
Spidermine: Low Overhead User-Level Prefetching∗

Jiwoong Won, Jemin Ahn
Dept. of Computer Science and Engineering,

Hanyang University, Republic of Korea
{jiwoongwon,ahnjemin}@hanyang.ac.kr

Sangwoon Yun†
Dept. of Computer Science and Engineering,

Hanyang University, Republic of Korea
swyun@hanyang.ac.kr

Jongchan Kim
Dept. of Automobile and IT Convergence,
Kookmin University, Republic of Korea

jongchank@kookmin.ac.kr

Kyungtae Kang‡
Dept. of Computer Science and Engineering,

Hanyang University, Republic of Korea
ktkang@hanyang.ac.kr

ABSTRACT
Spidermine monitors the rate at which read requests are issued by
an application, and thus detects bursts of disk reads. It then deter-
mines an address at which to insert a breakpoint into the application
code or a library before each burst, and logs each breakpoint, to-
gether with the data required for the subsequent burst. When the
application is subsequently run, Spidermine inserts breakpoints
at each logged address by temporarily replacing the instruction.
Spidermine is then invoked at each breakpoint, and prefetches the
corresponding data blocks into the page cache. This use of break-
points as triggers for prefetching eliminates the need for monitor-
ing to determine when to prefetch data during program execution.
Also, by operating at the user level, Spidermine avoids interference
with other applications. Experiments on 11 benchmark applications
demonstrated that Spidermine can reduce the time for launch by
up to 54.1%, and for run-time data-loading by up to 70.1% on a hard
disk drive, 13.3% and 47.0% respectively, on a solid-disk drive.

CCS CONCEPTS
• Software and its engineering → Main memory; Software
performance;

KEYWORDS
Spidermine, Prefetching, I/O optimization

ACM Reference Format:
Jiwoong Won, Jemin Ahn, Sangwoon Yun, Jongchan Kim, and Kyungtae
Kang. 2023. Spidermine: Low Overhead User-Level Prefetching. In Proceed-
ings of ACM SAC Conference (SAC’23). ACM, New York, NY, USA, Article 4,
10 pages. https://doi.org/10.1145/3555776.3577754

∗A preliminary version of this work was presented at IEEE SMC’17 and was published
in its proceeding [19]
†Major in Bio Artificial Intelligence
‡Corresponding author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SAC’23, March 27 –March 31, 2023, Tallinn, Estonia
© 2023 Association for Computing Machinery.
ACM ISBN 978-1-4503-9517-5/23/03. . . $15.00
https://doi.org/10.1145/3555776.3577754

1 INTRODUCTION
Application launch times (which wewill call “launch times”) and the
delays that occur when a running application has to load additional
data from a disk (which we will call “loading times”) reduce the
satisfaction experienced by personal computer users [1, 5, 7, 8, 14,
20]. Software developers can ameliorate these delays by the timely
prefetching of the disk blocks likely to be needed by an application
before they are required [2, 4, 9–11, 13, 16]. For example, operating
systems such asWindows and Linux use prefetching internally [13],
and there have been many attempts to improve the performance
of prefetching. Most prefetchers record the patterns in which disk
reads occur during program launch. Then, when the application
is subsequently executed, they fetch the corresponding blocks in
advance. This approach has been shown to be effective in reducing
application launch times, but its benefit in terms of the loading of
run-time data has been largely unexamined.

More recently, prefetching techniques have been designed specif-
ically to accelerate the loading of data [3, 6, 12, 15, 18], as well
as application launches. Prefetching data after an application has
launched is more complicated because there are no obvious indi-
cations that data is about to be loaded, and so disk reads must be
monitored continuously to determine when to prefetch data. This
incurs large CPU and memory overheads and the accuracy with
which data is prefetched is often disappointing.

These challenges motivated us to design a lightweight prefetch-
ing scheme called Spidermine, which uses breakpoints as triggers.
This approach is based on two observations that many personal
computing applications read a lot of data from storage in initial
launch and later bursts, and that they are likely to request the
same data during each run. These observations led us to design
Spidermine to recognize bursts of reads.

During its learning and analysis phase, Spidermine runs the
application and identifies the bursts of reads by counting the fre-
quency of read operations. This is carried out at the user level
without searching for individual block correlations at the kernel
level. Consecutive read requests are logged in a circular queue, and
a sequence of requests is recognized as a burst if the time to fill
the queue is less than or equal to a period burst_threshold. This
process makes few demands on either the CPU or memory.

Once the bursts of reads have been detected, Spidermine finds
locations ahead of each burst in the application code or a library

1332

https://doi.org/10.1145/3555776.3577754
https://doi.org/10.1145/3555776.3577754
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3555776.3577754&domain=pdf&date_stamp=2023-06-07

SAC’23, March 27 –March 31, 2023, Tallinn, Estonia J. Won et al.

code at which a breakpoint should be inserted. We use an instruc-
tion pointer, which is a register in the processor that stores the
address of the next instruction to be executed, to determine the
addresses at which to insert breakpoints. When the application is
subsequently executed, Spidermine inserts the breakpoints into the
application code and libraries as they are loaded from a disk into the
memory, and backs up the instructions replaced by each breakpoint.
After all of the breakpoints have been inserted, Spidermine starts
the application. As the application runs, each breakpoint causes
a software interrupt (called a SIGTRAP signal) to be issued. Spi-
dermine responds by prefetching the corresponding data into the
page cache so that it becomes available just before a burst of reads.
It then restores the original instruction at the breakpoint, and the
application resumes execution. No monitoring is required between
breakpoints, and the operational overhead is too small to measure.
Spidermine is compared with existing prefetchers in Table 1.

We have evaluated Spidermine using a desktop computer with
an Intel Core i7-8700 CPU with 32 GB of RAM, a Seagate 3.5-inch
2-TB 7200-RPM HDD, and an Intel 535 Series 250 GB SSD, running
Ubuntu 20.04 64-bit Linux with an EXT4 file system. We assessed
the effect of varying the effect of the value of burst_threshold.
Experiments with 11 benchmark applications (Firefox, Eclipse, ON-
LYOFFICE, LibreOffice, Android Studio, FlightGear v2017, Pillars of
Eternity (PoE), Pillars of Eternity II: DeadFire (PoE II), Divinity, The
Long Dark, and SOMA) indicate that Spidermine can reduce appli-
cation launch times by up to 54.1% (Firefox) and run-time loading
times by up to 70.1% (PoE) on HDD. It also can reduce application
launch times by up to 13.3% (Eclipse) and run-time loading times
by up to 47.0% (PoE) on SSD.

The contributions of our work are summarized as follows:

• The design of a prefetcher that expedites both launching
and subsequent loading without the need for a large table
of correlations, which is suitable for applications such as
games that need not only to be launched fast, but also to
load significant amounts of data after launching.
• The use of breakpoints as triggers for prefetching to elimi-
nate the need for continuous monitoring to determine when
to prefetch data during program execution, keeping Spider-
mine lightweight.
• The user-level implementation of the merging and sorting of
read requests, which leverages the effectiveness of prefetch-
ing.
• The use of the user space rather than the kernel space for
tracing read operations, analysis, and prefetching so that
they do not affect the execution of other applications.

