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Medical imaging has been widely used to diagnose various disorders over the past 20 years. Primary chal-
lenges in medicine include accurate disease identification and improved therapies. It is challenging for
the medical experts to diagnose diseases using a single imaging modality. The fusion of two or more
images obtained from different imaging modalities is known as multi modal image fusion (MMIF).The
fused image contains complementary information for all the input images. The main objective of
MMIF is to obtain complementary information (structural and spectral) from input images to improve
the quality and clear assessment of medical related problems. The aim of fusion process is not only to
reduced the amount of data but construct image having more useful and complementary information
which are understandable for human and computer. This review provides a detailed overview of: (i) med-
ical imaging modalities, (ii) multimodal medical image databases, (iii) MMIF steps/rules, (iv) MMIF meth-
ods, (v) modalities integration, (vi) performance evaluation and empirical results, (vii) current modalities
strengths and limitations, and (viii) future directions. This review is expected to be useful in establishing
a solid foundation for the development of more valuable medical image fusion methods for clinical diag-
nosis. This review presented the detailed studies on the multimodal databases, research trends in imag-
ing modality grouping, and fusion steps which are the critical areas in MMIF. Furthermore, current
challenges and future directions are thoroughly discussed.
� 2023 The Authors. Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Medical images acquired using different modalities are widely
used in medical applications for clinical diagnosis. However,
single-mode images generally fail to provide functional and
anatomical information. Therefore, the image fusion process com-
bines the complementary information from various imaging
modalities that are reliable for clinical purposes. Imaging modali-
ties, such as the magnetic resonance imaging (MRI), computed
tomography (CT), positron emission tomography (PET), X-rays,
ultrasound (US), and photon emission computed tomography
(SPECT) are used for clinical diagnosis and provide information
on soft tissues, blood flow, lesion location, and level. Different
imaging modalities provide different information on the same
organs of the body. Multimodal Medical Image Fusion (MMIF) is
crucial in disease diagnosis because it provides functional and
structural information about the same organs in the body
(Rajalingam and Priya, 2018). The fused image should fulfill the fol-
lowing conditions: (a) it should retain the complementary/detail
information of the input images, (b) it should not have artifacts,
such as scratches or dots, and (c) it should not have noise and reg-
istration issues (James and Dasarathy, 2014). Various studies have
indicated the importance of MMIF research. Fig. 1 illustrates the
annual publication results of the MMIF, which were obtained from
the Web of Science (WoS), a platform that provides access to
numerous databases across multiple academic fields.
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Various surveys and review articles have summarized the MMIF
techniques and classifications (Faragallah et al., 2020; Kaur et al.,
2021). Numerous MMIF issues are covered in (Faragallah et al.,
2020; Kaur et al., 2021; Huang et al., 2020), wherein an overview
of the MMIF techniques, modalities, and performance analysis is
presented. However, detailed studies on the multimodal databases,
research trends in imaging modality grouping, and fusion steps are
lacking. Furthermore, current challenges and future directions
have not been thoroughly discussed. The MMIF steps, fusion tech-
niques, and image quality metrics are thoroughly described in (Du
et al., 2016); however, this study only provides information on
multimodal databases and focuses solely on the (AANLIB) Harvard
medical dataset. The classification of medical image registration
was presented in (El-Gamal et al., 2016); wherein the MMIF and
recent disorders based on the fusion efforts are highlighted. The
region-based image fusion methods are described in (Meher
et al., 2019); however, the images in this review are from a variety
of sources, including multimodal medical images, multi focus
images, and infrared rays. A detail review was presented in
(Bhosale and Patnaik, 2023) about deep machine learning tech-
niques. This study focuses on DL techniques used for Covid-19
detection systems. This review also discusses different modalities
with details analysis. However, this study MMIF techniques,
modalities grouping and fusion steps are lacking. Table 1 compares
this study with a recent state-of-the-art literature review. The
specific contributions of this study are as follows:
94
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Table 1
Comparison of the recent MMIF reviews of the literature.

Review work
(year of
publication)

Presented multimodal
Imaging modalities
sources and methods

Presented
MMIF
techniques

Quantitative
comparison of
MMIF
techniques

Qualitative
comparison of
MMIF
techniques

Presented
publically
available
databases

Fusion
Steps

Ways of
Modalities
Combination for
Image Fusion

Presented
performance
analysis of MMIF
techniques

Rajalingam, B
(Rajalingam
and Priya,
2018)
2018

p p
ᵡ ᵡ ᵡ ᵡ ᵡ ᵡ

Dolly, J. M
(Dolly and
Nisa, 2019)
2019

p p
ᵡ ᵡ ᵡ ᵡ ᵡ ᵡ

Huang, B
(Huang
et al., 2020)
2020

ᵡ
p p p

ᵡ ᵡ
p p

Tirupal, B
(Tirupal
et al., 2021)
2020

p p p p
ᵡ

p
ᵡ

p

Hermessi, H
(Hermessi
et al., 2021)
2021

p p p p
ᵡ

p
ᵡ

p

Sebastian, J
(Sebastian
and King,
2021)
2021

p p
ᵡ ᵡ ᵡ ᵡ ᵡ ᵡ

Diwakar, M
(Meher et al.,
2019)
2021

ᵡ
p p p

ᵡ
p

ᵡ
p

Our work
p p p p p p p p

Fig. 2. Energy sources used in medical modalities.
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i. The medical imaging modalities, sources of generation, and
methods, as shown in Figs. 2 and 3and Table 2.

ii. Comparisons of publicly available online multimodal medi-
cal databases and their use in research over the last five
years, as shown in Figs. 4 and 5 and Table 3.

iii. Steps used in MMIF, as shown in Fig. 6.
iv. The MMIF techniques in the spatial domain, frequency

domain, deep learning, Fuzzy set, sparse representation,
and hybrid-based domain, along with their merits and
demerits, as shown in Figs. 7–15 and Tables 4 and 5.

v. Different combination of the MMIF, as shown in Fig. 16.
vi. The fusion quality assessment metrics, as illustrated in

Tables 6 and 7, and performance analysis of the MMIF tech-
niques using standard datasets, as shown in Figs. 17 and 18
and Table 8.

vii. Current challenges and future directions.

Table 1 shows the prominent reviews articles covered MMIF
techniques, modalities, and performance analysis. However,
3

detailed studies on the multimodal databases, research trends in
imaging modality grouping, and fusion steps are lacking. Further-
more, current challenges and future directions have not been thor-
oughly discussed.

The rest of the paper is organized as follows.
Section 2 provides a detailed explanation of the medical imag-

ing modalities. The freely available online multimodal medical
databases are discussed in Section 3. The MMIF steps are described
in Section 4, and Section 5 describes the MMIF methods in detail.
Section 6 illustrates the multimodal medical imaging integration/-
combination. Section 7 presents the quality assessment metrics
and performance analysis of the MMIF techniques using the same
standard database. Section 8 discusses the current challenges and
future directions, and Section 9 concludes the review.
2. Medical imaging modalities

Each medical imaging modality has its own information, char-
acteristics, frequencies, and wavelength (Singh et al., 2012). Elec-
tromagnetic (EM) waves are randomly scattered, reflected, or
absorbed by an object when striking it. The magnetic field pro-
duced by the MRIs causes the protons of the body to align. The
high-frequency range of X-ray and CT imaging methods, of the
order of 3 � 1016 – 3 � 1019, renders them extremely radiative
and detrimental to human health. On the contrary, the Gamma
rays used in the PET and SPECT to detect bioactivity in human
organs have higher frequency and less wavelength. The CT, PET,
and X-rays are ionization-based, whereas the US and MRI are non-
ionization-based (Andreu-Perez et al., 2015). Furthermore, each
modality has a unique image acquisition process. The X-ray, CT,
and US use internal sources for image acquisition, whereas the
PET, SPECT, and EMG use external sources. Some modalities



Fig. 3. Detail organization of multimodal medical imaging.
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employ hybrid approaches. Fig. 2 depicts the energy sources for
medical imaging modalities.

Similarly, invasive and non-invasive techniques are used inmedi-
cal imaging. Invasive procedures involve injecting an object into the
body through an incision or needle injection, whereas non-invasive
techniques use radiation, as shown in Table 3.

