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ABSTRACT The black-box arc model is a tool that facilitates efficient research based on empirical studies
in breaker design and analysis. However, its application has primarily focused on the design of ACCBs, with
only a few instances of its implementation in the design of low-voltage (LV) DC circuit breakers (DCCBs)
using mechanical methods. In DCCBs with non-zero crossing characteristics, several factors need to be
considered in the design process. Therefore, it is crucial to have a reliable and accurate DC arc model to
effectively apply black-box arc model studies to actual DCCB designs. Especially, DC Current limiting
circuit breaker (CLCB), which has fast operation characteristics through its own over current relays (OCR),
requires reliable and accurate modeling because minor factors in the topology can contribute significantly
to the interrupting performance. This paper presents a study on the characterization and modeling approach
for the DC CLCB, which exhibits somewhat different arc voltage characteristics compared to the general
Air Circuit Breaker (ACB). The black-box arc model incorporates existing schwarz and kema arc models,
and the Levenberg-Marquardt Algorithm (LMA) is employed to optimize the parameters of each model.
An efficient parameter optimization method for the CLCB model is proposed, and the characteristics of
factors that should be considered in the design are identified. Consequently, the applicability and reliability
of the model are verified through a comparative study with the short-circuit test results of the actual DC
CLCB.

INDEX TERMS LVDC CLCB, dc arc modeling, black-box arc model, Levenberg-Marquardt algorithm
(LMA), parameter optimization.

I. INTRODUCTION
A key characteristic of DC arcs that distinguishes them from
AC arcs is the absence of a current zero point. This non-zero
crossing feature results in the generation of large breaking
energy. Therefore, DCCB employ various topologies and
interrupting methods for each voltage class [1], [2], [3], [4],
[5], instead of relying solely on mechanical methods to inter-
rupt fault currents. Typically, LV DCCB with small breaking
energy use mechanical breakers with the same mechanism as
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ACCB [6].While LVDC andACCBsmay share similar struc-
tures and mechanisms, the design considerations are distinct
and require adaptation and modification to account for DC
arc characteristics. For ACCB, the mechanical force and TRV
(Transient Recovery Voltage) generated by the asymmetric
fault current peak are crucial factors. In contrast, DCCB need
to consider a wider range of factors, including mechanical
force, fault current rise rate and peak value, as well as TIV
(Transient Interruption Voltage) rise rate and size, which can
swiftly reduce the fault current [7], [8]. These factors should
also be incorporated into the simulation study of the CB. It is
essential to conduct the simulation study with realistic arc
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characteristics to ensure effective and efficient application in
the actual design.

With the development of various FEM (Finite Element
Method) and transient analysis simulation software, many
CB researchers andmanufacturers are actively conducting arc
description simulation studies for effective and reliable CB
design. Four main arc simulation techniques are being uti-
lized: physical modeling, black-box modeling, arc resistance
calculation, and graphics and diagrams. Physical modeling
is a method that describes the physical phenomena of ther-
mal, mechanical, electromagnetic, and fluid arcs using FEM
technology [9], [10]. It has the advantage of providing the
most realistic representation of arcs. However, there are many
difficulties in terms of the reliability and accuracy of analysis.

The black-box modeling and arc resistance calculation
method models the arc as a flowing conductor and simply
analyzes the current-voltage interaction between the arc and
the power system. It is a tool that can verify and analyze
the requirements of the CB based on the interaction with the
power system when the CB is applied to the grid [11].

Black-box modeling is a method that formulates the arc as
a first-order differential equation based on the conductivity
and represents the arc based on actual CB performance and
data. Therefore, it focuses on the results (voltage/current
characteristics) rather than the interrupting process. The ulti-
mate purpose is to predict the behavior of the CB arc in
various situations in the power system. The Cassie and Mayr
models have been developed [12], [13], and various derived
models have been applied. When utilizing each model to
describe the CB arc, the value of each lumped parameter
should be selected to be as close to the actual arc as possible.

When performing a CB arc description simulation using
a black-box arc model, it is crucial to model the values of
the lumped parameters that determine the voltage/current
waveform of the arc as closely as possible to the actual CB
data. This process requires the utilization of a function opti-
mization technique to ensure the reliability and acceptance
of the results. Therefore, various methods can be employed
to enhance the accuracy of the lumped parameters in the arc
model [14]. Functional optimization techniques are evaluated
as tools for accurately and reliably finding the optimal solu-
tion of arbitrary functions, and they are applied in various
fields. the Levenberg-Marquardt Algorithm is the most used
method for function optimization to find the optimal solution.
The accuracy of the results obtained using this algorithm is
also considered reliable [15], [16].

The black-box arc model was originally developed to
describe AC arcs, and research has been conducted in various
areas where arcs can occur. These include the ACCLCB [17],
free air burning arc [18], [19], ACB [20], SF6 CB [21], [22],
research on modifying and developing existing black-box
models [23], research on developing new arcmodels [24], and
research on optimizing black-box model parameters [14].

With the recent surge of interest in DC systems, several
studies utilizing black-box arc models have been conducted
in the DC environment. It has been applied to various fields

such as DC arc faults study [25], LV DCCB [26], [27], arc
modeling of vacuum interrupters located in the main path of
HVDC resonance type breakers [28], and model parameter
optimization study [27]. However, simulations to verify the
applicability of the black-box arc model developed for con-
ventional AC arc to DC arc description are still lacking, and
further research is needed to develop reliable and accurate
simulations. In particular, DC arcs without current zero have
very different interrupting characteristics depending on the
time of the breaker operation, and CLCBs have very fast oper-
ation characteristics due to the built-in OCR. Therefore, when
performing arc modeling using the black-box arc model,
a different modeling approach from the general DC ACB
model should be considered.

In this paper, a verification study was conducted to assess
the applicability of the black-box model for reliable and
accurate arc modeling of LV mechanical DC CLCBs. The
study utilized the interrupting data and voltage/current wave-
forms obtained from actual CLCBs. The selection process
and validity of each free parameter in the black-box model
were analyzed, and a mathematical model of the applied arc
model was created to optimize the selected parameters. The
mathematical model was implemented in the LMA designed
with MATLAB code to enhance the reliability and accuracy
of the free parameters by applying a function optimization
technique that compares the actual data with the model val-
ues. Furthermore, the verification simulation of the Schwarz
model and the KEMA model, which are among the most
applied black-box models, was conducted and compared.
The simulation results demonstrated that both models exhib-
ited good data fitting results when compared to the actual
breaker’s data. However, there were certain limitations in
terms of accurately describing the arc voltage. Consequently,
a method for applying the existing black-box arc model to
LV DCCB arcing was presented, and the applicability and
reliability of the model were confirmed through a compar-
ative study with the short-circuit test results of the actual DC
CLCB.