2 SPIDERMINE DESIGN
The effectiveness of prefetching is largely determined by the accu-
racy with which data are selected, the timelines with which they
are fetched, and the overhead incurred in these operations. Existing
kernel-level prefetching schemes are mostly focused on reducing
application launching times. Or they do attempt to reduce loading
times but incur significant CPU and memory overheads in the anal-
ysis of the correlations between data blocks. Moreover, obtaining
the information from a running application needed to infer block

Learning and Analysis Phase Prefetching Phase

Virtual File System

Application

Read Wrapper Mmap Tracer

Read Analyzer

read-
log

.bp files

.pf files Prefetcher

Application

read() mmap()

mmap() Info.

read() Info.

Original
mmap()

Original
read()

Insert
Breakpoints

SIGTRAP
Signal

Block I/O Layer

Storage Device Driver

Figure 1: Overall structure of Spidermine.
correlations inevitably requires significant changes to the OS kernel,
which is intrinsically undesirable and means that the prefetcher
must be updated whenever the kernel changes.

Spidermine monitors file operations rather than individual block
reads, and both monitoring and prefetching are carried out at the
user level. This means that it requires minimal modifications to
the OS kernel, and these modifications only affect target applica-
tions. Moreover, Spidermine inserts breakpoints in the application
and library codes that it uses as they are loaded. And each break-
point triggers prefetching of the blocks which were associated with
that breakpoint during the learning and analysis phase. This is
much more efficient than continuously monitoring trigger blocks
demanded by other prefetchers. We now describe the tracer, ana-
lyzer, and prefetcher components that enable Spidermine to operate.

2.1 Read Tracer in the Learning Phase
Fig. 1 depicts the overall structure of Spidermine. The read tracer,
which is the logical component of Spidermine, physically consists of
an “mmap tracer" and a “read wrapper.” The mmap tracer runs the
application program instead of a Linux shell, and after that, these
two physical components track all of the read-related operations
requested by the application (marked as (1) in Fig. 2a) and generate
a log for the collected data (marked as (2) in Fig. 2a). The tracer
only collects information on requests to read regular files.

One source of reads is the mapping of a file to a region of memory.
This is performed by the mmap() system call, after which the file
can be accessed just like an array. This is more efficient than read()
because only the parts of the file that the program actually accesses
are loaded. The common use of memory mapping is for the loading
of a dynamic library. Since it incurs a large number of disk reads,
the run-time loading of dynamic library is our focus. The mmap
tracer uses the ptrace() system call to trace read requests that
result from mmap() called with PROT_EXEC or PROT_READ flag,
which maps a dynamic library to the virtual memory of a process.
And it examines the address space to which the dynamic library
is mapped. It is also noted that the memory mapping segment of
each library itself may contain many disk-read operations.

The reading of data from a disk is more straightforwardly per-
formed by read() or fread() in the C library. Reads of this sort
can be traced using a dynamic library we have implemented, called

1333

Spidermine: Low Overhead User-Level Prefetching SAC’23, March 27 –March 31, 2023, Tallinn, Estonia

Table 1: Comparison of Spidermine with existing prefetchers

Scheme Scenario I/O optimization Memory overhead CPU overhead Performance Implementation

GSoC Prefetch [13] Launch File-level sorting Low Mid Mid Kernel level
Preload [4] Launch Not applicable Low Low Low User level
C-Miner [12] Launch & Loading LBN sorting Mid Mid Low Kernel level
DiskSeen [3] Launch & Loading LBN sorting High Mid Mid Kernel level

ClusterFetch [15] Launch & Loading LBN sorting Low Low High Kernel level
Application-directed
Prefetching [18] Launch & Loading LBN sorting Low Low Depending on

Programmer’s Expertise User level

Spidermine Launch & Loading LBN sorting Low Low High User level

Disk Read List 1

Disk Read List 2

Read Tracer

Read Analyzer

Disk Read
Log

Breakpoint Address 1:
< BP1 >

Breakpoint Address 2:
< BP2 >

Prefetch List 1:
< BP1, Read List 1 >

Prefetch List 2:
< BP2, Read List 2 >

1

2

3

4
Breakpoint & Read Information
Flush on Disks

BP Sequence PF Sequence

Disk Read List 1

Disk Read List 2

Prefetcher

Breakpoint Address 1:
< BP1 >

Breakpoint Address 2:
< BP2 >

Prefetch List 1:
< BP1, Read List 1 >

Prefetch List 2:
< BP2, Read List 2 >

1 BP & PF List

BP Sequence PF Sequence

Breakpoint 1

Breakpoint 2

2 Breakpoint
Insertion

SIGTRAP

3

Prefetch
Thread

Prefetch
Request

(a) Read Tracing & Analysis Phase (b) Prefetching Phase

Figure 2: Operation of Spidermine.

the read wrapper, which provides wrapper functions for these func-
tions. We use this approach to avoid the overhead of repeatedly
stopping and starting the target process by calls to ptrace(). Later,
when the application calls read() or fread(), the read wrapper
intercepts these calls and traces the corresponding reads. This tech-
nique requires the function being called to have an entry in the
procedure linkage table (.plt section) of the C library libc. After
recording the read request information, the read wrapper calls the
original function from libc.so that the application can continue
executing normally.

However, reads made by mmap() cannot be intercepted in this
way because mmap() is not listed in the linkage table; therefore, the
slower ptrace() approach must be used.

2.2 Read Analyzer
Spidermine is designed to recognize bursts of reads rather than
trying to correlate individual blocks. The read analyzer is the com-
ponent of Spidermine (marked as (3) in Fig. 2a) that uses the log
information obtained during tracing to identify the bursts of reads
by determining the frequency of read operations, which it logs in a
circular queue. This approach has low CPU and memory overheads.

If the difference between the times when the first and last entries
were logged into the circular queue is shorter than the predefined
threshold burst_threshold, then the read analyzer decides that
these entries correspond to a burst of disk reads over a period equal
to the time difference. Bursts that follow one another clearly are
combined, and the remaining times are classified as idle periods.
They are also combined if they are only separated by a few reads.
Fig. 3 shows how bursts of reads and idle periods are identified
and how they are linked into prefetch groups. Note that a burst

Time

frontrearfront
rear

front
rear

read-
log

Burst Period Idle Period Burst Period Idle Period Burst Period

Prefetch Group 0 Prefetch Group 1 Prefetch Group n

(Q.rear.timestamp - Q.front.timestamp) < burst_threshold

falsetrue

mm_node mm_node … mm_node mm_node

mmap_list

mm_node

…

…

front

rear

true false true

Idle Period

false

mmap
(for exec)

mmap
(for read)

read

Figure 3: Identifying and grouping bursts and idle periods.

period and the idle period that follows it become a “prefetch group.”
We choose this design instead of linking each idle period with the
subsequent burst, as a breakpoint in a particular group triggers the
prefetching of the data requested in the subsequent prefetch group.

After classification, the analyzer examines the return addresses
of the functions called in each idle period and selects the first
address at which it is suitable (the details of how to determine
this will be described in Section 3.2.2) to insert a breakpoint. The
breakpoint should be inserted as near as possible to the start of
an idle period, which allows as much time as possible for loading
the blocks required during the following burst of reads. Finally,
the analyzer stores sequence information (SI) on the disk (marked
as (4) in Fig. 2a). This includes 1) the offset of each breakpoint
from the starting memory address of the application code or a
library code, which we call the breakpoint (BP) sequence, and 2) a
tuple (file name, start offset, length of the read) at the breakpoint
that characterizes the data to be prefetched, which we call the
prefetching (PF) sequence.

