. It
must satisfy performance levels while satisfying stability, reliability,
robustness, and resilience. In particular, resilience is becoming im-
portant in CPS design because many social infrastructures are built
with CPS[6]. Resilience refers to a system that can endure tolerate a
certain level of external attack or internal faults by either partially
operating normally or gradually shutting down the system. Figure 1
shows how the resilience technique is applied in CPS. Resistance
resilience can be used as a way to isolate the system from external
factors. When external influences invade the resistance resilience
and begin to affect the system, detection resilience can detect it, and
reaction resilience can mitigate the failure before the system fails.
Finally, system resilience is to reduce system failure to a tolerable
level through recovery. Resiliency technologies are abstract and
must be implemented in a system to achieve the intended effect.
However, if a technology is chosen or implemented incorrectly, the
results may not be as intended and the system may be less resilient.

Imprecise computing has emerged as an approach for designing
energy-efficient digital systems [2]. It results in some loss of accu-
racy in the calculated results and is applicable to many systems and
applications. It can significantly improve energy efficiency through
approximation techniques by relaxing accuracy for fully accurate
or completely deterministic tasks. Imprecise computing can also
benefit real-time systems. For example, in a virtual reality tracking
system, violating deadlines can result in stuttering of the video,
impeding mission success. In contrast, errors that occur in a few
pixels out of a small number of frames are usually not discernible
to the human eye and have far less serious consequences than a
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Figure 2: The hot-patcher overall structure.

deadline violation. Imprecise computing allows relatively short ex-
ecution times, which can be adopted to avoid deadline violations
when computing resources are stressed [3].

There is a functional-level hot-patching platform (FLHP) avail-
able for uninterrupted service[4]. The FLHP is a platform that
considers the functions of applications as modules and patches
these modules. This platform can perform updates on a function-
by-function basis without interrupting existing applications that
are currently running and can update the debugging versions of
functions that produce errors. In this paper, we proposed a patch
image structure by improving FLHP. And it was confirmed that the
consumption of computing resources can be reduced by using the
PI value calculation and image compression algorithm, and based
on this, a mixed-criticality system (MCS) scenario is proposed.

2 HOT-PATCHING IMPLEMENTATION
We implemented a hot-patching tool and patch image considering
portability, usability, and expandability. These features are designed
to modularize the necessary functions such that only the relevant
modules are engaged according to the current situation. To use the
proposed hot-patching platform, users must install GCC version 4.7
or later. We have minimized dependency on other applications since
there are no other requirements outside of compiler restrictions.
This facilitates support across multiple platforms.

As shown in Figure 2, the proposed hot-patching platform con-
sists of four independent modules. Each module is completely inde-
pendent of target processes. The modules are largely divided into
modules that handle patch images and modules that manipulate
target processes. The modules that handle patch images are the im-
age creator and image loader. These modules create a patch image
with a specific name and load it into memory. The modules that ma-
nipulate target processes are the memory injector and trampoline
injector modules, both of which insert the functionality required
by the hot-patcher into the target process. The figure drawn on
the right in Figure 2 shows the target application before and after
hot-patching. As a result, when function A is called, actual patching
is performed by jumping to function A’.

The patch image structure is designed to facilitate hot-patching.
Figure 3 presents the assembly code before and after modification.
The left-hand side presents the original assembly file from the
compilation stage of a specific application. The structure of the
assembly file is divided into a rodata section containing a static
object and text area containing the actual execution code. Listing 1
attaches part of the script to create the structure shown in the figure.
Through this, it is possible to easily link the address of a function
or data during hot-patching.

1 PADDING_FORMAT = \
2 '%s : \ t . l ong 0 x00000000 \ n \ t . l ong 0 x00000000 \ n '
3 with open ( ' o r i g i n a l _ s o u r c e . s ' , ' r ' ) a s f :
4 da t a = f . r e a d l i n e s ( )
5 r e f _ i n d e x = 0 ;
6

7 f o r idx , l i n e in enumerate ( da t a ) :
8 i f '@funct ion ' i n l i n e :
9 CF = l i n e . s p l i t ( ' \ t ' ) [ 2 ] . s p l i t ( ' , ' ) [ 0 ]
10 FCMD[CF ] = [ ]
11

12 i f ' c a l l ' i n l i n e :
13 i f CF i s None : # not e x i s t s f u n c t i o n s
14 e x i t ( −1 )
15