A. COMPARISON OF THE EXISTING LITERATURE ON
PARAMETER ESTIMATION
We surveyed various references on parameter estimation of
the black box arc model, analyzed the characteristics of the
parameter estimation techniques used in each reference, and
conducted a comparative analysis with the LMA applied
in this paper. In addition, as artificial intelligence (AI) has
recently received a lot of attention in various fields, we ana-
lyzed the applicability of the neural network concept to the
black box arc model.

1) SIMPLEX METHOD FOR FUNCTION MINIMIZATION [35]
In this reference, a new type of arc model of SF6 CB that
is applied to AC was created and parameter optimization was
performed. The optimization technique was based on the sim-
plex method as described in reference [36]. Since this method
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is mainly used to solve linear programming problems where
the objective function and constraints are linearly related,
this paper proposed a black box arc model for each critical
element where the objective function and parameters are
linearly related. To briefly explain the optimization principle,
the Simplex Method starts with an initial feasible solution
and iteratively moves along the edges (or ‘‘simplexes’’) of
the feasible region to find an optimal solution. The main
difference between the LMA and the Simplex Method is
that the Simplex Method is suitable for linear programming
problems, while the LMA is ideal for curve fitting and non-
linear least squares optimization problems. The schwarz and
kema arcmodels used in this paper are nonlinear least-squares
optimization problems, which require the application of the
LMA technique.

2) GENETIC ALGORITHMS (GA) [27]
A GA is a population-based metaheuristic optimization tech-
nique inspired by the processes of natural selection and
evolution. Genetic algorithms can be used to find the best
set of parameters for a given model or system. This is
especially useful when the model contains complex interac-
tions and has multiple parameters that affect its behavior.
Instead of manually tuning these parameters, which can
be time-consuming and impractical for complex models,
genetic algorithms can be used to automate the process.
Therefore, the choice between genetic algorithms and the
Levenberg-Marquardt algorithm depends on the nature of the
optimization problem and the nature of the objective function.
Genetic algorithms are better suited for global optimization
and handling complex multimodal environments, while the
Levenberg-Marquardt algorithm is better suited for local opti-
mization with smooth and continuous objective functions,
especially in nonlinear least squares problems.

3) SYSTEM IDENTIFICATION THEORY [37]
System identification is a branch of research in engineering
and control theory that focuses on building mathematical
models of dynamic systems based on observed input and
output data. These models can be used to predict the behavior
of the system and perform various control and optimiza-
tion tasks. In this reference, the identification toolbox in
MATLAB was utilized to perform parameter optimization
of a black box arc model, where the goal is to identify
the unknown parameters of a system model using measured
input and output data (real experimental data). This process
involves finding the model parameter values that best match
the observed system behavior. While system identification
theory is a broad concept that includes the process of building
a model from observed data, the LMA is a specific optimiza-
tion technique used in the context of system identification
to estimate the model parameters that best fit the observed
data. The algorithm helps refine the parameters of the selected
model structure to match the observed system behavior as
closely as possible.

4) NEURAL NETWORKS [38], [39]
Refers to artificial neural networks, especially deep learning
models, that are very complex and difficult for humans to
interpret or understand how they derive at decisions. These
networks are called ‘‘black boxes’’ because their inner work-
ings are opaque and not easily explained, like a sealed black
box that operates without revealing its internal mechanisms.
In the sense of the word black box itself, it can be con-
sidered a similar concept to the black box arc model, with
the difference that the object is a neural network and an
arc. Neural networks have recently been applied in various
fields, and they are mainly applied and studied to solve highly
complex problems such as AI. Therefore, applying neural
network theory to the research goal presented in this paper
may not be feasible considering the complexity of the model,
interpretability, and data requirements. However, it is possible
to extend the research to construct optimization algorithms
for a set of different types of CBs and to create a wide range of
complex selection algorithms that can simultaneously deter-
mine the suitability of these breakers in an arbitrary power
system.

II. METHODOLOGY
The evaluation of the applicability of black-box arc mod-
els, originally designed to model AC arcs, to accurately
describe DC CLCB arcs was performed through simulations
and related parameter optimization. The following steps were
followed for this evaluation. While detailed descriptions of
black-box arc models will be provided in the main text, the
Schwarz and KEMA black-box arc models were utilized due
to their popularity and recognized advantages in representing
electric arcs.

A. PARAMETRIC SWEEP METHOD
As part of the process to derive the initial parameter values of
the black-box arc model for reliable and accurate parameter
optimization, simulations were conducted using the paramet-
ric sweep method, which is the most fundamental approach.
The simulations yielded reliable results through a comparison
between the actual LVDC CLCB interrupting data and the
current and voltage waveforms.

1) Among the LVDCCLCB products commercially avail-
able and sold by utility provider in Korea, the volt-
age/current waveforms and data sheets of the products
that underwent short-circuit tests were selected. The
DC short-circuit test setup used by PT&T, a power test-
ing laboratory of the company, served as a benchmark
to model the DC short-circuit test setup for performing
short-circuit simulations, based on the specifications of
the selected products.

2) The black-box arc model employed the Schwarz and
KEMA models, and assumptions were made to predict
the range of free parameter values for each model to
conduct parameter sweep simulations. The criteria for
the free parameters of each model were established
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based on various experimental facts and evidence. The
parameter sweep values (Schwarz: τ , P, α, β; KEMA:
τ1, P1, P2, k1, k2, k3) were selected using the estab-
lished assumptions.

3) Perform short-circuit test simulations using a DC
short-circuit test bed designed based on the selected
parameter sweep values to derive parameter values for
the black-box arc model.

4) From the results of the parameter sweep simulations,
select the proper parameter values that best approxi-
mates the actual LV DCCB data and the voltage and
current waveforms.

5) Utilize the model parameter values from the selected
interrupting curve as the initial parameter values for
the Levenberg-Marquardt Algorithm simulation, which
aims to optimize the parameters.

B. PARAMETERS OPTIMIZATION
This process involves optimizing the parameter values of the
black-box arc model derived in step 1) using the parametric
sweep method, which is essential for obtaining accurate and
reliable results in describing LVDC arcs using the black-box
model.

1) The Levenberg-Marquardt Algorithm (LMA), which is
widely used in function optimization techniques, was
selected for parameter optimization.

2) To utilize the MATLAB code for LMA provided in
reference [29], voltage/current equations applicable to
the algorithm were established for each black-box arc
model. These derived equations were then applied to
the LMA code.