Although the location of an application in virtual memory and
the locations of dynamic libraries loads may change each time it
is executed, the location of each breakpoint can be easily adjusted
using the offset. An operational overview of the read tracer and
analyzer is summarized in Fig. 2a.

2.3 Prefetcher
After the tracer and analyzer performed the learning and analysis
phase during the first execution of a program, the prefetcher carries
out prefetching on the basis of the schedule learned by the tracer
and analyzer from the second time of execution. Similar to the
mmap tracer, the prefetcher runs the application program on behalf

1334

SAC’23, March 27 –March 31, 2023, Tallinn, Estonia J. Won et al.

of the Linux shell. The prefetcher loads the application and SI into
memory (marked as (1) in Fig. 2b) and then inserts breakpoints
at the addresses designated by the BP sequence (marked as (2) in
Fig. 2b). The existing operation code (opcode) at each such address
is replaced by the opcode INT 3 (i.e., 0xCC), which is designed to
set breakpoints for debugging. The original opcode is then stored
in the memory space of the prefetcher, which then executes the
application and waits to encounter breakpoints in the form of INT
3 opcodes, as discussed above.

Each breakpoint raises a SIGTRAP signal, which causes Spider-
mine to create a thread to fetch the data corresponding to the entry
in the PF sequence that is associated with the breakpoint (marked
as number 3 in Fig. 2b). After each prefetching thread has been
started, the original opcode is restored, and the application resumes
execution. The restoration of the original opcode is particularly
important when the breakpoint is inserted into the library that
is shared with other applications, to avoid their execution of an
instruction with the wrong opcode. An operational overview of the
proposed prefetcher design is summarized in Fig. 2b.

3 IMPLEMENTATION
As described in Section 2, Spidermine consists of the read tracer,
read analyzer, and prefetcher. We will now describe how these
components were implemented in Linux 5.9.

3.1 Read Tracer: Tracing of Disk Reads
We have slightly modified ptrace() and the kernel so that the
kernel responds only to the mmap() system call and ignores other
system calls. In addition, we have implemented the read wrapper
to hook calls to two read-related functions, read() and fread(),
which trace disk reads.

3.1.1 Mmap-tracer: Tracing reads caused by run-time library loading.
The mmap tracer, which is a component of the read tracer, executes
the target application as a child process and monitors all of the
threads it creates. The mmap tracer uses ptrace() to trace the disk
reads incurred when loading the executable binary image of the
application and run-time dynamic libraries that it calls. Essentially,
ptrace() is a system call that allows a tracer process to observe
and control the execution of a tracee process and to examine or
change the memory and register information used by the tracee.
The prototype of ptrace() is as follows:

long ptrace (enum __ptrace_request request , pid_t pid ,
void ∗ addr , void ∗ data) ;

The value of request determines an action to be performed,
and pid identifies the tracee by its thread. A tracee first needs
to be attached to the mmap tracer, which can be initiated by the
mmap tracer invoking fork() to create the tracee as a child pro-
cess. The mmap tracer then calls ptrace(PTRACE_SEIZE, pid, 0,
PTRACE_O_MMAPTRACE), where PTRACE_SEIZE is an action which
makes a process specified in pid attached to the mmap tracer, and
PTRACE_O_MMAPTRACE is a newly defined option to deactivate trac-
ing of all system calls except for mmap().

After ptrace(), any kernel-generated signal delivered to the
tracee (with the exception of SIGKILL) will result in the stoppage of
the tracee. In the kernelmode, the tracee invokes a ptrace_notify(),

mmap-tracer Traceetracee = fork()
wait(&status)

raise(SIGSTOP)

Notify the mmap-tracer
ptrace_notify()
ptrace_stop()Woken by SIGCHLD signal,

and get the status of the tracee

execve()
Execute target application

__group_send_sig_info(SIGCHLD, …)
__wake_up_parent() freezable_schedule() Enter kernel mode and be frozen

ptrace(PTRACE_SYSCALL, tracee, 0, 0)
Restart the tracee sys_ptrace() Resume operation

Repeated until the tracee terminated

wait(&status)

Notify the mmap-tracer
ptrace_notify()
ptrace_stop()

freezable_schedule()

syscall-enter-stop
Target application makes a system call

Enter kernel mode and be frozen

Woken by SIGCHLD,
and get the status of the tracee

Obtain current timestamp

ptrace(PTRACE_GETREGS, tracee,
0, ®s)
Obtain register set of the tracee sys_ptrace()

ptrace(PTRACE_SYSCALL, tracee, 0, 0)
Restart the tracee sys_ptrace() Resume operation

wait(&status)

Notify the mmap-tracer
ptrace_notify()
ptrace_stop()

__group_send_sig_info(SIGCHLD, …)
__wake_up_parent()

Notify the mmap-tracer
ptrace_notify()
ptrace_stop()

__group_send_sig_info(SIGCHLD, …)
__wake_up_parent()

freezable_schedule()
Frozen

Woken by SIGCHLD,
and get the status of the tracee

syscall-exit-stop

ptrace(PTRACE_GETREGS, tracee,
0, ®s)
Obtain register set of the tracee sys_ptrace()

Put mmap() information into read-log

ptrace(PTRACE_SYSCALL, tracee, 0, 0)
Restart the tracee sys_ptrace() Switch to user mode and resume

ptrace_unlink()
exit()Stop training if the tracee has been

terminated

Send signal info to the mmap-tracer

Woken by SIGCHLD signal

ptrace(PTRACE_SEIZE, tracee, 0,
PTRACE_O_MMAPTRACE)
Attach to the tracee sys_ptrace()

kill(tracee, SIGCONT)
Restart the tracee

Send signal info to the tracee
Resume operation

wait(&status) setenv(“LD_PRELOAD”, “read wrapper”, ..)
Add environment variable

Figure 4: Interactions between the mmap tracer and the
tracee.

which subsequently calls ptrace_stop(); this calls __group_send_
sig_info(SIGCHLD,..), followed by functions __wake_up_parent()
and freezable_schedule().

These calls stop the tracee and send a SIGCHLD signal to the
mmap tracer, which receives the signal from a call to wait()where
a status value showing the cause of the stoppage can be also re-
trieved. While the tracee is stopped, the mmap tracer can make
various requests to ptrace() to inspect and modify the tracee. The
mmap tracer then calls ptrace(PTRACE_SYSCALL,tracee,0,0) to
tell the kernel to stop the tracee whenever it enters or leaves a
system call, and waits until the tracee stops.

After resuming its operation by PTRACE_SYSCALL, the tracee en-
ters the syscall-enter-stop state upon entry to a system call. The
mmap tracer then collects the information about that system call,
and restarts the tracee, again by calling ptrace(PTRACE_SYSCALL,...).
Upon leaving the system call, the tracee enters the syscall-exit-
stop state. This repeated pausing of the tracee at the entry and exit
of every system call may seem to incur a large amount of overhead.
However, since Spidermine does not need to stop the tracee for
system calls other than mmap(), its impact to the system is minimal.

When the mmap tracer invokes PTRACE_SYSCALL to restart the
tracee, the TIF_SYSCALL_TRACE flag is set on the data structure
thread_info of the tracee. If this flag is set, the kernel stops the
tracee and activates the tracer through ptrace_notify(), when
it handles system calls from the tracee. The newly defined option
PTRACE_O_MMAPTRACE ensures that the kernel stops the tracee and
activates the tracer for mmap() system calls only. This small modifi-
cation to the kernel reduces the tracing overhead without affecting
the behavior of any other applications.