16 e l emen t s = l i n e . s p l i t ( ' \ t ' )
17 func t ion_name = e l emen t s [ 2 ] . s t r i p ( )
18 c a l l _ i n d e x = ' . HPF%03d ' %(HPF_NUMBERING , )
19 e l emen t s [ 2 ] = ' ∗% s \ n ' %( c a l l _ i n d e x , )
20 HPF_NUMBERING = HPF_NUMBERING + 1
21 l i n e = ' \ t ' . j o i n ( e l emen t s )
22 da t a [ i dx ] = l i n e
23

24 FCMD[CF ] . append (
25 { ' func t ion_name ' : funct ion_name , \
26 ' c a l l _ i n d e x ' : c a l l _ i n d e x , \
27 ' r e f _ i n d e x ' : r e f _ i n d e x } )
28 r e f _ i n d e x = r e f _ i n d e x + 1
29

30 i f ' c f i _ e n dp r o c ' i n l i n e :
31 r e f _ i n d e x = 0
32 r e l o c a t i o n _ s p a c e = ' '
33 f o r meta_data in FCMD[CF ] :
34 r e l o c a t i o n _ s p a c e = r e l o c a t i o n _ s p a c e \
35 + PADDING_FORMAT
36 %( meta_data [ ' c a l l _ i n d e x ' ] , )
37 da t a [ i dx ] = r e l o c a t i o n _ s p a c e + l i n e
38 m_ f i l e = open ( ' mod i f i e d _ s ou r c e . s ' , 'w ' )
39 m_ f i l e . w r i t e ( ' ' . j o i n ( da t a ) )
40 m_ f i l e . c l o s e ( )

Listing 1: Modifying original source code

The trampoline injector is a component that modifies work-
flows by inserting jump instructions at the entry points of original
functions. Intel CPUs are designed using a complex instruction set
computer (CISC) model. The CISC model allows direct jumps to any
address because the length of instructions is variable. In contrast,
in ARMv7 processors, the length of instructions is fixed at 4 bytes.
This means the jump instructions in an ARM processor operate
based on relative addresses. Therefore, to cover the entire managed
memory area in an ARM processor, CPU registers must be used.

Listing 2 presents the code for generating trampoline code on an
ARM-based device. This is a machine code generator that accepts
the start address of a patched function as an argument. The address
is stored in the r12 register and loaded into the PC register. In

1302



SIG Proceedings Paper in LaTeX Format SAC’23, March 27 –March 31, 2023, Tallinn, Estonia

.section .rodata
.LC0:

.string "PWD"
...
.LC4:

.string "accept() error"

.text

.globl main

.type main, @function
main:
.LFB2:

pushq %rbp
movq %rsp, %rbp

...
xorl %eax, %eax
movl $.LC0, %edi
call getenv
movq %rax, ROOT(%rip)

...
movl -40(%rbp), %eax
movl %eax, %edi
call respond
movl $0, %edi
call exit

...
.cfi_endproc

.text
.globl main
.type main, @function

main:
.LFB2:

pushq %rbp
movq %rsp, %rbp

...
xorl %eax, %eax
movl $.LC0, %edi
call *.HPF001
movq %rax, ROOT(%rip)

...
movl -40(%rbp), %eax
movl %eax, %edi
call *.HPF007
movl $0, %edi
call *.HPF008

...

.HPF001:
.long 0x00000000
.long 0x00000000

...

.HPF007:
.long 0x00000000
.long 0x00000000

.HPF008:
.long 0x00000000
.long 0x00000000
.cfi_endproc

.LC0:
.string "PWD"

...

.LC4:
.string "accept() error"

Figure 3: Assembly source code before and aftermodification.

contrast, on x86_64-based devices, one can generate trampoline
code using only a single 12 byte instruction. The generated code
is inserted at the function entry point using the ptrace system call.
This enables jumping to patched functions through the trampoline
code, even if original code is executed.

1 vo id g e t _ t r ampo l i n e _ code ( uns igned long t a r g e t _ a dd r ,
uns igned long ∗ code ) {