Each medical imaging modality uses different mechanisms to
obtain information, such as radio waves, ionization, and gamma
rays. Other techniques include microscopy, visible-light, and mul-
timodal imaging. Fig. 3 shows the detailed organization of medical
imaging modalities.
3. Multimodal medical imaging databases

Before delving into MMIF techniques, it is important to under-
stand the multimodal medical image databases and datasets. These
databases contain multidirectional medical images acquired from
the same patient using different modalities, and are publicly avail-
able. Although numerous multimodal medical image databases are
available, this study focused on the following six free databases
containing thousands of multidirectional medical images acquired
using different modalities: The Cancer Imaging Archive (TCIA),
Open Access Series of Imaging Studies (OASIS), Alzheimer’s Disease
Neuroimaging Initiative (ADNI), Whole Brain Atlas (AANLIB),
Michigan Institute of Data Science (MIDAS), and Digital Database
for Screening Mammography (DDSM). There are other freely acces-
sible online medical imaging databases; however, these databases
contain medical images of various organs affected by different dis-
eases. Moreover, medical images can have different formats.
Table 3 illustrates the multimodal medical image databases,
modality types, body organs, and medical image classifications.
Brief introductions to each database are provided below.
3.1. TCIA

TCIA is a cancer image archive. It contains medical images of 22
modalities acquired in the same and different time spans of various
organs, and is publicly available. Most of the images are of the
4

chest, brain, and breast organs,witha total of almost 54 different
organs (TCIA, 2022). DICOM is the image file format.

3.2. OASIS

It is publicly available neuroimaging dataset containing medical
images of five different projects: OAIS-1, OAIS-2, OAIS-3, OAIS-
3_TAU, and OAIS-4. OAIS-1 contains416 subjects with 434 sessions,
OAIS-2 contains 150 subjects with 373 sessions, and so on. These
datasets include both men and women aged 18–96 (Azam et al.,
2020). Similarly, the OAIS includes 1379 subjects with 2842 MR
Sessions, 2157 PET sessions, and 1472 CT sessions. It also contains
the medical images of patients with and without the Alzheimer’s
disease.

3.3. ADNI

This database contains publicly available medical images of the
Alzheimer’s disease. Positron emission tomography (PET) and mag-
netic resonance imaging (MRI) of different body organs are avail-
able, and researchers have used these images to test and validate
their algorithms (ADNI).

3.4. The whole brain Atlas (AANLIB)

It is a public brain image database provided by the Harvard
Medical School. It contains both normal and anomalous brain
images. It contains 100 normal brain structures in 2D and 3D for-
mats and images of diseases, such as neoplastic, cerebrovascular,
infectious, and degenerative disease (Ramlal et al., 2018; Yang
et al., 2016). All the medical images were available in the GIF file
format.

3.5. MIDAS

The database contains numerous medical images of various
organs. Some are not publicly available, but may be requested
(Torrado-Carvajal et al., 2016). All images are in the DICOM and
GIF formats.



Table2
Extensively used biomedical imaging modalities comparison.

MMIF imaging
modalities

Abbreviation Method Attributes

MRI Magnetic Resonance Imaging Non-
Invasive

Shows anatomical information such as soft tissues, blood flow, Identify brain tumors, dementia and stroke
Can’t show metabolic information like cancer cell (MITA; Victor and Victor, 2014)

PET Positron Emission
Tomography

Invasive Shows biochemical changes in pseudo color
Shows information about cancer cell (MITA)

CT Computed Tomography Non-
Invasive

Diagnose bone tumors, fractures, bone disorder, bleeding, stroke etc.
Can’t show anatomical structures such soft tissues (Andreu-Perez et al., 2015; Du et al., 2016; F. El-Gamal
et al., 2016; F. E. Z. A. El-Gamal et al., 2016; Faragallah et al., 2020; Hermessi et al., 2021; Huang et al.,
2020; Kaur et al., 2021; Meher et al., 2019; Sebastian and King, 2021; Singh et al., 2012; Tirupal et al.,
2021; Dolly and Nisa, 2019; MITA; Victor and Victor, 2014)

X-rays X-Radiation Non-
Invasive

Provide anatomical structure such as bone crakes, abnormality etc. (Andreu-Perez et al., 2015; Du et al.,
2016; F. El-Gamal et al., 2016; F. E. Z. A. El-Gamal et al., 2016; Faragallah et al., 2020; Haidekker, 2013;
Hermessi et al., 2021; Huang et al., 2020; James and Dasarathy, 2014; Kaur et al., 2021; Meher et al., 2019;
Rajalingam and Priya, 2018; Sebastian and King, 2021; Singh et al., 2012; Tirupal et al., 2021; Dolly and
Nisa, 2019; MITA; Victor and Victor, 2014)

SPECT Single Photon Emission
Computed Tomography

Invasive Diagnose altered blood flow in the brain
Information about vascular brain disorders, like moyamoya, Seizure disorders etc.

US Ultrasound Non-
Invasive

Provide information of inside body using sound waves
Also show information of blood flow in vessels (Andreu-Perez et al., 2015; Du et al., 2016; F. El-Gamal
et al., 2016; F. E. Z. A. El-Gamal et al., 2016; Faragallah et al., 2020; Hermessi et al., 2021; Huang et al.,
2020; Kaur et al., 2021; Meher et al., 2019; Sebastian and King, 2021; Singh et al., 2012; Tirupal et al.,
2021; Dolly and Nisa, 2019; MITA; Victor and Victor, 2014)

Endoscopy – Invasive Use of camera to show inside body structure
Like examine stomach (O’Mahony et al., 2008)

2%

75%

0%
2%

19%

2%

Multimodal Databases Distribusion

OASIS

AANLIB

MIDAS

TCIA

ADNI

DDSM

Fig. 4. Frequency distribution of medical image databases.

Fig. 5. AANLIB (online free database) (AANLIB, 2020) (a) transaxial, sagittal, and
coronal 3D MR brain images,(b) SPECT images with Tumor slice (Khan et al., 2013).

S. Ullah Khan, M. Ahmad Khan, M. Azhar et al. Journal of King Saud University – Computer and Information Sciences 35 (2023) 101733
3.6. DDSM

It contains mammographic images, and is typically used by sci-
entists for mammographic image analysis. It contains images of
cases and volumes. A total of 2630 cases are available in 43 vol-
umes (4 views mammography exams). The image file format is
16-bit PGM.

Fig. 4 depicts the use of multimodal databases with the medical
image fusion mechanism. The results were obtained from the WoS
for the period 2010–2022. Fig. 5 shows the sample images from the
Harvard Medical School database (AANLIB).
4. Medical image fusion steps

Image fusion is the process of combining two or more images
acquired from the same or different modalities to obtain comple-
mentary information of all the images [29–5]. Image fusion rules
play an important role in obtaining complementary information
from the input images. PET and SPECT are high spatial resolution
pseudo-color images, which provide information about soft tissues,
blood flow, and metabolism changes in the organs, whereas the
MRI, US, CT are low spatial resolution grayscale images, which pro-
vide anatomical structure/information of the organs.
5

In the MMIF processes, focus must be on the following points:

a. Body organ of interest (such as breast, chest, and brain)
b. Two or more imaging modalities (PET/MRI or MRI/CT)
c. Fusion methods (transform, deep learning, hybrids)
d. Fusion steps/rules

After the fusion process, the final image should not contain: (a)
synthetic information, (b) artifacts, such as scratches and dots, or
(c) noise or registration issues. Images acquired from the different
modalities and same modality with different energy levels may be
fused. Fig. 6 shows a graphical representation of the MMIF steps.

The input images are first decomposed to obtain their coeffi-
cients using the proper fusion rules. To process the wavelet coeffi-
cients, it is important to apply suitable decomposition scales and



Table 3
Multimodal medical image databases.

Database& Online
Availability

Modalities Types Body Organ’s Medical Image Classification & File Format

TCIA
2015

X-rays, MRI, CT, PET,
SPECT, Colon etc.