1335

Spidermine: Low Overhead User-Level Prefetching SAC’23, March 27 –March 31, 2023, Tallinn, Estonia

When the tracee enters the syscall-enter-stop or syscall-exit-
stop state, themmap tracer is woken and immediately calls ptrace()
again to obtain the data in the registers used by the tracee:

ptrace (PTRACE_GETREGS , tracee , 0 , ®s) ;

where ®s is the address of the user_regs_struct data structure
that receives the contents of these registers. The data in user_regs_
struct allow the tracer to record the mmap() information. After
all mmap() system calls have been processed, the tracer stores the
mmap() information in a “read-log” file for later use by the analyzer.
The operation of the mmap tracer is described in Fig. 4.

3.1.2 Read wrapper: Tracing reads caused by read-related functions.
Preloading is a feature of the Linux dynamic linker on most sys-
tems. It allows the user to specify a shared library to be loaded
before all of the other shared libraries using the environment vari-
able LD_PRELOAD. The mmap tracer adds read_wrapper.so to the
variable when it starts up.

The shared object read_wrapper.so contains customized read()
and fread() codes that trace disk reads requested by the original
read() and fread().When an application calls read() or fread(),
the linker checks all of the preloaded libraries first and then finds
libraries that have been linked to an application. We have therefore
designed these wrapper functions to hook the original ones, so as
to collect information about disk reads.

These wrapper functions eventually call dlsym(), which accepts
the “handle" to a dynamic library returned by dlopen() and a null-
terminated symbol name, and returns the address of that symbol in
memory. If dlsym() is given a special pseudo-handle, RTLD_NEXT,
it finds the next occurrence of a function in the search order after
the current library that actually corresponds to the original read()
or fread() function in libc.so.

Finally, thewrapper functions call the original function in libc.so
by following the address returned by dlsym() and store the size
(ret) of the original read() in the “read-log" file with the time
stamp and function arguments that have already been collected.

3.1.3 Read wrapper: Tracing breakpoint candidates. The read wrap-
per also traces addresses returned by four C library functions
strlen(), memcpy(), memmove(), and strcpy(). We measured the
number of calls for each function in libc.so that were invoked by
our benchmark applications using ltrace, an open-source library
tracing program, and empirically found out that those four func-
tions are most commonly called during application execution (see
Supplemental Material for ltrace results). These return addresses
are considered as candidates for breakpoints, some of which are
later selected for actual breakpoints as discussed later. To trace
these addresses, we constructed wrapper functions of these four
functions. Each wrapper function hooks calls to one of these four
functions, calls the original function in libc.so by following the
address returned by dlsym(), and records their return addresses
into a “candidate-log" file along with the time stamp upon returning.

3.2 Read Analyzer
After the application terminates, the read tracer passes control to
the read analyzer, which detects burst periods on the basis of the
information collected in the learning phase. The way in which the

Algorithm 1 Detection of read bursts
1: function analyze_log(read-, candidate-logs)
2: while is_empty(read-log) ≠ false do
3: read_entry← get_one_entry(read-log)
4: if is_mmap(read_entry) then
5: if is_prot_exec(read_entry) then
6: append_mmap_list(read_entry)
7: end if
8: end if
9: enqueue(read_entry, Q)
10: if is_full(Q) then
11: insert_queue_into_Pgroup(Q, Pgroup)
12: if is_burst(Q) = true then
13: previous_period← BURST
14: else
15: if is_triggered(Pgroup) = false then
16: if set_trigger(Q, candidate-log, mmap_list, Pgroup) = true

then
17: Pgroup.next← new_Pgroup()
18: Pgroup← Pgroup.next
19: end if
20: end if
21: previous_period← IDLE
22: end if
23: reset_queue(Q)
24: end if
25: continue
26: end while
27: end function
28: function is_burst(Q)
29: if (Q.rear.TS - Q.front.TS) < burst_threshold then
30: return true
31: end if
32: return false
33: end function

analyzer detects bursty and continuous disk reads is described in
Algorithm 1, which uses a circular queue to log all disk reads.

3.2.1 Detection of read bursts. The Spidermine analyzer reads the
logs written by the read tracer during the learning phase to deter-
mine when and what to prefetch and to schedule the data to be
prefetched. The read analyzer reads the logs for mmap() and the
read-related functions from the read-log file (using get_one_entry()),
in the ascending order of the time stamp, and inserts them into
a circular queue. Additionally, the analyzer maintains mmap_list
in memory to store the mmap() information collected so far, as
shown in Fig. 3, using append_mmap_list(). When the circular
queue is full, the analyzer calls insert_queue_into_Pgroup().
This is a function that inserts the information on disk read requests
into Pgroup, which is a data structure that tracks all of the meta-
information about a prefetch group, such as the location of the
breakpoint (Pgroup.breakpoint) within the idle period and the
read requests (Pgroup.reads) created in that group during the idle
and burst periods. These information are maintained with a linked
list (see Fig. 5).

Before all the meta-information is copied to Pgroup, adjacent
read requests are merged into a smaller number of larger requests,
followed by sorting with their physical offsets to maximize the
read performance of HDDs (see Section 3.4). After inserting all
the meta-information into Pgroup, the analyzer obtains the differ-
ence between the time stamps at the rear (Q.rear.TS) and front
(Q.front.TS) of the queue to determine the time it took for the
queue to fill up, which is then compared with the predefined thresh-
old burst_threshold to detect a burst period.

1336

SAC’23, March 27 –March 31, 2023, Tallinn, Estonia J. Won et al.

Algorithm 2 Selection of target addresses for breakpoints
1: function append_mmap_list(mmap_entry, mmap_list)
2: mmap_list.tail← mmap_entry
3: mmap_list.tail.next← new_mmap_node()
4: mmap_list.tail← mmap_list.tail.next
5: end function
6: function is_triggerred(Pgroup)
7: if Pgroup.bp_offset = -1 and Pgroup.md = -1 then
8: return false
9: end if
10: return true
11: end function
12: function set_trigger(Q, candidate-log, mmap_list, Pgroup)
13: mmap_node = mmap_list.head
14: while is_empty(candidate-log) ≠ true do
15: bp_entry← get_one_entry_from_candidates()
16: while mmap_node ≠ NULL do
17: mmap_path← mmap_node.path
18: mmap_start_addr← mmap_node.start_addr
19: mmap_end_addr← mmap_node.end_addr
20: candidate_addr← bp_entry.return_addr
21: if (mmap_start_addr ≤ candidate_addr) && (candidate_addr ≤

mmap_end_addr) then
22: Pgroup.md← hash(mmap_path)
23: Pgroup.bp_offset← candidate_addr - mmap_start_addr
24: return true
25: end if
26: mmap_node← mmap_node.next
27: end while
28: end while
29: return false
30: end function

If the difference is less than the threshold, the interval between
these two time stamps is classified as the burst period containing a
sufficiently large number of burst reads (otherwise, it corresponds
to an idle period). Then, the read analyzer correlates that burst
period with a prefetch group, initializes the rear index of the queue
(reset_queue()), and fills read request information from the front
of the queue sequentially. If the queue is full again, the analyzer
appends the information on the queued read requests to the ex-
isting Pgroup, merges and sorts them, and determines whether it
is a burst period. If burst periods are continuously detected, they
are aggregated into a single burst period, and Pgroup is updated
accordingly. In a similar way, if successive idle periods are detected
following the burst period, they are also combined, and Pgroup is
updated accordingly. When a new burst period is detected after that
idle period, a new prefetch group is created using new_Pgroup(),
and the information on read requests is now associated with that
prefetch group.