3) To optimize the free parameters of each black-box arc
model, the interruption data obtained through the short
line fault test of utility provider’s actual DCCB, which
served as the target for the parameter sweep simulation
study in step 1), were inputted.

4) Perform the optimization of each parameter value for
the Schwarz and KEMA arc models through LMA
simulations.

5) Conduct a comparative analysis using the standard
error, damping factor (λ ) value, and residuals (R2)
between the actual interrupting voltage/current data
and the optimized values.

Based on the methodology described above, the DC arc
of the LVDC CLCB was described using the black-box arc
model. The results of the two models were compared to
verify the consistency between the simulations and the actual
results. A comparative study was conducted to assess the
advantages and disadvantages of each model, leading to the
selection of a more suitable black-box model.

III. SIMULATION MODEL DESIGN
A. LVDC TEST BED
To match the simulation results with the actual CB test data,
a schematic diagram of the short-circuit test circuit used by

FIGURE 1. DC short-circuit Testbed model. By benchmarking the utility
provider’s 1.5 kV/100 kA specification short circuit test facility, the
parameter values were selected to test the 1.5 kV/60 kA DCCB targeted in
this paper.

TABLE 1. Specifications of DC short circuit test-bed model.

Korea utility provider was provided. The short-circuit test
circuit is depicted in Fig. 1, and the circuit diagram consists of
a short-circuit generator, making switch & back-up breaker,
converter transformer, rectifier, primary circuit constant, and
secondary circuit constant, respectively. Utilizing the pro-
vided schematic diagrams, a test bed model was designed
to fulfill the following four requirements, as presented in the
literature [30]:

1) The DC test bed should be capable of generating high
di/dt.

2) It should possess sufficient energy storage capacity.
3) The CBmust endure continuous nominal voltage stress

during all interrupting phases.
1) The DC voltage withstand capability of the CB must be

verified after the interruption.
The maximum specification of the provided short-circuit

test circuit model is 1600 V / 100 kA. The parameters of each
component of the short-circuit test circuit for the actual LV
DC CLCB (1.5 kV/60 kA) test, which was utilized in this
paper, were calculated, and selected. Additionally, the DC
side time constant of the circuit was measured to be 15 ms.

1) DC SHORT-CIRCUIT GENERATOR
The specifications of the short-circuit generator is shown
in Table 1. Based on the provided specifications, the syn-
chronous generator model in Matlab/simulink was used to
design a short-circuit generator with the same specifications.

2) MAKING SWITCH & BACK-UP BREAKER
The making switch determines the timing of the volt-
age/current input to the short-circuit test circuit. In AC
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short-circuit test circuits, the timing of each phase is crucial
for the short-circuit specifications. However, in the case of
DC short-circuit test circuits, the making switch simply deter-
mines the input timing as the current is rectified by a rectifier.
A back-up breaker serves as a safety mechanism for energy
dissipation in the event of a sudden circuit accident, failure
of the breaker to trip, or successful trip of the breaker. In this
paper, the short-circuit test was conducted by operating the
two circuit switches in the same sequence as the actual test.

3) LUMPED PARAMETERS OF CIRCUIT IMPEDANCE
The circuit constants of the short-circuit test circuit can be
categorized into the primary side (AC side) and the secondary
side (DC side) based on the rectifier. Firstly, the primary
circuit constant is an integer that determines the DC voltage
and current specifications of the secondary side, and it can be
selected according to the generator and transformer specifi-
cations of the primary side.

The secondary circuit constant comprises an inductor that
determines the rate of rise of the DC short-circuit current
(di/dt). This can be obtained by conducting a simple tran-
sient analysis of the series RL circuit. The di/dt represents
the interval immediately after the fault occurs, until the
breaker voltage equals or exceeds the system voltage, and the
fault current and arc voltage continue to rise. This interval
determines the di/dt, and the component values that satisfy
requirement 1) mentioned earlier can be derived.

The simulated fault current in the test bed can be calculated
using the following Eq. (1).

Vdc − L
di
dt

− Ri = 0 (1)

i is the fault current, Vdc is the DC source, and R is the
resistance to the fault point when the fault occurs. Based
on circuit theory, if the initial steady-state load current is
assumed to be IN in Eq. (2), the following equation Eq. (2)
can be derived.

i(t) =
Vdc
R

(1 − e
−t
τ ) + IN e

−t
τ (2)

In this case, τ = L/R, which is the time constant of the cir-
cuit. From Eq. (2), the fault current value converges to Vdc/R
as time passes, and there is no interrupting in this section.
Based on the mathematical model derived from this section,
the inductance and resistance values of the secondary side
of the short-circuit test circuit were derived. The parameter
values of each component and circuit constant are shown in
the following Table 1.

B. LOW-VOLTAGE DC CIRCUIT BREAKER MODEL
To verify the accuracy and reliability of the black-box arc
model’s description of the DC arc, it is important to identify
the characteristics of the CB that needs to be modeled and
assess how effectively the black-box model, which consists
of first-order differential equations based on arc conductivity,
can describe the arc in LV DCCBs. Therefore, the DC arc
modeling process of the black-box arc model is presented as

FIGURE 2. Typical waveform of LV DC arc. According to the behavior of
the arc in the mechanical DCCB, it is divided into three phases: 1) arc
ignition and commutation, 2) arc motion, and 3) arc splitting [6].

follows. Firstly, the general characteristics and behavior of
LV DC arcs are described to identify the specific character-
istics of the LV DC arcs that need to be modeled. Secondly,
the purpose and definition of the black-box arc model, along
with the principles of arc description characteristics, are
explained. The feasibility of the black-box arc model in
describing the DC arc is analyzed and presented. Thirdly,
the detailed characteristics of the Schwarz and the Kema arc
model are described, and the reasons for selecting these two
models as tools for LV DC arc description are explained. The
fourth section describes the process of selecting the paramet-
ric sweep values for each model, which serve as the initial
values for the optimization technique. Lastly, for the purpose
of comparing the results of the DC applicability verification
simulation, the specifications, and voltage/current waveforms
of an actual DC CLCB (based on the breaker models used in
this simulation) are presented.

1) CHARACTERISTICS OF LV DC ARC
As mentioned in the introduction, low-voltage DC breakers
utilize mechanical mechanisms similar to AC breakers for
interrupting fault currents. However, the interruption process
and sequence for DC, without current zero, are significantly
different. Therefore, it is crucial to analyze and understand
the characteristics of LVDC arcs thoroughly to accurately and
reliably model arc depiction using the black-box arc model.
For successful depiction of the LVDC arc using the black-box
arc model, it is necessary to satisfy the typical waveform of
the LVDC arc shown in Fig. 2. To simplify the interrupting
sequence of an LV mechanical DCCB (direct current circuit
breaker), the arc generated between the breaker contacts is
directed into an arc splitting chamber where it is dispersed
and cooled, leading to an increase in arc resistance. As the arc
resistance rises, a reverse voltage is generated in the breaker.
When this voltage equals or exceeds the grid voltage, the fault
current is interrupted.