Chest, Brain, Breast, lungs,
neck, heart, kidney

Consists of 22 modalities with 54 different organ’s and clinical trail’s
Medical images for normal and different disease of body organ’s
DICOM file format

OASIS
2010

PET, MRI Brain Contains 3059 subjects with MR sessions, 471 PET sessions, and 1472 CT sessions
Images in combination of normal, mild, moderate and severe Alzheimer’s
DICOM file format but can be converted to NIFTI or NRRD format (xxxx; xxxx)

ADNI
2003

PET, MRI, fMRI Brain Consists of PET and MRI images for Alzheimer’s detection
CSV files format

AANLIB
1995

PET, MRI, CT, SPECT Brain 2D and 3D brain images with normal, Neoplastic disease, Cerebrovascular,
Infection disease, and Degenerative disease
GIF file format

MIDAS
2010

PET, MRI, CT, US, SPECT
etc.

Liver, Heart, Brain, Head, Bones Contains different modalities medical images acquired at different time spam
DICOM and GIF file format

DDSM
1999

X-rays Breast Contains 2630 normal and early cancer images with 42–50 lm of resolutions
PGN file format

Fig. 6. MMIF image fusion process.
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wavelet families. A few scale selections cause loss of image infor-
mation, whereas too many scale selections cause image blurriness.
Two requirements must be met throughout the image fusion pro-
cess: (1) the fused image must have all relevant medical informa-
tion that was present in the input images, and (2) it must not
contain any new information that was not present in the input
images. The researcher determines the body organ of interest first
in the multimodal fusion process. Second, choose two or more
imaging modalities to fuse using the suitable image fusion method.
The fusion algorithm must be validated using performance mea-
sures. Subsequently, inverse action is applied to obtain the final
fused image (Andreu-Perez et al., 2015; Azam et al., 2020; Du
et al., 2016; F. El-Gamal et al., 2016; F. E. Z. A. El-Gamal et al.,
2016; Haidekker, 2013; Heba et al., 2017; Hermessi et al., 2021;
Huang et al., 2020; Khan et al., 2013; Meher et al., 2019;
O’Mahony et al., 2008; Ramlal et al., 2018; Sebastian and King,
2021; Singh et al., 2012; Tirupal et al., 2021; Torrado-Carvajal
et al., 2016; Yang et al., 2016; AANLIB; ADNI; Dolly and Nisa,
2019; MITA; TCIA, 2022; Victor and Victor, 2014; xxxx). These
steps/rules are applied to obtain complementary information and
features to simplify the clinical diagnosis. Image fusion approaches
are classified into three types: pixel-level, feature-level, and
6

decision-level. Pixel-level image fusion entails directly combining
the original information from the source images or their multi-
resolution transformations to produce a final image that is more
informative for visual perception. The purpose of feature-level
fusion is to extract significant attributes from the original image
such as form, length, edges, segments, and orientations. The qual-
ities extracted from the input photographs are combined to form
more significant features, resulting in more descriptive and thor-
ough images. A high level of fusion that identifies the true target
is referred to as decision-level fusion. It integrates the results of
several algorithms to get a final fusion judgment.

Some of the image fusion rules discussed in this study are the
principal component analysis (PCA) (Reena Benjamin and
Jayasree, 2018), visualization based fusion rules (Tirupal et al.,
2019); IFS based cosine similarity (Liu et al., 2018), and consistency
verification (Tirupal et al., 2019; Liu et al., 2018; Yang et al., 2014).

4.1. PCA

It is frequently used in the image fusion process to highlight the
silent details in the input images. This is used to calculate the
weights of the coefficients using the following equations:



Fig. 7. Classification of MMIF methods.

Fig. 8. MMIF using IHS.

Fig. 9. MMIF methods in spatial domain.
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7

1) Suppose input modalities coefficients are W1 and W2

W1 ¼
z11
z12
z1n

2
64

3
75W2 ¼

z21
z22
z2n

2
64

3
75 ð1Þ

2) Covariance matrix measurements

CVN W1;W2
� �

¼ E½ W1 � l1

� �
W2 � l2

� �
� ð2Þ

where E denotes expectation vector and l1;l2 are the coefficients,
which can be calculated using Equations (3) and (4).

l1 ¼ 1
n

Xn
a¼1

Z1
i ð3Þ

l2 ¼ 1
n

Xn
a¼1

Z2
i ð4Þ

Then, the eigen vectors (VCc) and eigen values (Edv) are calcu-
lated using Equation (5).

VCcEdv½ � ¼ eigðCVNÞ ð5Þ
VCc is calculated to obtain normalized weights as:



0 0 1 1 0 0

4 5 4
2 3

10

3 4

12 13
15

17 17 17

11

19 20

0

5

10

15

20

25

Spatial Domain MMIF Yearly Publicaitons Result
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Fig. 11. MMIF structure using transform domain.
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Fig. 12. MMIF publications in Frequency domain [WoS 2000–2022].

S. Ullah Khan, M. Ahmad Khan, M. Azhar et al. Journal of King Saud University – Computer and Information Sciences 35 (2023) 101733
Ri1 ¼ VCcð1ÞPP
VCc

; Ri2 ¼ VCcð2ÞPP
VCc

ð6Þ

Subsequently, the fused coefficient can be calculated as:

WF ¼ W1 �Wi1 þW2 �Wi2 ð7Þ
4.2. Visualization based fusion rules

This is used to enhance the contrast of the fused images. This
was calculated by subtracting the grey scale values of the image
8

block from the mean values of the block. Contrast visibility (CV)
is the best example of visualization-based fusion. This can be sta-
ted as:
CV ¼ 1
E� F

X
ðe;f Þ2Bk

jf ðe; f Þ � lkj
lk

ð8Þ
where Bk is the block dimensionality and lk; j and E � F are mean.



Fig. 13. MMIF structure using SR domain.
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4.3. IFS based cosine similarity

It is used to improve the features of the fused image by calculat-
ing the cosine similarity of the input images. This can be calculated
as (Haribabu et al., 2023):
CSIFS G;Hð Þ1
n

Xn

j¼1

lG Cj
� �

lH Cj
� �þ VGðCjÞVHðCjÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l2
G Cj
� �þ V2

GðCjÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2

H Cj
� �þ V2

HðCjÞ
qr ð9Þ
4.4. Consistency verification

This is a fusion rule used to reduce errors/incorrect pixel values.
A window size of 7X7 was applied to generate a newmapping win-
dow for decision-making purposes.
9

5. Multimodal image fusion techniaues

This section provides an in-depth overview of MMIF methods,
focusing on six dimensions. Fig. 7 depicts the MMIF technique clas-
sification along with the most familiar methods.

i. Spatial domain
ii. Frequency domain (Transform and Pyramid)
iii. Fuzzy set domain
iv. Deep learning domain
v. Sparse representation, and
vi. Hybrid domain

Three types of operations were performed using all the MMIF
methods (Meher et al., 2019; Narsaiah et al., 2018).

i. Pixel level: based on the pixel combinations of all the images



Table 4
MMIF methods classification.

Research Studies and
publication year

Fusion Domain Modalities Combination MMIF Methods Database

R. Stokking et al. (Stokking et al.,
2001)
2001

Spatial SPECT/MRI HSV AANLIB

C. He et al. (He et al., 2010)
2010

PET/MRI IHS - PCA AANLIB

R. Bashir et al. (Bashir et al.,
2019)
2019

CT/X-ray/MRI/SPECT SWT - PCA AANLIB

Z. Fu et al. (Fu et al., 2020)
2020

MRI/CT Gradient Filtering AANLIB

Y. Yang et al. (Yang et al., 2010)
2010

Frequency MRI/CT Coefficients processing using visibility and
variance based schemes