Repeating these steps results in the creation of successive prefetch
groups, each of which represents a combination of burst and idle
periods, as shown in Fig. 5. We again manage these prefetch groups
with the linked list for processing efficiency.

3.2.2 Determining the target addresses of breakpoints. After the
disk reads have been classified into burst and idle periods, the
read analyzer looks for an address at which a breakpoint can be
inserted in an idle period. This is done by examining the return
addresses of strlen(), memcpy(), memcmp(), and malloc() in the
candidate-log file.

We consider these return addresses in order of increasing dis-
tance from the start of each idle period, as a breakpoint near the
start of an idle period gives the prefetcher a better chance to have

Prefetch group 0

Prefetch group 2

Read request

Burst period Idle period

Return from strlen(), memcpy(), memcmp(), or malloc() Breakpoint

Prefetching

Burst period Idle period

Pgroup1.breakpoint

Pgroup1.reads

Pgroup0.breakpoint

Burst period Idle period

Prefetching

Burst period Idle period

Pgroup1.reads

Pgroup0.breakpoint

Burst period Idle period

Pgroup2.reads

Pgroup2.breakpoint

Prefetching

(a)

(b)

Prefetch group 1

Prefetch group 0 Prefetch group 1 Prefetch group 3

Figure 5: List of prefetch groups for themanagement of break-
points and read requests.

all of the data ready in time. However, to become a breakpoint, a
return address must be unique so that it can be unambiguously
linked with a sequence of disk reads. Thus, calls made during dif-
ferent idle periods that all return to the same address cannot be
used. In particular, when a function is called indirectly through
other library functions, the return addresses of that function could
be the same in many cases regardless of locations from which that
particular function was called.

Algorithm 2 describes how breakpoint target addresses are de-
termined on the basis of these guidelines. When an idle period is
detected, the read analyzer searches the candidate-log file in the
order of time stamp to check the return addresses of four C library
functions, and selects the first found in between Q.front.TS and
Q.rear.TS of the idle period as the breakpoint. Then, the analyzer
passes this return address alongwith the mmap_list as an argument
to the set_trigger() function. The set_trigger() function com-
pares the mapping space of the applications or libraries stored in
the mmap_list with the passed return address to determine the
mapped file and the breakpoint offset (BPO)1 from the base map-
ping address of that file. This information about the breakpoint is
saved into Pgroup.

A prefetch group 𝑖 may be linked back to a breakpoint in a group
that comes earlier than (𝑖 − 1)) if group (𝑖 − 1) contains no suitable
place for a breakpoint (i.e., if no return address is found in the idle pe-
riod), as shown in Fig. 5b. Fig. 6 depicts how a breakpoint is selected
among return addresses, where the return address 0x7f2ede6da845
is selected as the breakpoint. This address falls within a library
that was mapped from 0x7f2ede5c7000 to 0x7f2ede9a3b08. The
BPO, which is 0x113835 in this case, is determined from the base
mapping address of the library.

The analyzer repeats the process of filling the queue, checking for
bursts, and creating prefetch groups for all the logs in the read-log
file. After that, two SI files with suffixes .bp and .pf are generated.
The .bp file contains a pair <MD, BPO>for each breakpoint, where
MD is the message digest, which is the hashed value of a library
path. The .pf file contains entries of MD, BPO, path, file offset,
and length. Here, path, file offset, and length are for the data to be
prefetched at each breakpoint in the .bp file.

1It should be noted that we need to use an offset because mmap() may allocate a
different memory space to a dynamic library each time the application runs.

1337

Spidermine: Low Overhead User-Level Prefetching SAC’23, March 27 –March 31, 2023, Tallinn, Estonia

2035156738, 0

729356101, 0x113845

Not Found

0x7f2ede6ce2d7

0x7f2ede6df8a7

0x4acdb8

Return Address

0x7f2ede6da845

0x7f2ede6dbea0

729356101, 0x7f2ede5c7000 ~ 0x7f2ede9a3b08

387872513, 0x7f2edc698000 ~ 0x7f2edca609a0

387872513, 0x7f2edc698000 ~ 0x7f2edca609a0

…

…

[MD, BP Offset]

.bp File

mmap_list

[MD, Mapping Space]

B
ur

st
 P

er
io

d
0

Id
le

 p
er

io
d

0
B

ur
st

 P
er

io
d

1

…

for Launch

Figure 6: Selection of breakpoint addresses.

3.3 Prefetching Data
The prefetcher loads the application code into memory and inserts
all the breakpoints in the .bp file, including those from run-time
dynamic libraries. The prefetcher then overwrites the opcodes of
instructions in the breakpoints found in the .bp file with 0xCC, and
stores the opcodes that have been replaced. Next, it loads the data
that is required right at the launch, using posix_fadvise(), with
the information from the .pf file. After prefetching, the opcode of
the original instruction is restored, and the application is started
by the prefetcher.

As the application starts running, the prefetcher calls ptrace()
and waits for mmap() to be called to load dynamic library files. The
prefetcher and the application respectively become the tracer and
tracee following the same protocol of Fig. 4. Once the application
and the libraries are loaded into memory, the prefetcher can insert
relevant breakpoints found in the .bp file into the text segment by
adding their offsets to the base mapping address of both the appli-
cation and the libraries. Again the original opcodes are stored and
replaced with 0xCC. Each of these breakpoints, whether in the ap-
plication itself or a library, triggers the creation of a thread that runs
concurrently to prefetch the data associated with that breakpoint,
without interrupting application execution. The original opcode
should be restored as well.

3.4 Read Optimization: Merging and Sorting
Spidermine is designed to improve the efficiency of prefetching pro-
cess by minimizing the number of read requests and reducing disk
search time. This can be done by merging small read requests into
a single large one and reordering those requests by the LBN [17].
Unlike kernel-level prefetchers that can directly receive LBN infor-
mation, a user-level prefetcher Spidermine cannot directly identify
the LBNs of read requests. To get the LBN-related information, the
read tracer instead utilizes fiemap ioctl() that returns file extent
mapping information, where we can also extract the physical offset
from the start of the extent. This physical offset is equivalent to the
LBN for prefetching purposes. The read analyzer subsequently uses
the physical offset for merging and sorting before generating the
.pf file. For SSDs, Spidermine only performs merging, preserving
the original sequence of read logs, due to sorting has little impact
on throughput.

4 PERFORMANCE EVALUATION
We have evaluated Spidermine on a desktop computer with Intel
Core i7-8700 CPU, 32GB of RAM, a Seagate 3.5inch, 2 TB, 7200RPM
HDD, and an Intel 535 Series 250 GB SSD, running Ubuntu 20.04
64-bit Linux, with the EXT4 file-system. For the detection of read
bursts, the number of entries available in the circular queue was 32,
and the value of the threshold burst_threshold was set to 3.0 s,
which was also varied between 0.1 and 7 s to investigate its effect
on launch and loading times.