In reference [6], the arc behavior of this LV mechanical
DCCB is analyzed, and the interrupting phase is divided into
three stages by studying the arc motion from the time the arc
occurs inside the breaker until it is extinguished. The first
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stage is the arc ignition and commutation stage, where the
arc generated at the contact is commuted to the arc runner.
The second stage is the arc motion phase, during which the
arc moves along the arc runner towards the splitting plate.
The third stage is the arc-splitting stage, where the arc is
cooled by the splitting plate, causing the arc resistance to
rise. As a result, the fault current decreases rapidly, and the
arc voltage spikes. While the details of each stage may vary
among different mechanical DC breakers, it can be observed
that they all go through similar stages to extinguish the arc.
The short circuit test results of the actual breaker used in this
paper exhibit similar characteristics. Therefore, it is highly
important to characterize DC arcs for black-box arc modeling
based on actual breaker data.

2) APPLICATION OF BLACK BOX ARC MODEL FOR LVDC ARC
The black-box arc model is a first-order differential equation
based on arc conductivity and can be considered as an
approximate model derived from experimental results [11].
The black-box arc model has the advantage of representing
complex arcing phenomena in a straightforward manner. The
simplicity of the calculation process makes it a valuable tool
for describing the interaction between the switching arc of a
circuit breaker and its power system. The ultimate objective
is to establish a specific mathematical model using a black-
box model, leveraging voltage and current traces obtained
from actual circuit breaker tests. This model can then be used
to predict the arcing behavior of the breaker under different
circuit conditions. Various derivative models, including the
basic models like CASSIE and MAYR, are derived from the
first-order differential equation presented in the following
Eq. (3).

1
g

·
dg
dt

=
1

T (i,G)
·

ui
P(i,G)

− 1 (3)

where:
G: Arc Conductance
u: Arc voltage
i: Arc current
P, T : Black-box model parameters
The differential equation satisfies the law of conservation

of energy. As seen from the equation above, the black-box arc
model includes parameters represented by P and τ . Since the
objective is to provide a simple representation of a complex
arc, the various arc phenomena are described by the variables
P and τ . P represents the cooling power, which describes the
rate at which energy is dissipated from the arc into the sur-
rounding gas or vapor. This cooling effect can occur through
mechanisms like heat conduction, radiation, or convective
cooling. Cooling power is a crucial parameter in black-box
arc models as it influences arc behavior, including arc length,
temperature, and ionization level.

τ , on the other hand, represents the arc time constant,
which characterizes the response time of an electric arc to
changes in arc current or voltage. It can be defined as the
time required for the arc voltage to change by a factor of 1/e

FIGURE 3. Overall application procedure of Black-box arc model to LVDC
arc design. Black box arc model can be designed based on actual
experimental results, and a suitable model and reliable parameter
selection process are very important.

(approximately 0.37) in response to a step change in current.
The arc time constant depends on arc characteristics such as
length, temperature, and the gas or vapor surrounding the
arc. In general, shorter arcs, higher temperatures, and more
ionized gas or vapor result in lower arc time constants. The
arc design procedure utilizing the black-box arc model is
presented in Fig. 3 and is entirely based on real-world data.

3) SCHWARZ ARC MODEL
In this paper, an LVDC arc applicability verification study
is conducted using two existing black-box models. The first
model under investigation is the Schwarz model. The DC
arc applicability verification study of the Schwarz model
has been previously conducted in the existing literature [26].
This study aimed to examine the behavior of LVDC arc
description for each free parameter through the parametric
sweep method, and it has been found that the Schwarz model
possesses sufficient capability to represent the LVDC arc.
Among various derivatives of the black-box arc model, the
Schwarz arc model stands as the most widely used model
[31]. It offers the advantage of effectively representing both
the large and small current sections of the arc and can be
expressed by the following Eq. (4). The Schwarz arc model
involves a total of four free parameters (τ , P, α, β), allowing
for the selection of appropriate parameter values to describe
the arc. For implementation, the Schwarz arc model utilizes
the blockset [32] provided by Delft University of Technology
and is applied to the power system using the Differential
Equation Editor (DEE) tool in Matlab/Simulink. The model
incorporates two inputs (arc voltage, CB_trip), four free
parameters, and an initial value for the arc conductivity.

1
g

·
dg
dt

=
1

τ0gα
· (

gu2

P0gβ
− 1) (4)

where:
τ0: Arc time constant
α: Exponential components of conductance of τ (g)
P0: Cooling power
β: Exponential components of conductance of P(g)
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4) KEMA ARC MODEL
The second model selected is the KEMA arc model. The
reason for selecting this model is that, as mentioned in the
previous section on LVDC arc characteristics, the arc of LV
DCCB is extinguished in a total of three stages. Therefore,
it was determined that the entire arc extinguishing process
would be better described by utilizing an expression that
consists of three first-order differential equations, such as the
Kema arc model, instead of a single arc conductivity, where
the electric arc generated during the entire interrupting pro-
cess is divided into sections and the total arc conductivity is
calculated as the sum of the arc conductivity of each section.
The Kema arc model can be expressed as Eq. (5)-(9), which
consists of 6 parameters (3 free parameters, 3 constant CB
parameters).

dg1
dt

=
1

τ1P1
gλ1
1 u

2
1 −

1
τ1
g1 (5)

dg2
dt

=
1

τ2P2
gλ2
2 u

2
2 −

1
τ2
g2 (6)

dg3
dt

=
1

τ3P3
gλ3
3 u

2
3 −

1
τ3
g3 (7)

1
g

=
1
g1

+
1
g2

+
1
g3

(8)

u = u1 + u2 + u3 (9)

Same as the Schwarz model, the Kema model also utilizes
the blockset developed by Delft University of Technology.
The Kema model consists of a total of 8 inputs, each of which
is determined based on the above equations of the Kema
arc model. These inputs represent the conductivity applied
to the power grid circuit. Apart from the three free param-
eters, which can be adjusted according to the simulation
requirements, the Kema arc model includes three constant
CB parameters. These constant parameters are associated
with the actual design parameters of the breaker and remain
unchanged throughout all simulations. The values of k1, k2,
and k3 can be defined using the following Eq. (10). The
constant CB parameters are derived by combining cooling
power and arc time constant values for each interval, and
their selection is performed randomly based on the actual
interrupting graph of the DC CLCB.