AANLIB

S. Das, & M.K. Kundu (Das and
Kundu, 2013)
2013

CT/MRI, T1_W_MR/MRA, FDG_PET/MR NSCT-RPCNN AANLIB

B.R. Kumar (Kumar, 2014)
2013

CT/MRI, MRI T1/T2 NSCT AANLIB

P. SGomathi&B. Kalaavathi
(Gomathi and Kalaavathi,
2014)
2014

MRI/SPECT, CT/MRI Redundant Wavelet Transform –
Maximum selection rules

AANLIB

G. Yang et al. (Yang et al., 2015)
2015

CT/MRI, MRI/PET, and MRI/SPECT NSCT-Generalized Gaussian Density AANLIB

M. Yin et al. (Singh et al., 2015)
2018

CT/PET/MRI NSST-PAPCNN ADNI

M. Arif, &G. Wang (Arif and
Wang, 2020)
2019

MRI/MRA FCT via Genetic Algorithm AANLIB

S. Polinati, &R. Dhuli (Polinati
and Dhuli, 2020)
2020

SPECT/MRI/PET Empirical Wavelet Decomposition AANLIB

Q. Hu et al. (Hu et al., 2020)
2020

MRI/CT NSCT-Gabor filtering along with
dictionary learning

AANLIB

K. T. Atanasov (Atanassov, 1994)
1986

Fuzzy Set MRI/CT IFS AANLIB

W. Z. Ismail, &K. S. Sim (Ismail
and Sim, 2011)
2011

MRI/CT Contrast Enhancement Dynamic
Histogram Equalization

ADNI

Sanjay AR et al. (Sanjay et al.,
2017)
2017

CT/MRI-T2, MRI-FLAIR Discrete Wavelet Transform and Type-2
Fuzzy Logic

AANLIB/ADNI

Aysha S, Tirupal T. (Aysha)
2016

MRI/CT yager’s intuitionistic fuzzy sets image fusion
toolbox (ver 1.0)

Tirupal T et al. (Tirupal et al.,
2017)
2017

MRI/CT Sugeno’s intuitionistic fuzzy set- entropy
calculates the optimum values of
membership

AANLIB

B. K. S. Kumar (Shreyamsha
Kumar, 2015)
2015

Sparse
Representation

Multisensory MRI DWT-Cross Bilateral Filter (CBF) Imagefusion.org

D. P. Bavirisetti (Bavirisetti et al.,
2017)
2017

MRI/CT Guided Image Filter-Structure
Transferring Filter-Gradient Preserving
Filtering

AANLIB

L. Jian (Jian et al., 2018)
2018

MRI/CT Rolling Guidance Filter (RGF) and Joint
bilateral filter

Imagefusion.org

] S. Maqsood, U. Javed (Maqsood
and Javed, 2020)
2019

MRI/CT Sparse Representation-Multiscale
decomposition

AANLIB

Y. Liu et al. (Liu et al., 2020)
2020

MRI/CT Joint Sparse Representation AANLIB

Y.P. Wang et al. (Wang et al.,
2007)
2007

Deep Learning MRI/CT fuzzy radial basis function neural
networks

AANLIB

Z. Wang, Y. Ma (Wang and Ma,
2008)
2008

MRI/CT M�PCNN AANLIB

J. Teng et al. (Teng et al., 2010)
2010

MRI/CT/SPECT Neuro Fuzzy method with mixes BP
algorithm and least mean square (LMS)
algorithm

AANLIB

S. Sivasangumani
(Sivasangumani et al., 2015)
2015

MRI/CT RFC-PCNN AANLIB

H. Hermessi (Hermessi et al.,
2018)

MRI/CT Similarity learning in the
shearlet domain

AANLIB
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Table 4 (continued)

Research Studies and
publication year

Fusion Domain Modalities Combination MMIF Methods Database

2018
X. Liang et al. (Liang et al., 2019)

2019
MRI/PET Multi-layer concatenation fusion network

(MCFNet)
AANLIB

R. Hou et al. (Hou et al., 2019)
2019

MRI/CT CNN-dual-channel spiking cortical
model in NSST domain

AANLIB

F. Fan et al. (Fan et al., 2019)
2019

CT/MR-T2 W-Net (FW-Net) method AANLIB

R. NandhiniAbirami (Nandhini
Abirami et al., 2022)
2022

MRI/PET GAN Model AANLIB

S. Daneshvar, H. Ghassemian
(Daneshvar and Ghassemian,
2010)
2010

Hybrid MRI/PET HIS-RIM AANLIB

S. Das, M.K. Kundu (Das and
Kundu, 2012)
2012

CT/MRI PCNN in NSCT domain AANLIB

K. Sharmilaet al.(Sharmila et al.,
2013)
2013

CT/MRI Discrete Wavelet Transform-Averaging-
Entropy-Principle Component Analysis
method [DWT-A-EN-PCA]

AANLIB

C.T. Kavitha, C. Chellamuthu
(Vickers, 2017)
2014

PET/MTI/SPECT Swarm Intelligence-NN AANLIB

S.D. Ramlal et al. (Ramlal et al.,
2019)
2019

CT/MRI SWT in NSCT domain AANLIB

L. Xu et al. (Xu et al., 2020)
2020

CT/MRI/SPECT DWT-Homomorphic Filter AANLIB

G. Hawna et al. (Goyal et al.,
2022)
2022

CT/MRI CBF-Domain Transform Filter-RGB AANLIB

S. Ullah Khan, M. Ahmad Khan, M. Azhar et al. Journal of King Saud University – Computer and Information Sciences 35 (2023) 101733
ii. Feature level: region-based methods are used to extract the
image features

iii. Decision level: based on region detection and classification
of object

MMIF based on the spatial domain was a popular topic in early
research. In this method, fusion rules are applied to the input
image pixels to obtain a fused image. However, owing to the issues
of low signal-to-noise ratio (SNR) and spatial and spectral distor-
tion, research interest in MMIF in the spatial domain has gradually
declined in recent years. Intensity hue saturation (IHS), high-pass
filtering, maximum/minimum selection methods, and PCA are
examples of spatial-domain MMIF techniques. In the frequency
domain, the input images are first transformed into the frequency
domain, then fusion rules are applied. Finally, an inverse transfor-
mation is applied to obtain the fused image. They are further cat-
egorized into the transform and pyramidal domains (Azam et al.,
2021).The Fuzzy set domain is adequate for avoiding vagueness
in the input images. However, dealing with uncertainty remains
challenging. Recently, deep learning has emerged as a new area
of research in medical image fusion. The Convolution Neural Net-
work (CNN), U-Net, and Generative Adversarial Network (GAN)
are the typical models used for medical image fusion. Sparse repre-
sentations and hybrid domains are also prominent areas of MMIF.
This section provides a brief overview of the MMIF domains.
5.1. Spatial doman methods

In the spatial-domain methods, fusion is performed on a pixel
basis. IHS, PCA Brovey, high-pass filtering, and ICA methods are
widely used in the spatial domain (El-Gamal et al., 2016).The IHS
method converts an RGB image into IHS components. The fused
images are obtained by transforming the IHS and RGB images.
The IHS method performs efficiently in terms of color visualization
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(Subramanian et al., 2015). Fig. 8 illustrates the IHS method dia-
grammatically. The HSV method proposed in (Stokking et al.,
2001) fused MRI and SPECT images using a color-encoding mecha-
nism. This provides better structural and metabolic features with
less spectral distortion. Similarly, the fusion method proposed in
(He et al., 2010) merges the features of the IHS with those of the
PCA and obtains acceptable results. The resulting image has high
spatial information and reduced spectral distortion. However, this
method has an image-registration problem. A combination of the
PCA and SWT method was proposed in (Bashir et al., 2019) and
achieved better results than that with the IHS and ICA. The
research interest in the spatial domain has gradually decreased
because of spectral and spatial distortion issues. Figs. 9 and 10
depicts the spatial domain methods and publication results of
the MMIF methods in the spatial domain. The results were
obtained from theWeb of Science (WoS).). Spatial domain methods
are simpler, faster to compute, and provide better color visualiza-
tion. However, these methods have been unsuccessful in real-
world scenarios. The fused image exhibited spectral distortion
and sharpening issues.
5.2. Frequency domain methods

In frequency-domain methods, a Fourier Transform (FT) is
applied to convert the input medical images into frequencies or
other domains. Fusion rules are then applied to the resulting
image, followed by an inverse FT to obtain the final fused image
(Princess et al., 2014). Frequency-domain methods are divided into
the pyramid and transform domain (Parmar and Kher, 2012).

The pyramid-based image-fusion methods are used to improve
the spectral information in the final fused image (Du et al., 2016;
Krishnamoorthy and Soman, 2010). In pyramid transform, the
detail of the fused image depends on the decomposition levels,
i.e., the scales and proper family selection. The Laplacian pyramid



Table 5
MMIF domains comparison.