4.1 Launch and Loading Times
Fig. 7 shows the pattern of the number of requested blocks and the
throughput monitored in the block I/O layer of the Linux kernel
during the execution of two game applications on HDD: Pillars of
Eternity (PoE) and SOMA. In a cold start, no application-related
data is available in the page cache when an application launches.
Conversely, in a warm start, all data already resides in the page
cache. In the cold start scenario of Fig. 7a, there are bursts of reads
with idle periods between them. The first burst is associated with
application launching, during which Spidermine reduces the rate of
requests for blocks, while the throughput increases. This increase
can lead to the merger of adjacent small reads into a smaller number
of larger read requests, which are sorted by their physical offsets
from the beginning of the disk.

Initially, Spidermine increases launching time because two SI
files must be loaded from the disk, breakpoints have to be inserted
into the application code, and data associated with the launch must
be prefetched into the memory, all before starting the application.
During the launching of Firefox and Eclipse, the startup overhead
due to this were 3.7 and 3.1 s respectively. However, by caching
all the launch-related data into the page cache, subsequent inter-
rupts and disk reads can be avoided. Launching is also expedited by
the merging and sorting of reads. Overall, Spidermine reduces the
launch time of Firefox by 54.1%, and that of Eclipse by 42.9%, despite
the startup overhead (see Table 2). In the case of SSD, application ex-
ecution resumes immediately after requesting a prefetching thread,
and therefore there is almost no overhead.

The bursts of reads after the launch are associated with the
loading of additional data. There is an idle period before each burst
which allows a lot of prefetching, as shown in Fig. 7a. In the run of
PoE, Spidermine reduces the number of read requests that occur
between 25 and 48 s (loading 1), and also between 58 and 65 s
(loading 2), thanks to the data availability in the page cache. A
similar pattern can be observed in the run of SOMA, which is
shown in Fig. 7b.

We compared the application launch and loading times of 11
applications in three scenarios: cold start with and without Spi-
dermine, and warm start. The warm start is equivalent to an ideal
prefetching process, which loads all and only the correct blocks in
zero time. Table 2 shows the effect of Spidermine on application
launch and loading times. We see that Spidermine reduces cold start
launch times by between 12.1% (Divinity) and 54.1% (Firefox), and
run-time loading times by between 13.8% (Divinity) and 70.1% (PoE)
on HDD. On SSD, it reduces cold start launch times by between 0.7%
(The Long Dark) and 13.3% (Eclipse), and run-time loading times by
between 4.5% (Divinity) and 47.0% (PoE). On average, Spidermine

1338

SAC’23, March 27 –March 31, 2023, Tallinn, Estonia J. Won et al.

Time (sec)

0

335

670

1005

1340

1675

0 25 50 75 100
0

228

456

684

912

1140

0

335

670

1005

1340

1675

0 25 50 75 100
0

228

456

684

912

1140

[Launch] [Loading 1] [Loading 2]

[Launch] [Loading 1 & 2]

N
um

be
r

of
 b

lo
ck

 r
eq

ue
st

s
fo

r
re

ad
s

pe
r

se
co

nd

Throughput (M
B/s)

<without Spidermine>

Throughput
of block requests for read

<with Spidermine>
Fails to find
a breakpoint

(a) Pillars of Eternity

Time (sec)

N
um

be
r

of
 b

lo
ck

 r
eq

ue
st

s
fo

r
re

ad
s

pe
r

se
co

nd

Throughput (M
B/s)

0

1049

2098

3147

4196

5245

0 25 50 75 100
0

204

408

612

816

1020

0

1049

2098

3147

4196

5245

0 25 50 75 100
0

204

408

612

816

1020

[Launch] [Loading 1] [Loading 2]

[Launch] [Loading 1] [Loading 2]

<without Spidermine>

Throughput
of block requests for read

<with Spidermine>

(b) SOMA

Figure 7: Number of blocks read per second and throughput, observed at the block I/O layer of the Linux kernel in a cold start,
with and without Spidermine, for two sample applications. In (a), the read analyzer fails to find a suitable place for a breakpoint
in the idle period between loading 1 and loading 2, which is similar to the case shown in Fig. 5b.

Table 2: Experimental results on application launch and loading times (averaged over 10 iterations).

Application W (s)
C on

HDD (s)
C𝑇 on
HDD (s)

R on
HDD (%)

O on
HDD (s)

C on
SSD (s)

C𝑇 on
SSD (s)

R on
SSD (%)

O on
SSD (s)

Firefox (launch) 1.1 15.7 7.2 54.1 3.7 1.7 1.6 5.9 0.01
Eclipse (launch) 4.7 23.1 13.2 42.9 3.1 6.0 5.2 13.3 0.02

Only Office (launch) 1.8 18.0 13.8 23.3 1.8 2.6 2.3 11.5 0.01
LOImpress (launch) 1.6 16.9 11.2 33.7 2.5 2.4 2.1 12.5 0.01

Android Studio (launch) 8.1 42.2 34.8 17.5 1.9 9.5 8.5 10.5 0.07
FlightGear (launch) 23.9 37.9 29.7 21.6 4.3 27.1 26.4 2.6 0.02

PoE I (launch) 8.8 13.6 11.3 16.9 3.9 10.1 9.6 5.0 0.02
PoE II (launch) 21.2 39.6 32.5 17.9 2.3 24.3 23.6 2.9 0.02
Divinity (launch) 8.1 17.3 15.2 12.1 0.8 9.4 9.1 3.2 0.01

The Long Dark (launch) 11.1 26.8 22.6 15.7 1.2 13.6 13.5 0.7 0.02
SOMA (launch) 4.1 9.8 7.2 26.5 2.0 5.6 5.4 3.6 0.01

Average reduction on HDD 25.7 Average reduction on SSD 6.5
The Long Dark (loading 1) 5.8 9.2 6.2 32.6 6.8 5.9 13.2

Divinity (loading 1) 8.2 11.6 10.0 13.8 8.9 8.5 4.5
Divinity (loading 2) 8.3 13.9 11.1 20.1 9.5 8.8 7.4
PoE I (loading 1) 5.6 27.8 8.3 70.1 11.7 6.2 47.0
PoE I (loading 2) 3.5 9.4 4.5 52.1 NA 6.2 4.3 30.6 NA
PoE II (loading 1) 7.4 53.5 16.9 68.4 11.2 9.5 15.2
PoE II (loading 2) 6.1 25.8 11.6 55.0 9.4 7.8 17.0
SOMA (loading 1) 6.4 20.2 16.0 20.8 10.4 8.9 14.4
SOMA (loading 2) 9.8 43.3 13.9 67.9 16.2 13.7 15.4

Average reduction on HDD 44.6 Average reduction on SSD 18.3
C: Cold start without Spidermine, C𝑇 : Cold start with Spidermine
W: Warm start, R: Reduction, O: Startup overhead of Spidermine

reduces launch times by 25.7% and loading times by 44.6% on HDD,
and launch times by 6.5% and loading times by 18.3% on SSD, which
are comparable to ClusterFetch [15], a state-of-the-art kernel-level
prefetcher.