k1 =
τ1

τ2
, k2 =

τ2

τ3
, k3 =

P2
P3

(10)

5) THE SELECTION OF PARAMETER SWEEPS VALUES
To achieve fast and accurate results using the parameter
sweepmethod, it is crucial to appropriately select the parame-
ter sweep values. Generally, the selection of parameter sweep
values should be based on identifying the characteristics of
each applied model and conducting a precise analysis of the
behavior and characteristics of the individual free parameters.
The characteristics of the Schwarz model parameters can be
found in the previous study [26]. The parameters τ and α

determine the peak current and interrupting time of the arc,
while the cooling parameter P determines the peak voltage

TABLE 2. Parameter sweep values of schwarz & kema arc model.

value, and the parameter β determines the rise rate of voltage.
For the Schwarzmodel, the sweep values for each free param-
eter are selected based on the simple following assumptions:

1) τ : In general, τ is set to 0.8 ms or lower, considering the
arc time constant in the air insulation of DC condition.

2) α, β: α and β represent variables that contribute to the
arc time constant equation in the Schwarz model, and
their values are chosen between 0 and 2, relying on
general simulation experience and references.

3) P: The selection of P is determined by considering the
voltage and current waveforms of the actual interrupt-
ing curve. In the Schwarz model, the cooling power
(P) is chosen to be 10 MW or lower, considering the
parameter β that needs to be considered.

Next, the sweep values for the three free parameters of
the Kema arc model and the three k factors were deter-
mined based on the following assumptions, considering the
three-step interrupting process of the DC breaker:

1) τ1: Similar to the Schwarz model, τ1 was set to 0.8 ms
or lower to account for air insulation.

2) P1: Considering the three stages of the DCCB, the
cooling power of the first and second stages of the
CLCB is very high, so it was set to 10 MW or higher.

3) P2: P2 was selected as 1.5 MW based on the black-box
arc model study of DC HSCB [27].

4) k1: This parameter represents the relationship between
the arc time constant of phase 1 and phase 2, and it was
chosen as 0.25 considering the very fast initial voltage
rise speed of DC CLCB.

5) k2: This parameter represents the relationship between
the arc time constant of phase 2 and phase 3, and it was
selected as 0.8 to reflect the characteristic that the arc
voltage quickly reaches the peak value and remains at
a similar level until it is interrupt.

6) k3: Due to the arc characteristics of the DCCB, a signif-
icant amount of arc energy is dissipated at the moment
of interrupting, and k3 was chosen as 0.33 to reflect this
characteristic.

For the Kema arc model, the reference design value of the
k factor for the DC CLCB was not determined, so it was
arbitrarily selected based on the results obtained during the
parametric sweep simulation. The values shown in Table 2
represent the closest values to the selected ones among the
performed parametric sweeps.
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FIGURE 4. Current and Voltage waveform of actual DC CLCB. Actual
interrupting waveform of a 1.5 kV/4kA/60 kA DC CLCB, showing the
interruption at 35 kA peak with fast operation due to internal self OCR.

6) ACTUAL LOW-VOLTAGE DC CIRCUIT BREAKER
The arc modeling simulation conducted in this paper was
based on the short-circuit test results of actual breaker prod-
ucts, utilizing the breaker short-circuit test experimental
results and data provided byKorea utility provider, a domestic
heavy electrical equipment company. The specific breaker
used for the test is an LV DC CLCB rated at 1.5 kV /
4 kA. This product has the advantage of a faster interrupting
speed compared to general ACB (Air Circuit Breaker) and
is capable of interrupting fault currents of up to 60 kA. The
voltage and current results obtained from the short-circuit test
of the actual breaker are depicted in Fig. 4. The waveform
represents the system where a short-circuit current is applied
while the breaker is engaged, and the fault current is detected
by the relay integrated within the breaker itself.

C. FUNCTION OPTIMIZATION TECHNIQUE
Functional optimization techniques are used in many fields,
such as imaging technology, video identification, and con-
trol, leading to the utilization of various methods. Multiple
function optimization techniques and artificial intelligence
algorithms (AI) have been employed to optimize the param-
eters of the black-box arc model [14], [27]. In general, the
least-squares method is the technique used to optimize the
function of observations and model values. Simply put, it can
be explained as amethod to determine the parameter values of
the model such that the sum of the squared errors of the resid-
uals between the observed and model values is minimized.
This is demonstrated in the following Eq. (11)

n∑
i=1

r2i =

n∑
i=1

(yi− f (xi))2 (11)

The least squares methods can be categorized into linear
and nonlinear techniques based on the nature of the relation-
ship between the model and the parameter values. In the case
of the black-box arc model utilized in this paper, it is evident
that the relationship between the model and the parameters
is nonlinear. Consequently, for parameter optimization to

FIGURE 5. The principle of GNM (right) and GDM (left). GNM has the
disadvantage of not producing an accurate solution when the initial value
is far from the solution, while GDM takes longer as the solution gets
closer.

FIGURE 6. Overview of LMA principle. Combining GDM and GNM.

approximate the actual observations and model values [29],
a nonlinear least-squares method should be employed.

1) PURPOSE OF THE FUNCTION OPTIMIZATION TECHNIQUE
The black-box arc model comprises a first-order differential
equation based on the conductivity, as mentioned earlier.
It reflects the arc current and voltage characteristics through
the free parameters of the model. By complying with the
law of energy conservation, which states that the generated
arc energy and dissipated arc energy are conserved, the
conductivity of the arc can be adjusted by modifying the
parameter values of cooling power and arc time constant.
Increasing the cooling power and reducing the arc time con-
stant leads to a faster decrease in conductivity, resulting in
the dissipation of the arc. Consequently, parameter values
of the black-box model can effectively describe the occur-
rence of DC arcs. Therefore, parameter optimization must
be performed for black-box arc modeling. There are sev-
eral methods available for function optimization, but in this
paper, the LMA, which is a well-known approach for solving
nonlinear least-squares problems, is employed to tackle the
parameter optimization problem of the black-box arc model
where the relationship between the parameters and the model
is nonlinear. In addition, LMA is particularly specialized for
solving local optimization problems and are well suited for
problems where the objective function is relatively smooth
and there are no multiple global optima, such as the BB
model.
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FIGURE 7. Application procedure of LMA to LV dc arc parameter
optimization. Based on the initial parameter value selected based on the
parametric sweep method, the LM parameter µ is updated every iteration
to derive the optimal solution.