Domain Advantages Limitations

Spatial � Pixel level fusion � Fused image has sharpening issue
� Simplest and faster computation � Spectral distortion and less visual quality
� Low complexity � Edges smoothness and low contrast issues (Mishra

and Palkar, 2015; Bhat and Koundal, 2021)
� Better color visualization (Mishra and Palkar,
2015; Bhat and Koundal, 2021)

Frequency � Less distortion of spectral details than Spatial domain � Spatial details are missing
� Multiscale Transform Theory � Complex than Spatial domain process
� High Signal to Noise Ratio (SNR) than Spatial domain methods � Defects of activity level measurements
� With good edges information and good visual quality of fused image
(Huang et al., 2020; Masood et al., 2017; Sharma et al., 2020)

� Image registration issues (Huang et al., 2020;
Masood et al., 2017; Sharma et al., 2020)

Fuzzy � Fused image with less spectral distortion � Spatial distortion
� Good visual quality � Image registration problem
� Less blocking effects � Uncertainties
� More detail edges (Li and Yin, 2011; Bavirisetti et al., 2017) � Localization problems (Li and Yin, 2011;

Bavirisetti et al., 2017)
Sparse Representation � More detail edges � Edge distortion issue

� Better visual quality � Image registration problem
� Good contrast � Fused image has artifacts (Bavirisetti et al., 2017;

Bhat and Koundal, 2021)
� Extract enough features (Bavirisetti et al., 2017;
Bhat and Koundal, 2021)

Deep Learning � Better image optimization � Semantic loss issue
� Good performance on large input data � Convergence and overfitting problems (Bhat and

Koundal, 2021)
� Effective to extract information from dark regions
� Flexibility in customization (Bhat and Koundal, 2021)

Hybrid � Extract features detail � Non-uniformity
� Good contrast and smooth edges � High Complexity
� Less artifacts (Atrey et al., 2010) � Difficult to train large datasets (Atrey et al., 2010)
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proposed in (Du et al., 2016) is one of the widely used methods,
which employs a multi-scale decomposition process to obtain the
coefficients. These coefficients are then fused using the weighted
fusion method, followed by an inverse Laplacian. However, this
method suffers from visualization problems. Pyramid transform
methods include the morphological pyramid, slope pyramid, and
filter subtract decimate (FSD) method (Krishnamoorthy and
Soman, 2010; Sadjadi, 2005).

Transform-domain methods use a multi-resolution approach to
increase the accuracy of fused images. The transform domain
methods employ a three-step procedure. First, the input images
are decomposed into low- and high-frequency sub-bands. In the
second step, multiple fusion rules are applied to these
coefficients/sub-bands to obtain the fused coefficients, and an
inverse operation is performed to obtain the final fused image.
Fig. 11 depicts the transform-based MMIF process. The wavelet
transform (WT) is the most commonly used method in the trans-
form domain. There are other methods, such as the discrete wave-
let transform (DWT), curvelet transform (CT), dual tree complex
wavelet transform (DT-CWT), non-subsampled contourlet trans-
form (NSCT), and non-subsampled shealet transform (NSST)
(Yang et al., 2010; Das and Kundu, 2013; Zarif et al., 2014). The
WT method performs better at preserving the spectral and spatial
information using the localization mechanism. However, the
down-sampling process fails to satisfy the shift-invariant condi-
tion. To overcome this problem, the redundant discrete wavelet
transform (RDWT) was proposed in (Gomathi and Kalaavathi,
2014), which performed better in terms of component information.
However, this method failed to obtain edge information. To
address the shortcomings of scalar wavelets, the multi-wavelet
transform (MWT) was proposed in (Wang, 2004). The MWT pro-
vides better fusion results. However, the edge smoothness remains
an issue. The DT-CWT method was proposed in (El-Hoseny et al.,
2018) based on the histogram matching followed by an optimiza-
tion algorithm, and it provided better results than the DWT-based
12
fusion methods. However, the contour and edge smoothness issues
remain unresolved. A CT-based image was proposed in (Yang et al.,
2008), which improved the localization problem but could not
solve the problems of the WT and its alignment methods.

In (Kumar, 2014); the MMIF technique based on directive con-
trast in the NSCT domain was proposed, which provided superior
fused results in terms of color distortion compared to the DWT,
DT-CWT, and Daubechies complex wavelet transform (DCxWT).
In (Yang et al., 2015), statistical measurements based on the MMIF
in the NSCT domain were proposed, where weighted maps and
entropy functions were applied to the high- and low-frequency
coefficients. This method provided the maximum number of sali-
ent features. Similarly, an enhanced contrasting MMIF method
for the NSCT domain was proposed in (Bhatnagar et al., 2015). In
this method, the modified Laplacian and weighted matrix methods
were used during the image decomposition phase to extract the
edge information. This method outperforms the DWT, NSCT, and
CONT methods and provides maximum structural information.
The most familiar methods, such as the ST and NSST, were pro-
posed in (Biswas and Sen, 2019; Xiaoxue et al., 2015; Yin et al.,
2018) for the MMIF, providing multi-directional details and less
spectral and spatial distortions than the NSCT. A parameter adap-
tive pulse-coupled neural network (PA-PCNN) in the NSST domain
was presented in (Singh et al., 2015). The PA-PCNNwas used in this
method to fuse the high-frequency coefficients, whereas the
energy preservation function was used to fuse the low-frequency
coefficients. Inverse NSST was applied to obtain the final fused
image. Fig. 12 shows the publication results of the MMIF methods
in the transform domain. The results were obtained from the Web
of Science (WoS). The frequency-domain methods overcome the
issue of spectral distortion and achieve high SSIM values with good
edge information. However, the final fused image using the fre-
quency domain has less spatial detail, and activity-level measure-
ments are difficult (Huang et al., 2020; Mishra and Palkar, 2015;
Bhat and Koundal, 2021).
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5.3. Fuzzy set domain

In the MMIF methods, acceptable color visualization, minimum
spectral and spatial distortion, and edge smoothness and enhance-
ment are vital for assisting in clinical diagnosis. Various methods,
such as the gray-level transform, histogram, and gray-level group-
ing are available in the literature (Ismail and Sim, 2011; Maini and
Aggarwal, 2010). However, these methods do not provide the nec-
essary MMIF information. A Fuzzy-set mathematical tool was pro-
posed to overcome the vagueness in the fused image. However,
image registration and uncertainty remain as issues. Intuitionistic
Fuzzy-set (IFS) presented in (Atanassov, 1994) is a generalized ver-
sion of the Fuzzy set method; however, it reflects high uncertainty.
Another method-based on the DWT and Fuzzy logic was proposed
in (Sanjay et al., 2017), wherein averaging rules were used to
obtain the high-frequency coefficients, and Fuzzy-logic-based
methods were used to obtain the low-frequency coefficients. This
method overcomes the problem of uncertainty. The MMIF method
based on the IFS proposed in (Aysha) provided better results in
terms of uncertainties than the non-Fuzzy methods. The IFS-DWT
was presented in (Tirupal et al., 2017), which enhanced the
MMIF-fused images in terms of color visualization and fewer
uncertainties. The Fuzzy domain methods performed well, and
the fused images exhibited less spectral distortion, better visual
quality, and extracted detailed features. However, these methods
involve image registration, optimization, and overfitting issues (Li
and Yin, 2011; Bavirisetti et al., 2017; Bhat and Koundal, 2021).
13
5.4. Sparse representation domain

Sparse representation (SR) is a powerful tool for better under-
standing the human visual system and is used in many areas, such
as facial expression detection, object tracking and occlusion, and
image fusion (Li and Yin, 2011). Fig. 13 graphically illustrates the
MMIF process in the SR domain. The steps are described as follows.

a. Sliding window is used to transform the input medical
images into vectors form.

b. An over complete dictionary (D) is added to the transform
vector to obtain the sparse coefficients.

c. Fusion rules are applied to obtain fused sparse coefficients.
d. An over-complete dictionary (D) is applied to the fused

sparse coefficients to obtain the fused vectors.
e. Reverse Step (a) to obtain the final fused image.