4.2 Prefetching Effectiveness
In application launching, it is important for the prefetcher to ef-
ficiently read data that will be requested by the application. In
particular, prefetching is always performed just before the applica-
tion launch and block request patterns hardly vary across different
launches. Fig. 8a and Fig. 8b show access patterns for data blocks
during the launch of FlightGear and Eclipse, both of which indi-
cate that many blocks are requested and access patterns are almost
random. Spidermine reduces the number of block requests and in-
duces the HDD to read sequentially, by optimizing reads through

merging and sorting. Fig. 8e and Fig. 8f show the results of these
optimizations. Here, each point represents the first block number
of a request, and a reduction in the number of points implies the
effectiveness of merging. We can also confirm the effectiveness
of sorting by observing increasing point patterns in Fig. 8e and
Fig. 8f. In Fig. 8f, little data is requested after the launch. However,
in Fig. 8e, data is continuously requested even after the launch,
which is due to the characteristic of FlightGear having a different
background each time it runs.

In application loading, the required data should be prefetched in
a timely manner, and prefetching should not affect the execution
of the application. Spidermine achieves accurate prefetching by
classifying the application period into burst and idle periods and
inserting breakpoints in the idle periods. In addition, Spidermine
creates a separate prefetch thread at the time of prefetching, so as

1339

Spidermine: Low Overhead User-Level Prefetching SAC’23, March 27 –March 31, 2023, Tallinn, Estonia

(a) FlightGear (without Spidermine) (b) Eclipse (without Spidermine) (c) PoE (without Spidermine) (d) SOMA (without Spidermine)

(e) FlightGear (with Spidermine) (f) Eclipse (with Spidermine) (g) PoE (with Spidermine) (h) SOMA (with Spidermine)

Figure 8: Block read patterns observed at the block I/O layer of the Linux kernel in a cold start with and without Spidermine,
for four sample applications. Time is displayed on the horizontal axis and LBN (929523712∼1936914432) on the vertical axis.

not to disturb the execution of the application. Fig. 8c and Fig. 8d
show block access patterns when PoE and SOMA are launched
without Spidermine and run for a certain period of time. These
applications require lots of data during run time and we can observe
that Spidermine successfully performs merging and sorting for the
loading of data in Fig. 8g and Fig. 8h.

4.3 Effect of Burst Detection on Performance
We varied the value of burst_threshold to determine its impact
on launch and loading times. A smaller threshold value would
result in fewer burst periods and more idle periods; whereas a
larger threshold value more burst periods and fewer idle periods.
When burst_threshold is too small, many idle periods incur many
breakpoints, which can be inserted into non-ideal locations. Too
many attempts at prefetching in wrong places lead to increase in
launch and loading times. In the extreme case, there can be no burst
period at all, which means all the data should be prefetched in the
launch. This can severely increase the launch time, as shown in
Fig. 9, the threshold at 0.1 s.

On the contrary, when burst_threshold is too large, it is ex-
pected that prefetching is triggered with just a few breakpoints,
which means that a large amount of data should be prefetched at
each breakpoint. This can also impact prefetching performance
as shown in Fig. 9, where the launch time surges after the thresh-
old at 3 s. It appears that in Fig. 9, 3 s is the optimal choice for
burst_threshold, as it can reduce both launch and loading times
for PoE. This analysis demonstrates how important it is to care-
fully choose an application-specific threshold value. On SSDs, the
performance is much better than HDDs, so the change of loading
times according to the threshold was not large.

4.4 Overhead of the Mmap Tracer
Table 3 shows the number of ptrace_stop(), loading times, and
the overhead resulted from the mmap tracer in the learning phase.
As discussed in Section 3.1.1, PTRACE_O_MMAPTRACE deactivates the

tracing of all system calls except for mmap(). And we are interested
in how much overhead can be reduced by using this option, com-
pared with stopping the tracee for every system call. In Table 3,
PTRACE_O_MMAPTRACE reduces the number of stops of applications
during run time by an average of 99.6%. This means that the mmap
tracer can dramatically reduce the overhead compared with a tradi-
tional method of tracing all system calls, which can be identified
by the loading times in Table 3, where the system call trace shows
the overhead between 2.0–33.8 s, while the mmap trace between
0.3–22.1 s on HDD. On SSDs, the systcall trace has an overhead of
1.5 to 11.3 s while the mmap trace has an overhead of 0.5 to 6.7 s.

5 CONCLUSIONS
Spidermine is a user-level lightweight prefetcher that reduces appli-
cation launch and data loading times. Spidermine identifies bursts of
reads, and uses this information to plan prefetching. It inserts break-
points into idle periods between bursts and these breakpoints trig-
ger the prefetching of corresponding disk blocks into the page cache.
Spidermine does not continuously monitor applications, keeping
CPU overhead low. Furthermore, since Spidermine runs at the user
level, it has no effect on other applications. Experiments on 11
popular benchmark applications showed that launch times were
reduced by between 12.1% and 54.1%, and loading times by between
13.8% and 70.1% on HDD. On SSD, Spidermine can reduce the time
for launch by up to 13.3%, and for run-time data-loading by up to
47.0 on SSD.

ACKNOWLEDGMENTS
This work was partly supported by the IITP grant (No. RS-2022-
00155885, AI Convergence Innovation Human Resources Devel-
opment (Hanyang University ERICA)) and the National Research
Foundation of Korea (NRF) grant funded by the Korean government
(MSIT) (No. NRF-2022R1F1A1074505).

1340

SAC’23, March 27 –March 31, 2023, Tallinn, Estonia J. Won et al.

Table 3: Experimental results for tracing overhead in learning phase (averaged over 10 iterations).

Application
Number of ptrace_stop() Loading Times (HDD / SSD) Overhead (HDD / SSD)

syscall
trace

mmap()
trace

Reduction
(%)

Cold
start (s)

syscall
trace (s)

mmap()
trace (s)

syscall
trace (s)

mmap()
trace (s)

Reduction
(%)

Firefox (launch) 1410105 4469 99.7 15.7 / 1.7 23.1 / 3.5 16.8 / 2.3 7.4 / 1.8 1.1 / 0.6 85.1 / 66.7
Eclipse (launch) 1953041 8134 99.6 23.1 / 6.0 35.5 / 9.9 25.5 / 7.6 12.4 / 3.9 2.4 / 1.6 80.6 / 59.0

ONLYOFFICE (launch) 965079 7526 99.2 18.0 / 2.6 21.8 / 4.5 18.7 / 3.3 3.8 / 1.9 0.7 / 0.7 81.6 / 63.2
LibreOffice (launch) 161742 4534 97.2 16.9 / 2.4 19.6 / 4.4 17.2 / 3.1 2.7 / 2.0 0.3 / 0.7 88.9 / 65.0

Android Studio (launch) 1337971 5304 99.6 42.2 / 9.5 49.1 / 11.3 45.9 / 10.4 6.9 / 1.8 3.7 / 0.9 46.4 / 50.0
FlightGear (launch) 11765399 2112 100.0 37.9 / 27.1 71.7 / 32.6 41.4 / 29.7 33.8 / 5.5 3.5 / 2.6 89.6 / 52.7

PoE (launch) 468127 3812 99.2 13.6 / 10.1 17.7 / 14.5 14.3 / 11.7 4.1 / 4.4 0.7 / 1.6 82.9 / 63.6
PoE II (launch) 990225 2388 99.8 39.6 / 24.3 43.3 / 30.1 40.3 / 26.9 3.7 / 5.8 0.7 / 2.6 81.1 / 55.2
Divinity (launch) 1454234 20706 98.6 17.3 / 9.4 31.0 / 13.3 27.2 / 10.7 13.7 / 3.9 9.9 / 1.3 27.7 / 66.7