2 uns igned long upper = ( t a r g e t _ a d d r & 0 x f f f f 0 0 0 0 ) > >16;
3 uns igned long lower = t a r g e t _ a d d r & 0 x f f f f ;
4 uns igned long movt_ ins = 0 xe340c000 ; / / movt r12 , #0

xXXXX
5 uns igned long o r r _ i n s _ 8 __ 1 5 = 0 xe38c c c00 ;
6 uns igned long o r r _ i n s _ 0 _ _ 8 = 0 xe38cc000 ;
7 / ∗ above 3 i n s t r u c t i o n s s e t the r12 r e g i s t e r
8 t o sha red memory s t a r t i n g t a r g e t _ a d d r ∗ /
9 uns igned long s e t _ p c _ t o _ t a r g e t = 0 x e 1 a 0 f 0 0 c ;
10 movt_ ins | = ( upper & 0 x 0 f f f ) ;
11 movt_ ins | = ( ( upper & 0 x f 000 ) << 4 ) ;
12 o r r _ i n s _ 8 _ _ 1 5 | = ( ( lower & 0 x f f 0 0 ) >> 8 ) ;
13 o r r _ i n s _ 0 _ _ 8 | = lower & 0 x 0 0 f f ;
14 ∗ code = movt_ ins ; ∗ ( code +1 ) = o r r _ i n s _ 8 _ _ 1 5 ;
15 ∗ ( code +2 ) = o r r _ i n s _ 0 _ _ 8 ; ∗ ( code +3 ) =

s e t _ p c _ t o _ t a r g e t ;
16 }

Listing 2: Trampoline code generator for ARM processor
(Raspberry Pi).

3 EXPERIMENT
To test the functionality of hot-patching, we implemented an appli-
cation that calculates the PI value and imprecise patched it. Accord-
ing to Bailey and Borwein, when calculating with high precision in
mathematical physics, the number of significant digits is considered
to be 17 digits [1]. To show that imprecise computing can be per-
formed through hot-patching in general applications, we tested an
application that calculates the PI value. We conducted experiments
based on 15 significant digits.

Figure 4 shows the results of the reduction in resource usage
based on patches that reduce the accuracy of any computational
application. This experiment aims to reduce CPU usage instead of
sacrificing acceptable accuracy via hot-patching and changing the
applications to be run. The figure shows the results of measuring
the CPU resources used by an application calculating the PI with
hot-patching. The result was obtained by performing an impre-
cise patch that changes the number of significant digits through
hot-patching. Based on 15 significant digits, the consumption of
computing resources decreased significantly up to 10 digits, and it
was almost the same level below 10 digits. Through this result, it
was confirmed that the normal operation of hot-patching and the
application of imprecise patch can save computing resources.

Figure 4: Changes in cycles and instructions according to the
number of significant digits of the PI value.

Figure 5: Changes in consumption of computing resources
according to compression ratio.
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4 EVALUATION
As a result of the experiment through imprecise patch, it was con-
firmed that resources can be savedwithout terminating the program
while patching the accuracy of the PI significant value finding algo-
rithm. In addition to this experiment, we adjusted the compression
rate while converting png images to jpeg to see if resource con-
sumption could be reduced at the expense of accuracy. Figure 5
expresses the tendency of computing resources to decrease accord-
ing to the compression rate. As can be seen from the chart, at a
compression rate of 80%, the CPU resource was reduced by 31.2%
and the image size was reduced by about 83%. It can be seen that
the resource consumption of the system can be reduced through
various algorithms in a situation where resources are insufficient
in the system.

Using the previously implemented hot-patching tool, an impre-
cise scenario for system resilience can be established. Assume a
situation in which the resource usage of the system rapidly in-
creases due to an external factor or the core is broken due to an
issue such as over current. Also, as shown in the Figure 6, the sys-
tem has tasks from T1 to T4. Among them, it is assumed that T1 to
T3 are relatively unimportant tasks. If an emergency occurs, reduce
the CPU resource usage of each task by hot-patching the pre-made
imprecise patches from T1 to T3. The increased CPU resources are
allocated to the relatively more important T4 process to deal with
emergencies. Then, after the emergency situation passes by using
any method, remove the existing imprecise patch to return to the
normal process so that the mission can continue.

In addition to the above scenarios, analyze application to identify
statements that are not frequently executed. After that, after making
the corresponding statement into a patch image, we can think of a
way to patch and use it in real time when the statement is executed.
As such, the hot-patching tool has the advantage of being able to
show various effects depending on the input algorithm.

5 CONCLUSION
This paper proposes the development of hot-patching for building
a resilient system. The resilience system is largely divided into

Figure 6: Imprecise computing scenario in mixed-criticality
system.

hardware and software resilience systems. The hot-patching plat-
form for ELF binary applications designed and implemented on
both x86_64 and ARM architectures. The hot-patching platform
supports function-based patching, meaning users can easily add or
delete functionality. Additionally, because the proposed platform is
independent of target processes, its operation does not affect exist-
ing applications, even if the platform experiences an issue. Based on
experimental results, we determined that additional resources can
be allocated by reducing accuracy. By extending these experimental
results, the degree of saving of computing resources according to
the compression rate during image conversion was examined. And
based on this, imprecise mixed criticality scheduling scenario was
examined. In another scenario, how to build an application with-
out a specific algorithm and use it by hot-patching when needed.
This means that even if the application is hijacked, it can be used
as a security element that cannot see the content. As such, the
hot-patching tool can show various effects depending on the input
algorithm, and it can be felt that it is the same as stem cells.