Two steps can be used to create a dictionary (D): fixed-based
and learning-based. The k-SVD method is one of the best examples
of (D) and uses a learning-based method. The learning-based
method performed better than the fixed-based method. The MMIF
methods based on the SR domain (Li and Yin, 2011) have persistent
contrast and edge-distortion issues. Researchers have proposed
several combinations of SR structures to obtain a fused image with
more color, spectral, and spatial information.

Salient feature methods (SFMs) differ significantly from the
other MMIF methods as they have many advantages over the other
MMIF methods, such as shift invariance, simplicity, and efficiency
in extracting the silent features. Edge preservation is vital in the
MMIF methods. Several edge filtering methods, such as the guided



Table 6
MMIF Objective method performance assessment metrics with a reference image.

Statistical
Parameter

Abbreviation Formula Description Ref.

CC Cross-
Correlation CC ¼

PI

i¼1

PJ

j¼1
½ðIMGr i;jð Þ�IMGr Þ

�
: IMGf i;jð Þ�IMGf

�� �
�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXI

i¼1

XJ

j¼1
½ IMGr i; jð Þ � IMGr

�� �
�

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXI

i¼1

XJ

j¼1
½ IMGf i; jð Þ � IMGf

�� �
�

r Computes spectral features
of similarity.
Higher the CC value means
better results

(Yang et al., 2008)

mi Mutual
Information

MI
IMGr IMGf ¼

PI

i¼1

PJ

j¼1
JIMGrIMGf

ði;jÞlog2½
iIMGrIMGf

ði; jÞ
jIMGr

i; jð ÞjIMGf
ði; jÞ�

MI ¼ MIIMG1 IMGf
þMIIMG2 IMGf

Computes dependency
levels.
The higher the MI value
means better fusion

(Haddadpour et al.,
2017)

OP Overall
Performance OP ¼

P3
a¼1ðDk � AGaÞ

3
, a = RGB

Where AG is Average Gradient & D is the discrepancy.

Computes deviation
between the gradient and
discrepancy.
The higher the OP value
means better fusion

(Nandhini Abirami
et al., 2022)

SIMM Structure
Similarity Index
measures

SSIM ¼
2lIMGor

lIMGfsd
þ c1

h i
2rIMGor IMGfsd

þ c2
h i

l2
IMGorþl

2
IMGfsdþc1

h i
r2
IMGorþr

2
IMGfsdþc2

h i Computes the similarities
between original and fused
image.
The higher the SSIM value
means better fusion

(Fan et al., 2019)

MAE mean absolute
error

MAE ¼ 1
M � FSD

XM

m¼1

XFSD

f sd¼1
IMAj jGMorðm; f sdÞ � IMGfsdðm; f sdÞj Computes the errors

between original and fused
image

(Sanjay et al., 2017)

PSNR peak signal to
noise ratio PSNR ¼ 255ð Þ2

1
M�FSD

PM
m¼1

PFSD
fsd¼1 IMGor m; fsdð Þ � IMGfsd m; fsdð Þ� �2

Computes intensity levels
between original and fused
image.
The higher the PSNR value
means better fusion

(Balasubramaniam
and Ananthi, 2014)

DIV difference
invariance DIV ¼

r2
r � r2

f

r2
r

Computes the variation
between original and fused
image

(Mhangara et al.,
2020)

SC structural
content SC ¼

PG
g¼1

PH
h¼1 IMGrðg;hÞð Þ2PG

g¼1
PH

h¼1 IMGf ðg;hÞ
� �2

Computes the strength of
the fused image.
SC value must be high

(Memon et al.,
2015)

AD average
difference

AD ¼ 1
M � FSD

XM

m¼1

XFSD

f sd¼1
ðIMGor m; f sdð Þ � IMGfsd m; f sdð Þ Computes the difference

between original and fused
image

(Memon et al.,
2015)

Table 7
MMIF Objective method performance assessment metrics without a reference image.

Statistical
Parameter

Abbreviation Formula Description Ref.

FMI Functional Mutual
Information

FMI ¼ MIImg1 Imgf sd
þMIIimg2 Imgf sd

Computes the degree of dependency
between source and fused image
Higher the FMI value means better results

(Mhangara
et al., 2020)

FS Fusion Symmetry
FS ¼ abs

ImgXFSD

ImgSFSD þ ImgYFSD
� 0:5

� �
FS shows symmetry information in fused
image.
The lower the MI value means better fusion

(Zhang et al.,
2012)

M Mean M ¼ 1
I�J

PI
i¼1

PJ
j¼1IMGfsd i; jð Þ Computes average value.

The higher the M value means better fusion
(Atrey et al.,
2010)

FF Fusion Factor FF ¼ ImgXFSD þ ImgYFSD Computes the fusion factors.
It must be high

(Singh and
Khare, 2014)

SD Standard Deviation
SD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPQ
i¼1

PR

j¼1
f i;jð Þ�u

�ð Þ2
QR

r
Computesintensity variationof the fused
image.
It must be high for better fusion

(Wang and
Chang, 2011)

EN Entropy EN ¼ �PL�1
I¼0PilogPi

Computesthe information quantity in fused
image.
EN must be high for better fusion

(Haddadpour
et al., 2017)

FI Fused Index
FI ¼ MImgXFSD

MImgYFSD

Computes the degree of symmetry
information in fused image

(Singh and
Khare, 2014)

SCD Sum of Correlation
Difference

SCD ¼ corl2 f sd� img 1; img 2ð Þ þ corl2 f sd� img 2; img 1ð Þ Computes the transmitted information from
source to fused image.
SCD value must be high

(Liu et al., 2018)
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filter (GF), cross bilateral filter (BF), and rolling guided filter (RGF),
play a significant role in image fusion (Bavirisetti et al., 2017;
Shreyamsha Kumar, 2015; Jian et al., 2018). SFM methods are
now used as preprocessing tools in the MMIF process to increase
the contrast and reduce noise. Equations (10)–(13) describe the
edge-preserving image fusion filters.

BLYR1
i ¼ A1 � EFi
14
BLYR2
i ¼ B2 � EFi ð10Þ

DLYR1
i ¼ A1 � BLYR1

i

DLYR2
i ¼ � � BL2i ð11Þ

where BLYR and DLYR denote the base and detail layers, respec-
tively, A and B represent the input images, and EF is an edge-



Fig. 17. Qualitative results for MRI/CT images [AANLIB]. (a) MRI image, (b) CT
image, (c) NSCT, (d) NSST-PAPCNN, (e) IFCNN, (f) N-Fuzzy.

Fig. 18. Qualitative results for MRI/PET images [AANLIB]. (a) MRI image, (b) PET
image, (c) NSCT,(d) NSST-PAPCNN, (e) IFCNN, (f) N-Fuzzy.
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preserving filter. Subsequently, both the layers can be fused using
the fusion rules given in the following equation:

BLYRfsd ¼ fsdB BLYR1
i ;BLYR

2
i

� �
DLYRfsd ¼ fsdD DLYR1
i ;DLYR

2
i

� �
ð12Þ

where BLYRfsd and DLYRfsd denote the fused base and detail layers,
respectively, and fsdB and fsdD are the fusion rules. Finally, we
obtain a fused image using Equation (13).

Imgfsd ¼ BLYRfsdþ DLYRfsd ð13Þ
The SR domain methods performed well, and the fused images

exhibited less spectral distortion, better visual quality, and
extracted detailed features. However, these methods involve image
registration, optimization, and overfitting issues (Li and Yin, 2011;
Bavirisetti et al., 2017; Bhat and Koundal, 2021).
15
5.5. Deep learning domain

Recently, deep learning (DL) has emerged as a rapidly expand-
ing field in the MMIF research. DL techniques comprise multiple
layers, each of which receives an input from the previous layer
(Zhou et al., 2019). DL methods include the CNN, deep convolution
neural networks (DCNSs), U-Networks, and GAN. The most com-
mon deep learning model is the CNN (Krizhevsky et al., 2017). To
overcome the issues of feature extraction, edge smoothness, spec-
tral and spatial distortions, and fusion rules, the CNN model was
first applied to the MMIF in 2017 and produced promising results
compared to the other domain image fusion methods (Liu et al.,
2017). CNN’s are capable of recognizing and classifying the fea-
tures, and are widely used to analyze the visual characteristics of
images. A CNN comprises features/convolutions, pooling, and fully
connected layers. The CNN complexity increases from layer to layer
to identify the maximum features of the image. However, issues in
the CNN include the requirement of annotated datasets, time-
consuming dataset training, complexity in convergence, and
repeated adjustment of overfitting. The MCFNet method presented
in (Liang et al., 2019) solves the annotated training datasets and
overfitting problems. However, the loss of function problem in
MCFNets remains challenging.