2) LEVENBERG-MARQUARDT ALGORITHM (LMA)
As mentioned earlier, the Levenberg-Marquardt Algorithm
(LMA) is the most widely employed method in non-
linear function optimization techniques. It combines the
Gauss-Newton method (GNM) and the Gradient Descent
method (GDM), leveraging their respective strengths and
compensating for their shortcomings. The principles of these
two methods can be easily understood by referring to Fig. 5.

In essence, LMA acts as a gradient descent method when
the solution is far away, and as it approaches the solution,
it switches to the Gauss-Newton method to refine the solution
and an overview is shown in Fig. 6. As shown in the figure,
the LMA starts from an arbitrary starting point and iteratively
optimizes a function f(x) to find its solution. The GDM finds
the solution in the direction perpendicular to the contour line
of f(x), while the GNMfinds the curvature of the contour line
and derives the solution by finding a point on the curvature.
Since the LMA parameter µk changes with each iteration,
the GDM method is more effective at finding the solution
quickly when the solution is far from the objective function,
while the GNMmethod is more effective when the solution is
close to the objective function since the slope of the contour
line is close to zero and GDM takes longer to derive the
solution. In summary, GDM exhibits the drawback of slower
convergence speed when it is close to the solution, while
GNMmay fail to find a solution when it is far from the actual
solution. Therefore, it determines the proximity between the
calculated value and the target value and increases the LM
parameter µk if the proximity increases, and decreases µk if
the proximity decreases, and performs function optimization.

The expressions for these three methods are as follows:

Pk+1 = Pk − 2λkJTr (pk )r(pk ), k ≥ 0 (12)

Pk+1 = Pk − (JTr Jr )
−1JTr r(pk ), k ≥ 0 (13)

Pk+1 = Pk − (JTr Jr + µkdiag(JTr Jr ))
−1JTr r(pk ), k ≥ 0

(14)

The observations can be denoted as (xi, yi), the model
parameters as p= (p1, p2, . . . , pm), the model as y=f(x,p), and
the residual as ri(p) = yi-f(xi,p). Additionally, Jr represents
Jr (Pk ), which indicates the value of the Jacobian matrix of
ri(p) at Pk . The GNM, GDM, and LMA relationships can
be more easily understood by utilizing the above equation,
which is explained in more detail below. First, equation
(12) represents the GDM method. GDM is a method that
finds the solution (the singular point that minimizes the error
function) by moving in the opposite direction relative to the
gradient λk , but with a step size proportional to the size of
the gradient. The GNM, on the other hand, considers both
the gradient and the curvature of the function to find the
solution (in the expression, JTr Jr stands for the Hessian of
the quadratic derivative and represents the curvature of the
function). In other words, it determines the step size to move
as (the magnitude of the gradient)/(the magnitude of the
curvature), so even if the gradient is large, if the curvature is
large (if the gradient changes rapidly), it moves a little, and if
the curvature is small (if the gradient changes little), it moves
a little more to find the minima. Therefore, the GNM has the
advantage of finding the solution much more accurately and
quickly than GDM. However, that method requires the calcu-
lation of the inverse matrix of (JTr Jr ). Therefore, if (J

T
r Jr ) is

close to a singular matrix (a matrix whose inverse does not
exist), the computed inverse may be numerically unstable,
causing the solution to diverge. Comparing the GNM with
the (LMA) in this Eq. (14), LMA is an improvement over
GNM by introducing a constant multiple uk of the identity
matrix to JTr Jr . This addition reduces the risk of divergence
and enhances the stability of the solution. The constant uk
is referred to as the damping factor, which behaves similarly
to GNM when it is small and akin to the gradient descent
method when it is large. From the formula, if µ → ∞,
(JTr Jr +µk )−1

→1/µk , so asµ gets larger, the LMAbecomes
similar to the GDMwith a step size of 1/µ. However, in LMA,
the damping factor uk is not a fixed value but varies at each
iteration. It takes on a small value if the present value is con-
verging steadily (GNM) and a large value if the solution is not
being found effectively (GDM). Depending on the method of
calculating this damping factor, LMA can be implemented in
different ways. Detailed descriptions of these models can be
found in various references [33], [34].
Consequently, this paper focuses on optimizing the param-

eter values of the black-box arc model using LMA. The
implementation of LMA was carried out using the Mat-
lab code provided in reference [29]. Utilizing this tool, the
optimization of each model parameter was performed by
repeating the procedure depicted in Fig. 7. Following the
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procedure shown in that figure, the initial values of the param-
eters required to activate the LMA were first determined, and
the objective function F(p), which was derived by analyzing
the DEE of the black-box arc model in the next chapter,
was inserted into the matlab code. The initial values of each
black-box arc model parameter were entered as the values
derived using the parametric sweep method. Then, according
to the LMA logic structure, the parameter optimization was
performed by repeating the procedure until the value of the
calculated residuals was below the value of ε (convergence
tolerance). The meaning and values of each initial parameter
are as follows. Weight represents the inverse of the standard
measurement errors (1/(y_dat′·y_dat)), ε is the convergence
tolerance (ε1 (for gradient) = 1e−3, ε2 (for parameters) =

1e−3, ε3 (for residuals) = 1e−1, ε4 (for L-M step) = 1e−1),
P_min and P_max (according to initial value of input param-
eters) are the max and min values of the calculated parameter
values, respectively, the number of iterations (10· number
of parameters), and µk is the LM parameter (1e−2). In this
paper, starting from the initial value of the L-M parameter, the
error between the actual data value and the calculated value
is compared with ε4, and if the error is in the direction of
increasing, the L-Mparameter is increased to find the solution
in the GDMmethod, and if it is in the direction of decreasing,
it is divided by the reduction factor to approach the GNM
method.

3) ANALYSIS OF DEE FOR SCHWARZ
BLACK-BOX ARC MODEL
To compare the results of each model with the actual data,
it is necessary to create separate model equations. Thus,
an analysis was conducted on the algorithm of the black-box
arc model employed to implement equations that can be
associated with the LMA Matlab code. As mentioned ear-
lier, the black-box arc model block-set was implemented
using DEE in Matlab Simulink to align with the character-
istics of the first-order differential equations defined in each
model.