In future, real-time MCS can be built with the proposed hot-
patching technology. The system recovery method in general MCS
is task dropping. Task dropping is to prevent system faults by re-
moving relatively less important tasks from the scheduler [5]. Using
the hot-patching proposed in this paper, it will be possible to build
a more flexible system than the rigid task dropping algorithm by
applying imprecise computing. As a practical method for imple-
mentation, it can be implemented with raspberry pi, preempt-rt
patch, and scheduling tuning.

ACKNOWLEDGMENTS
This work was partly supported by Institute of Information & Com-
munications Technology Planning & Evaluation (IITP) grant funded
by the Korean government (MSIT) (No.RS-2022-00155885, Artificial
Intelligence Convergence Innovation Human Resources Develop-
ment (Hanyang University ERICA)) and the MSIT, Korea, under the
Grand Information Technology Research Center support program
(IITP-2022-2020-0-101741).

REFERENCES
[1] David H. Bailey and Jonathan M. Borwein. 2015. High-Precision Arithmetic in

Mathematical Physics. Mathematics 3, 2 (2015), 337–367. https://doi.org/10.3390/
math3020337

[2] Jie Han and Michael Orshansky. 2013. Approximate computing: An emerging
paradigm for energy-efficient design. In 2013 18th IEEE European Test Symposium
(ETS). 1–6. https://doi.org/10.1109/ETS.2013.6569370

[3] Lin Huang, Youmeng Li, Sachin S. Sapatnekar, and Jiang Hu. 2018. Using
Imprecise Computing for Improved Non-Preemptive Real-Time Scheduling. In
Proceedings of the 55th Annual Design Automation Conference (DAC ’18). As-
sociation for Computing Machinery, New York, NY, USA, Article 71, 6 pages.
https://doi.org/10.1145/3195970.3196134

[4] Haegeon Jeong, Jeanseong Baik, and Kyungtae Kang. 2017. Functional level
hot-patching platform for executable and linkable format binaries. In 2017 IEEE
International Conference on Systems, Man, and Cybernetics (SMC). 489–494. https:
//doi.org/10.1109/SMC.2017.8122653

[5] Jaewoo Lee, Hoon Sung Chwa, Linh T. X. Phan, Insik Shin, and Insup Lee. 2017.
MC-ADAPT: Adaptive Task Dropping in Mixed-Criticality Scheduling. ACM Trans.
Embed. Comput. Syst. 16, 5s, Article 163 (sep 2017), 21 pages. https://doi.org/10.
1145/3126498

[6] Yuchang Won, Buyeon Yu, Jaegeun Park, In-Hee Park, Haegeon Jeong, Jeanseong
Baik, Kyungtae Kang, Insup Lee, Sang Hyuk Son, Kyung-Joon Park, and Yongsoon
Eun. 2018. An Attack-Resilient CPS Architecture for Hierarchical Control: A
Case Study on Train Control Systems. Computer 51, 11 (2018), 46–55. https:
//doi.org/10.1109/MC.2018.2876054

1304

https://doi.org/10.3390/math3020337
https://doi.org/10.3390/math3020337
https://doi.org/10.1109/ETS.2013.6569370
https://doi.org/10.1145/3195970.3196134
https://doi.org/10.1109/SMC.2017.8122653
https://doi.org/10.1109/SMC.2017.8122653
https://doi.org/10.1145/3126498
https://doi.org/10.1145/3126498
https://doi.org/10.1109/MC.2018.2876054
https://doi.org/10.1109/MC.2018.2876054


 
 
    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
     Shift: none
     Normalise (advanced option): 'original'
      

        
     32
            
       D:20120516081844
       792.0000
       US Letter
       Blank
       612.0000
          

     Tall
     1
     0
     No
     675
     320
     None
     Up
     0.0000
     0.0000
            
                
         Both
         AllDoc
              

      
       PDDoc
          

     Uniform
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.9
     Quite Imposing Plus 2
     1
      

        
     4
     3
     4
      

   1
  

 HistoryList_V1
 qi2base