A modified CNN architecture in the non-sampled shearlet trans-
form (NSST) domain was presented in (Hermessi et al., 2018) for
medical image fusion feature extraction. The CNN architecture
was used to generate feature maps; which were then used to fuse
the high-frequency coefficients. The energy attribute function was
used to obtain low-frequency coefficients. This method produces
more prominent results than the simple NSST methods in terms
of multidirectional features and spectral distortions. A CNN with
a dual-channel spiking cortical model (DCSCM) was proposed in
(Hou et al., 2019) for the MMIF. This method fuses input images
using the NSST model followed by a CNN architecture with an
adaptive selection rule and DCSCM to obtain high- and low-
frequency coefficients. Finally, inverse NSST was applied to obtain
a fused image. It is very effective to extract information from dark
regions. All these methods overlook the loss of semantic informa-
tion in a fused image, which leads to boundary blurriness.

An MMIF based on the U-Net method was proposed in (Fan
et al., 2019), which resolved the issue of semantic loss. In this
method, two U-Net models were merged to construct a new
FW-Net model. The encoder (left) and decoder (right) structures
of the FW-Nets model follow the structure used in the U-Net
model. This model extracts semantic information from an input
image using an encoder and reconstructs it using a decoder. Bilin-
ear interpolation functions were used to obtain smooth images.
This method achieved prominent results with no semantic con-
flicts in the fused image. However, it is only applicable to the
MRI and CT modalities; other modalities, such as the PET, MR,
SPECT, and MR fusion, will be of interest in the future research.
A novel method using the generative adversarial network (GAN)
was presented in (Nandhini Abirami et al., 2022) for fusing MRI
and PET images. The GAN model consisted of two parts: a gener-
ator and discriminator. The generator produces the same data
distribution as the source image, whereas the discriminator dis-
tinguishes the source image from original image. The GAN model
is effective in retaining the selected information in the source
images. The GAN model overcomes the limitations of data label-
ing and provides sharp images with less distortion. However, it
suffers from convergence and overfitting issues when the gener-
ator and discriminator are unbalanced. Fig. 14 shows publication
results of MMIF methods in the DL domain. The results were
obtained from the Web of Science (WoS).



Table 8
Qualitative results MMIF methods using assessment metrics.

MMIF Method and Publication Year Domain the whole brain Atlas (AANLIB)

MRI/CT MRI/PET

EN SSIM SD MI EN SSIM SD MI

C. He et al. (He et al., 2010)
2010

Spatial 4.2141 0.9545 60.21 2.4535 3.8541 0.1457 76.21 5.8541

Z. Fu et al. (Fu et al., 2020)
2020

Spatial 4.4522 0.9965 62.35 2.5214 3.8554 0.8547 78.95 5.9981

B.R. Kumar (Kumar, 2014)
2013

Frequency 4.2142 0.8541 59.65 1.5118 3.0284 0.9844 82.54 4.9889

Q. Hu et al. (Hu et al., 2020)
2020

Frequency 5.1101 1.7154 61.84 2.9547 3.6541 0.7498 87.65 5.6542

Sanjay AR et al. (Sanjay et al., 2017)
2017

Fuzzy Set 3.5124 0.5471 63.25 2.5474 4.8541 0.6649 85.65 5.1299

Y. Liu et al. (Liu et al., 2020)
2020

Sparse Rep. 5.2412 1.5424 62.08 3.1204 5.2144 0.5784 92.84 6.3214

F. Fan et al. (Fan et al., 2019)
2019

Deep Learning 6.3214 1.4214 69.54 3.2147 5.0214 0.9241 95.21 6.5521

R. NandhiniAbirami (Nandhini Abirami et al., 2022)
2022

Deep Learning 6.8521 1.2145 75.65 3.5841 6.1524 0.8054 98.54 7.0010

S.D. Ramlal et al. (Ramlal et al., 2019)
2019

Hybrid 6.5841 1.0112 78.95 4.2412 5.2107 0.6671 94.85 7.5211

L. Xu et al. (Xu et al., 2020)
2020

Hybrid 6.8121 1.4329 74.54 3.9842 5.2541 0.5782 97.21 7.1101
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5.6. Hybrid domain

As demonstrated by the preceding methods, the MMIF results
obtained by single-domain methods are not satisfactory. Conse-
quently, researchers are concentrating on hybrid methods to improve
fusion results. In the hybrid method, two or more domain methods
are combined, such as the transform and DL domain methods, to
improve the final fused image performance (Soundrapandiyan
et al., 2017; Singh and Anand, 2019). It also removes noise artifacts
and enhances the fused image quality. The DWT and IFS methods
described in (Soundrapandiyan et al., 2017) used the DWT method
for image decomposition and intuitionistic Fuzzy set rules to fuse
the images. This method increases the contrast of a fused image
without causing uncertainty. An MMIF method based on PCNN in
the NSCT domain was proposed in (Das and Kundu, 2012). In this
method, the input images are decomposed using the NSCT method
and PCNN, and maximum selection rules are used to combine
high- and low-frequency coefficients. Finally, an inverse NSCT is per-
formed to obtain the fused image.

The MMIF method based on the DWT and PCA was proposed in
(Sharmila et al., 2013) and achieves better subjective and objective
results than the single-domain fusion methods. A combination of
swarm intelligence and the PCNN method proposed in (Vickers,
2017) was used to achieve good fusion results. In this method, a
prominent technique ‘‘And Colony Optimization (ACO)” was imple-
mented for edge detection. The edges are forwarded to the PCNN to
produce a fused image. This method outperformed the previous
hybrid and conventional methods. In (Ramlal et al., 2019), an
improved SWT-NSCT MMIF hybrid method was proposed to
achieve superior fusion performance. Here, the NSCT method was
implemented to obtain high and low sub-bands of the source
images, followed by the SWT method. Entropy squares and
improved Laplacians were employed as fusion rules. An inverse
NSCT was used to obtain the fused image.

As stated previously, each MMIF fusion method has advantages
and disadvantages. However, more efficient algorithms are
required to obtain fused images with better visual quality, fewer
spectral and spatial distortions, and more detailed information.
Table 4 illustrates the MMIF studies in different domains, along
with the multimodal modalities combinations, fusion methods,
and databases. Table 5 depicts the advantages and limitations of
16
the aforementioned MMIF domains. Fig. 15 shows the results of
the MMIF methods in the hybrid domain. The results were
obtained from the Web of Science (WoS).
6. Multimodal image fusion combinaton

Each imaging modality has a set of characteristics and limita-
tions, such as MRI imaging, and provides anatomical information
but no functional information. MRI does not cause radiation dam-
age to the human body and has a high spatial resolution, which
simplifies the clinical process.PET imaging, on the contrary, pro-
vides metabolic or functional information in pseudo-color without
anatomical information. It has high sensitivity but fails to provide
accurate location information in the brain, resulting in spatial dis-
tortion. SPECT imaging provides useful information about tumors,
but has limited positioning capability. It provides information
about blood flow, soft tissues, etc., but has low positioning ability
and spatial resolution. X-rays use radiation to produce two-
dimensional (2D) images of bones and are typically used to diag-
nose bone diseases. CT provides more detailed information and is
more powerful than X-ray imaging. It is primarily used to diagnose
the internal organs of the body in 3D, such as bone fractures, bone
tumors, and bone disorders.