Since the seven black-box arc model equations in the
block-set adhere to the same principle but with different
inputs and parameters, this chapter will focus on the analysis
based on the Schwarz model equation applied in this thesis.
DEE comprises initial values x0 = logx0, dx/dt, and y. The
input variables are arc voltage and CB_Trip, and if the arc
conductivity value x1 changes by the differential equation of
dx/dt according to the arc voltage, the value of x1 will be
output as y.
The 1/g· dg/dt of the Schwarz arc model can be represented

as d(lng)/dt, and when this expression is formulated as dx/dt
in the DEE, we have x=lng. Consequently, we observe that
exp(x)=g and verify that the expression has been correctly
implemented. The input value u(1) corresponds to the arc
voltage, while u(2) represents the CB_Trip value, which can
be either 0 or 1. Thus, we can observe that the expression
functions based on the CB_Trip value. x0 serves as the initial
value of x1 and represents the initial conductivity value when

the model is executed. The arc conductivity, which changes
according to the real-time input arc voltage, enters the input
port of the controlled current source through the output for-
mula, thereby impacting the system.

4) APPLICATION OF LMA FOR SCHWARZ ARC MODEL
PARAMETER OPTIMIZATION
The Levenberg-Marquardt Algorithm (LMA) provided in
reference [29] requires a model equation (black-box arc
model) that incorporates actual observations (breaker short-
circuit test results) and parameters to utilize the Matlab code.
Regarding the actual observations, data values were extracted
from the graph of the actual short-circuit test results using
the GETDATA program mentioned earlier. These extracted
data values were processed into matrix form to be applied
to the code. Now, it is necessary to create a model equation
to optimize the parameter values. The model equation was
developed based on the following simplified assumptions.
Ideally, the equations should be constructed to mimic the
actual simulation model precisely. However, implement-
ing such complex equations would be impractical and
challenging.

Initially, the model to be implemented was established by
analyzing the transient state of a simple DC R (dynamic)-
L (di/dt determination) series circuit. By defining g(t) as the
implementation expression of the DC power source E and the
black-box arcmodel, the following expression can be derived.

i(t)
g(t)

+ L
di(t)
dt

= E (15)

Applying circuit theory, we can create a current Eq. (18).

i(t) = is(t) + it (t), is(t) = Eg(t), it (t) = Aest (16)

Solving the first-order differential equation here, we get the
following arc current and voltage expressions.

i(t) = Eg(t) − Eg(t)e−
1

Lg(t) t (17)

U (t) =
i

g(t)
= E − Ee−

1
Lg(t) t (18)

As a result, by applying the arc model expression in the
above section to g(t), we can derive the arc voltage and current
expression of the DC short circuit, and the derived expression
can be implemented as a matlab function code and applied to
the LMA.

5) APPLICATION OF LMA FOR KEMA ARC MODEL
PARAMETER OPTIMIZATION
It is organized in the same format as the schwarz arc model,
and since the kema model consists of three equations, the
initial value x0 consists of three equations, and the arc voltage
u(1) consists of the sum of three equations. In addition, there
are 8 inputs (arc voltage, CB_Trip, τ1, τ2, τ3, P1, P2, P3), and
the model equations are implemented in the same sequence
as the schwarz arc model calculated earlier.
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FIGURE 8. The results of parametric sweep methods. Graph of results for
initial values selected based on the parametric sweep method. Schwarz
arc model (τ = 0.4 ms, P=7.35 MW, α = 0.12, β = 0.8), Kema model (τ1 =

0.6 ms, P1 = 11 MW, P2 = 1.5 MW).

IV. SIMULATION RESULTS
A. PARAMETRIC SWEEP METHOD
1) SCHWARZ ARC MODEL
As mentioned earlier, the Schwarz arc model comprises four
free parameters: τ , P, α, and β. By adjusting these parame-
ters, the breaker arc can be described. Initially, the breaker
arc characterization was carried out using the parametric
sweep method to select the initial parameter values for the
optimization simulation. The DC arc characterization for
each parameter of the Schwarz arc model was performed
based on the existing reference [26]. Furthermore, the arc
characterization of the LV DC CLCB designed in this paper
was conducted based on relevant references.

In the case of the DC CLCB, unlike general ACBs, it pos-
sesses the characteristic of rapidly interrupting the fault
current by detecting and breaking it off autonomously in case
of an accident, utilizing internal relays. Consequently, the
interrupting waveform of the DC CLCB differs from that of
a typical LV ACB. Therefore, several iteration simulations
were conducted based on fundamental prerequisites to deter-
mine each free parameter. Through a comparison with actual
arc current and voltage waveforms, initial parameter values
were derived, resulting in the waveform depicted in Fig. 8.
The initial parameter values were selected as τ = 0.4 ms,
P = 7.35 MW, α = 0.12, and β = 0.8.

2) KEMA ARC MODEL
For the Kema arc model, the same DC CLCB interrupting
voltage and current waveforms were utilized to derive the
parameter values. Regarding the parameter values, τ1, P1,
and P2 were selected by fixing the values of k1, k2, and
k3. However, since there is no available information on the
values of the k1, k2, and k3 constants for the breaker, the
values of k1 = 0.25, k2 = 0.8, and k3 = 0.3333 were
randomly selected, as mentioned earlier. The Kema model
consists of three bins and is primarily based on the analysis

FIGURE 9. Convergence plot of X2
v (Residuals2) and λ (LM parameter) for

Schwarz arc model.

of AC breakers, which posed difficulties in describing the
voltage wave form of DC CLCBs. As previously mentioned,
DC CLCBs can be rapidly interrupted, causing the breaker to
trip and the arc voltage to rise quickly. However, in order to
represent this voltage waveform using the Kema arc model,
the P value in the first phase must be selected as large, result-
ing in a significant increase in arc voltage until interrupting
occurs. Hence, it becomes challenging to accurately describe
the DC CLCB voltage curve where the arc voltage remains
relatively constant from the beginning. We selected the initial
parameters valeu based on the arc current waveform: τ1 =

0.6 ms, P1 = 11 MW, P2 = 1.5 MW.

B. ARC MODEL PARAMETER OPTIMIZATION
1) CONVERGENCE PLOT OF THE PARAMETERS AND X2

V
(RESIDUALS2),

∧
(LM DAMPING FACTOR)

The parameter values selected for each model through the
parametric sweep method are Pinit values, and parameter
optimization was performed by fitting the models with the
actual voltage and current waveforms of the CLCB. Fig. 9
and Fig. 11 display the convergence plots of χ2

v and λ for the
Schwarz and Kema arc models. The convergence plot illus-
trates the complete simulation trace of χ2

v and λ . Throughout
the simulation, we observe that, for the Schwarz arc model,
the value of χ2

v does not converge to 1 but rather converges to
89.6%. Additionally, for the Kema arcmodel, we can observe
that the χ2

v value is lower than that of the Schwarz arc model
85.4 % of the time. Moreover, λ starts with a high value at
the beginning of the simulation and gradually converges to 1,
indicating that the solution was initially found using GDM
and later optimized using GNM. Furthermore, by examining
the convergence plot for each parameter, we can see that
the initial parameter values selected by the parametric sweep
method are relatively accurate for the Schwarz model. How-
ever, in the case of the Kema model, we note a somewhat
significant increase in the P2 cooling power value.
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FIGURE 10. Optimization results of Schwarz arc model.