The Long Dark (launch) 3598943 2150 99.9 26.8 / 13.6 38.7 / 17.7 28.2 / 15.1 11.9 / 4.1 1.4 / 1.5 88.2 / 63.4
SOMA (launch) 1272126 1739 99.9 9.8 / 5.6 31.6 / 16.9 27.3 / 12.3 21.8 / 11.3 17.5 / 6.7 19.7 / 40.7

The Long Dark (loading 1) 1341209 68 100.0 9.2 / 6.8 11.4 / 13.2 9.7 / 9.9 2.2 / 6.4 0.5 / 3.1 77.3 / 51.6
Divinity (loading 1) 2731323 23702 99.1 11.6 / 8.9 38.7 / 16.1 33.7 / 13.8 27.1 / 7.2 22.1 / 4.9 18.5 / 31.9
Divinity (loading 2) 1570339 15144 99.0 13.9 / 9.5 22.4 / 14.3 18.6 / 11.5 8.5 / 4.8 4.7 / 2.0 44.7 / 58.3
PoE I (loading 1) 833806 1629 99.8 27.8 / 11.7 31.3 / 13.2 29.8 / 12.2 3.5 / 1.5 2.0 / 0.5 42.9 / 66.7
PoE I (loading 2) 416152 993 99.8 9.4 / 6.2 11.4 / 8.1 10.0 / 7.1 2.0 / 1.9 0.6 / 0.9 70.0 / 52.6
PoE II (loading 1) 1837807 184 100.0 53.5 / 11.2 69.0 / 19.3 57.8 / 13.9 15.5 / 8.1 4.3 / 2.7 72.3 / 66.7
PoE II (loading 2) 1586749 108 100.0 25.8 / 9.4 35.3 / 15.2 28.5 / 11.1 9.5 / 5.8 2.7 / 1.7 71.6 / 70.7
SOMA (loading 1) 2877912 3814 99.9 20.2 / 10.4 33.2 / 18.7 29.9 / 15.4 13.0 / 8.3 9.7 / 5.0 25.4 / 39.8
SOMA (loading 2) 3958141 4299 99.9 43.3 / 16.2 50.1 / 21.8 47.6 / 19.1 6.8 / 5.6 4.3 / 2.9 36.8 / 48.2

Average reduction 99.6 Average reduction 61.6 / 56.6

(a) HDD (b) SSD

Figure 9: Launch and loading times for varying values of burst_threshold during PoE run.
REFERENCES
[1] A. Bovenzi, J. Alonso, H. Yamada, S. Russo, and K. S. Trivedi. 2013. Towards fast

OS rejuvenation: an experimental evaluation of fast OS reboot techniques. In
in Proc. 24th IEEE International Symposium on Software Reliability Engineering.
61–70.

[2] A. D. Brown, T. C. Mowry, and O. Krieger. 2001. Compiler-based I/O prefetching
for out-of-core applications. ACM Transactions on Computer Systems 19, 2 (May
2001), 111–170.

[3] X. Ding, S. Jiang, F. Chen, K. Davis, and X. Zhang. 2004. DiskSeen: Exploiting
disk layout and access history to enhance I/O prefetch. In in Proc. USENIX 2004
Annual Technical Conference. 173–186.

[4] B. Esfahbod. 2006. Preload—An Adaptive Prefetching Daemon. Master’s thesis.
University of Toronto, Canada.

[5] B. Hubert. 2005. On faster application startup times: cache stuffing, seek profiling,
adaptive preloading. In in Proc. Ottawa Linux Symposium. 245–248.

[6] S. Jiang, X. Ding, Y. Xu, and K. Davis. 2013. A prefetching scheme exploiting
both data layout and access history on disk. ACM Transactions on Storage 9, 3,
Article 10 (August 2013).

[7] Y. Joo, J. Ryu, S. Park, and K. G. Shin. 2011. FAST: quick application launch on solid-
state drives. In in Proc. 9th USENIX Conference on File and Storage Technologies
(FAST). 259–272.

[8] H. Kim, N. Agrawal, and C. Ungureanu. 2012. Revisiting storage for smartphones.
In in Proc. 10th USENIX Conference on File and Storage Technologies (FAST). 209–
222.

[9] T. M. Kroeger and D. D. E. Long. 1996. Predicting file system actions from prior
events. In in Proc. USENIX 1996 Annual Technical Conference. 319–328.

[10] T. M. Kroeger and D. D. E. Long. 2001. Design and implementation of a predictive
file prefetching algorithm. In in Proc. USENIX 2001 Annual Technical Conference.
105–118.

[11] H. Lei and D. Duchamp. 1997. An analytical approach to file prefetching. In in
Proc. USENIX 1997 Annual Technical Conference. 275–288.

[12] Z. Li, Z. Chen, S. M. Srinivasan, and Y. Zhou. 2004. C-Miner: Mining block
correlations in storage systems. In in Proc. 3rd USENIX Conference on File and
Storage Technologies. 173–186.

[13] K. Lichota. 2007. Prefetch: Linux solution for prefetching necessary data during
application and system startup. https://code.google.com/p/prefetch/

[14] A. Parate, M. Bőhmer, D. Chu, D. Ganesan, and B. Marlin. 2013. Practical predic-
tion and prefetch for faster access to applications on mobile phones. In in Proc.
2013 ACM International Joint Conference on Pervasive and Ubiquitous Computing.
275–284.

[15] J. Ryu, D. Lee, K. G. Shin, and K. Kang. 2018. ClusterFetch: A lightweight
prefetcher for intensive disk reads. IEEE Trans. Comput. 67, 2 (September 2018),
284–290. https://doi.org/10.1109/TC.2017.2748939

[16] J. Schindler, J. L. Griffin, C. R. Lumb, and G. R. Ganger. 2002. Track-aligned
extents: Matching access patterns to disk drive characteristics. In in Proc. 1st
USENIX Conference on File and Storage Technologies. 259–274.

[17] V. Tarasov, G Sim, A Povzner, and E Zadok. 2012. Efficient I/O scheduling with
accurately estimated disk drive latencies. In in Proc. 8th annual workshop on
Operating Systems Platforms for Embedded Real-Time. 36–45.

[18] Steve VanDeBogart, Christopher Frost, and Eddie Kohler. 2009. Reducing seek
overhead with application-directed prefetching. In Proceedings of the 2009 Con-
ference on USENIX Annual Technical Conference. 299–312.

[19] J. Won, O. Kwon, J. Ryu, J. Hur, I. Lee, and K. Kang. 2017. A Breakpoint-based
Prefetcher for BothLaunch and Run-time. In in Proc. IEEE International Conference
on Systems, Man, and Cybernetics (SMC). 2766–2771.

[20] T. Yan, D. Chu, D. Ganesan, A. Kansal, and J. Liu. 2012. Fast app launching
for mobile devices using predictive user context. In in Proc. 10th International
Conference on Mobile Systems, Applications, and Services. 113–126.

1341

https://code.google.com/p/prefetch/
https://doi.org/10.1109/TC.2017.2748939

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: none
 Normalise (advanced option): 'original'

 32

 D:20120516081844
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 320
 None
 Up
 0.0000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 10
 9
 10

 1

 HistoryList_V1
 qi2base