Medical image fusion can be accomplished using various tech-
niques, such as the positron emission tomography (PET), PET com-
puted tomography (MRI), CT, and magnetic resonance. These
various modality combinations retain their own characteristics,
such as the PET/MRI, which is most likely used for the liver, Alzhei-
mer’s disease, and tumor detection, whereas the MRI/SPECT image
fusion assists in lesion localization. Fig. 16 depicts the trends in
studies related to the PET/MRI, MRI/CT, and MRI/SPECT fusion.
The results were obtained from the Web of Science (WoS), and
the statistical period was 2015–2022.
7. Performance assessment metrics

Subjective/qualitative and objective/quantitative methods were
used to assess the quality of the fused images. Qualitative methods
include visual inspection of an image, and parameters, such as
color, spatial details, and image size, are considered during the
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inspection process. However, these methods are time consuming,
expensive, and inconvenient (Meher et al., 2019). In objective
methods, the fused image is inspected using the statistical param-
eters. They are further divided into two categories: (1) perfor-
mance assessment metrics with a reference image and (2)
performance assessment metrics without a reference image. Tables
6 and 7 show the commonly used objective method performance
assessment metrics with and without the reference images. Each
parameter exhibits unique properties.

This review investigates the performance of the MMIF methods
for qualitative and quantitative analyses using the commonly used
AANLIB medical database. The experiments were carried out with
MATLAB 2021a on a Core i74780 CPU with 1.7 GHz and 16 GB
RAM. Figs. 17 and 18 show the qualitative results of the MRI/CT
and MRI/PET using the various MMIF methods, such as (NSCT
(Kumar, 2014) S_Link 1), (NSST-PAPCNN (Singh et al., 2015) S_Link
2), (IFCNN (Zhang et al., 2020) S_Link 3), and (N-Fuzzy (Das and
Kundu, 2015) S_Link 4). The source code for these MMIF methods
is provided in the Supporting Materials. The datasets may be
requested from the corresponding authors.

Fig. 17 (a) and (b) show the MRI and CT images. Fig. 17 (c) shows
that some complementary information is not visible, Fig. 17 (d)
shows some blurring effects, and Fig. 17 (e) and (f) are visually better.

Fig. 18 (a) and (b) show the MRI and PET images, respectively;
Fig. 18 (c) shows that the fused image is severely degraded and
has a low contrast; Fig. 18 (d) shows that the fused image has spa-
tial distortion; Fig. 18 (e) is visually better; and Fig. 18 (f) shows
that the fused image is less enhanced. According to our findings,
IFCNN (Zhang et al., 2020) and N-Fuzzy (Das and Kundu, 2015)
have satisfactory qualitative results. Considering both decomposi-
tion level and time complexity, IFCNN (Zhang et al., 2020) and N-
Fuzzy (Das and Kundu, 2015) performs better than others. Another
important factor that affects the quality of fused images is the
design of fusion rules for high- and low-frequency sub-bands of
source images. Image fusion rules play an important role in getting
complementary information from input images. In our estimation
(visual analysis and later on verified using statistical metrics), color
changes are important visual information for the fusion of PET and
MR images. To preserve anatomical structures while better keeping
color changes in the fused image, high-frequency sub-bands from
both the MR image and I-component of PET image should be con-
sidered. Therefore, in the fusion method, each high-frequency sub-
band coefficient from the same location of MR image and I-
component of PET image is selected by specific fusion rule. The lar-
ger transform values in these bands correspond to sharper bright-
ness changes and thus to the salient features in the image such as
edges, lines, and region boundaries are highlighted.

In this review, MMIF methods from the various fusion domains
were collected and their outcomes were compared using assessment
metrics (EN, SSIM, SD, and MI). The performance evaluation metrics
used in this research work are Standard Deviation (SD) to compute
the intensity variation of the fused image, Entropy (E) to compute
the amount of information in the fused image, Structure Similarity
Index Measure (SSIM) to compute the similarities between original
and fused image. Table 8 presents the quantitative assessment results.

Table 8 shows that the DL methods performed better for MRI/CT
integration, whereas the hybrid methods performedwell for MRI/PET
integration, which means the fused image has high resolution. Simi-
larly, frequency domain methods outclass the other methods in term
of similarity information (SSIM Values). Lastly, hybrid methods
achieved good results in term of SD and MI, which means that
detailed information is transferred to the fused image and the fused
image has all the complementary details. From quantitative and
qualitative results, it is concluded that each method/technique has
its own drawbacks and advantages such as spatial domain methods
are simple and faster to compute. However, thesemethods have been
17
unsuccessful in real-world scenarios. The application of newmethods
to MMIF remains a great challenge in this filed.
8. Shortcomings and future directions

This review covers almost all the recent and widely used MMIF
methods. Spatial domain methods are simpler, faster to compute,
and provide better color visualization. However, these methods
have been unsuccessful in real-world scenarios. The fused image
exhibited spectral distortion and sharpening issues. The
frequency-domain methods overcome the issue of spectral distor-
tion and achieve high SSIM values with good edge information.
However, the final fused image using the frequency domain has
less spatial detail, and activity-level measurements are difficult
(Huang et al., 2020; Masood et al., 2017; Sharma et al., 2020).
The Fuzzy and SR domain methods performed well, and the fused
images exhibited less spectral distortion, better visual quality, and
extracted detailed features. However, these methods involve image
registration, optimization, and overfitting issues (Li and Yin, 2011;
Bavirisetti et al., 2017; Bhat and Koundal, 2021). Deep learning
methods achieve an optimized fused image and high-intensity
variation (EN), as shown in Table 8. DL methods are also effective
in extracting information from dark regions. However, these meth-
ods suffer from semantic loss, convergence, and overfitting. The
Hybrid domain methods performed well in terms of (SD) and
(MI). In other words, the fused image contains all the complemen-
tary information and has smooth edges. However, these methods
suffer from nonuniformity and require a long time to train large
datasets (Atrey et al., 2010).

Researchers have presented several MMIF methods; however,
each method has its own drawbacks. Moreover, the majority of
MMIF methods are based on core methods, and existing problems,
such as spectral distortion, overfitting, and feature extraction, have
been improved but not completely solved. The application of novel
algorithms to MMIF remains a significant challenge in this field.
Considering the aforementioned issues, the following are potential
areas for future research:

i. Challenges in decomposing coefficients using multi-scale
decomposition methods for MMIF.

ii. Challenges in fusing multimodal images without back-
ground noise.

iii. Developing DL algorithms to reduce long data training times,
overfitting, and convergence problems.

iv. Challenges in improving region of interest in source images
before fusion process

v. Challenges in creating a free online dataset for different
organs (liver, spleen, and bone marrow) to evaluate MMIF
methods. According to Fig. 4, only the AANLIB database
dominates the remaining fields.

This review article covered almost all areas of MMIF process
such as (i) medical imaging modalities, (ii) multimodal medical
image databases, (iii) MMIF steps/rules, (iv) MMIF methods, (v)
modalities integration, (vi) performance evaluation and empirical
results, (vii) current modalities strengths and limitations, and (viii)
future directions. However, this review still required more discus-
sion on various medical imaging datasets (categorization), applica-
tion areas, and imaging modalities with respect to their
weaknesses and strengths.
9. Conclusion

The basic objective of MMIF is to enhance the fused image. The
MMIF field was thoroughly discussed in this review, which began
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by providing a thorough description of different medical imaging
modalities, sources of generation, and invasive and non-invasive
methods. Subsequently, comparisons of publicly available online
multimodal medical databases and their use in research over the
last five years were discussed in detail. Next, a brief explanation
of the MMIF steps was provided. MMIF methods, including spatial,
frequency, Fuzzy set, sparse representation, DL, and hybrid
domains, were discussed in detail. Subsequently, an overview of
multimodal modalities integration was presented. Objective and
subjective image quality assessment metrics were thoroughly dis-
cussed. Subsequently, the various MMIF methods were evaluated
using these quality-assessment metrics. Finally, the limitations of
MMIF methods and future directions were discussed. In this
review, it was observed that the fusion results of the DL and Hybrid
domain methods outperformed those of other fusion methods.
Nevertheless, owing to the numerous issues discussed earlier, it
is challenging to determine, which MMIF method is best suited
for the types of integrated modalities. Such issues can be addressed
by expanding our knowledge of MMIF methods to assist in clinical
diagnosis.
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