TABLE 3. Schwarz and Kema arc model fitted parameters.

2) COMPARISON WITH OPTIMIZATION CURVE
AND ACTUAL CURVE
The parameter optimization results of the Schwarz arc model
compared to the actual interrupting data are presented in
Fig. 10 and Fig. 12. Both the Schwarz model and the Kema
model exhibit a very high confidence interval with an R2

factor of 99 % for the fault current. However, when it comes
to voltage, the Schwarz model fits 89.6 % of the confidence
interval, while the Kema model fits 85.4 %, indicating a
slightly lower level of fitting accuracy. The Kema model
has been extensively studied to provide high accuracy for
the more common ACB. However, describing the voltage in
breakers with extremely rapid voltage rise and size, such as
CLCB, poses a challenge.

V. DISCUSSIONS
A. ARC MODEL PARAMETER OPTIMIZATION
In this paper, we optimized the parameters of the existing
Schwarz and Kema black-box arc models for describing the
LV DC CLCB arc characteristics and identified the following
features:

1) Regardless of whether it is AC or DC, the arc charac-
teristics can be expressed using the main parameters of
the black-box arc model: arc time constant and cooling
power. The voltage and current of an electric arc can
be described by the black-box arc model, which is
controlled by the change in arc conductivity, regardless
of the presence of a current zero point.

2) A shorter arc time constant results in faster arc extin-
guishing and a steeper upward slope of the arc voltage.
A higher cooling power leads to faster arc extinguish-
ing, which also affects the magnitude of the arc voltage.

FIGURE 11. Convergence plot of X2
v (Residuals2) and λ (LM parameter)

for Kema arc model.

FIGURE 12. Optimization results of Kema arc model.

3) For LV DCCBs, the fault current waveform is nearly
similar regardless of the model used, and accurate
fitting can be achieved by selecting the appropriate
arc time constant and cooling power from the existing
Schwarz and Kema black-box arc models.

4) However, when it comes to voltage, even with the
same interrupted fault current, different patterns are
observed depending on the topology of the mechanical
LVDCCB. It is challenging to achieve a perfect voltage
waveform using only the existing black-box arc model.
For instance, in the case of the CLCB applied in this
paper, the arc voltage differs from the typical breaker
waveform (where the arc voltage generally rises until
it is extinguished). Therefore, it is not easy to achieve
a perfect fit using optimization tools alone.

5) In the case of LV DCCBs, the trace of the arc voltage
generated when the contacts open is highly significant.
Even the slightest difference can lead to breaker failure.
Therefore, an additional method is required to accu-
rately describe the arc voltage of CLCBs.
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6) In this paper, parameter optimization was performed
and validated on the results of a single experiment
of DC CLCB. Uncertainty verification was performed
through residuals and goodness-of-fit judgments and
visual evaluation, thus credible results were obtained.
However, to ensure better reliability of optimized
parameters it is considered that the general validity
should be verified by performing repeated simulations
with various data of the same experiment, calculating
the standard error value to estimate the variability of the
parameter estimation, and calculating the confidence
interval.

B. COMPARISON ANALYSIS
A study was conducted to evaluate the applicability of the
parametric sweep method and LMA (Levenberg-Marquardt
Algorithm) for describing the DC CLCB arc characteristics
using the two most popular black-box models. Both methods
yielded excellent results in terms of describing the current
characteristic curve. However, when it comes to describing
the voltage characteristic curve, the Schwarz model performs
slightly better than the KEMA model.

In LVDCCBswith reverse voltage interrupting, the voltage
curve plays a crucial role in breaker design. The detailed
characteristics of each step of the voltage curve can determine
the success or failure of the interrupting operation. In the
existing KEMA model, the λ values, which determine the
characteristics of the arc model for each phase, are specified
as 1.4, 1.9, and 2, respectively. This setup gives significant
influence on phase 1 of the model in the large current range,
while the influence of phase 3 is relatively smaller. As a result,
the KEMA model can be an effective choice for AC systems
with a natural current zero point, accurately describing a
typical LV DCCB with a gradually increasing arc voltage.
However, it can be observed that the fitting reliability is
somewhat reduced for models with a large initial increase in
arc voltage, such as CLCBs.

C. PRACTICAL SCENARIOS
It is believed that black box arc model simulations performed
based on actual test can be examined for various practical
applications based on their reliability. We proposed that it
can be divided into two main areas, one is the characteristics
of arc time constant (τ ) and cooling power (P) parameter
applied to the arc model, which can make a contribution to
the improvement of actual CB performance, and the other
is the transient simulation aspect, which can effectively verify
the applicability of the designed CB to an arbitrary power sys-
tem. In this regard, we have proposed two practical scenarios,
which can be considered as future projects.

1) The simulation studies using the black-box arc model
can predict the results of tests that have not been
conducted or understand the behavior of relevant
parameter values of the arc model to design actual CBs.
For instance, combining actual tests with black-box

arc model simulations can reduce the opportunity
cost of physical verification tests, and analyzing the
graph of failed interruption test results can reveal the
cause of failure based on the influence of parameters τ

and P, subsequently applied to actual CB design.
2) The designed CBs applicability can be verified under

various power systems conditions. Utilizing the reliable
black-box arc model, we can judge the applicability
verification for arbitrary systems to which the designed
CB may be applied based on the simulation results.

VI. CONCLUSION
In this paper, we conducted simulations to assess the appli-
cability of the black-box arc model, primarily used for
AC breakers and arc description, to DC arcs. We specifi-
cally focused on arc modeling of CLCBs, which have the
capability of rapid interrupting among DCCBs. The widely
used Schwarz and Kema arc models were employed for
the black-box arc model, and the parameters of each model
were optimized using the Levenberg-Marquardt Algorithm
(LMA). The simulation results demonstrated excellent fit-
ting of the arc current; however, for the arc voltage, the
R2 factor was below 90%. It appears that in the case of
DCCBs, where the current zero point is an inherent charac-
teristic of the breaker, the arc voltage waveform is influenced
in detail by factors related to the breaker’s design. There-
fore, to enhance the reliability of DC circuit breaker design,
improvements that can incorporate these intricate factors of
the circuit breaker itself are necessary. Future research should
focus on modeling techniques that accurately reflect these
improvements.
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