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Abstract: In quantum computation, what contributes supremacy of quantum computation? One of the
candidates is known to be a quantum coherence because it is a resource used in the various quantum
algorithms. We reveal that quantum coherence contributes to the training of variational quantum
perceptron proposed by Y. Du et al., arXiv:1809.06056 (2018). In detail, we show that in the first part of the
training of the variational quantum perceptron, the quantum coherence of the total system is concentrated
in the index register and in the second part, the Grover algorithm consumes the quantum coherence in
the index register. This implies that the quantum coherence distribution and the quantum coherence
depletion are required in the training of variational quantum perceptron. In addition, we investigate
the behavior of entanglement during the training of variational quantum perceptron. We show that
the bipartite concurrence between feature and index register decreases since Grover operation is only
performed on the index register. Also, we reveal that the concurrence between the two qubits of index
register increases as the variational quantum perceptron is trained.

Keywords: coherence; coherence distribution; coherence depletion; entanglement; quantum machine
learning; quantum computer; quantum supremacy

1. Introduction

Quantum physics is known to provide better algorithms than its classical counterparts. Well-known
examples include quantum superdense coding, quantum teleportation, and quantum key distribution [1].
When quantum physics is applied to computation, quantum computation algorithms can demonstrate
remarkable improvements. In 1994, a factoring algorithm was suggested, that can factorize integer within
a polynomial-time [2]. Furthermore, a quantum search algorithm was provided, which can effectively find
a target in a large database [3–7]. For the implementation of quantum computation, many approaches have
been proposed, such as linear optics [8,9], trapped ions [10], quantum dots [11], and superconductors [12].
Recently, artificial intelligence, in which quantum algorithms are applied, has been studied [13].

In quantum computation, what contributes supremacy of quantum computation? One of those
candidates is entanglement [14,15]. D. Gottesman and I. L. Chuang suggested a universal quantum
computer using quantum teleportation [16]. Because entanglement is a resource of quantum teleportation,
Reference [16] reported that entanglement can contribute to a certain quantum computer.

Entropy 2020, 22, 1277; doi:10.3390/e22111277 www.mdpi.com/journal/entropy

http://www.mdpi.com/journal/entropy
http://www.mdpi.com
https://orcid.org/0000-0003-1204-5305
http://dx.doi.org/10.3390/e22111277
http://www.mdpi.com/journal/entropy
https://www.mdpi.com/1099-4300/22/11/1277?type=check_update&version=2


Entropy 2020, 22, 1277 2 of 15

However, entanglement is not a unique resource of quantum supremacy. This is supported by the
argument of deterministic quantum computation with one-qubit (DQC1) [17]. Further, A. Datta et al. [18]
insisted that quantum discord [19–21] can contribute to DQC1. It has been shown that quantum discord
can be related not only to quantum computation [22,23], but also to quantum protocols such as quantum
state merging [24], remote state preparation [25], and assisted optimal state discrimination [26–29].

Quantum correlations such as entanglement and quantum discord do not necessarily contribute
to the performance of quantum computation. This can be supported by the Deutsch algorithm [30],
where entanglement is not produced. When a maximally entangled state occurs in the algorithm,
the Deutsch algorithm cannot be performed correctly [31]. Similar to the Deutsch algorithm, the success
probability of the Grover algorithm is not relevant to entanglement, quantum discord, and non-locality [32].

In 2015, T. Baumgratz et al. proposed the quantity of quantum coherence [33]. Coherence can quantify
the concept of superposition. Moreover, T. Baumgratz et al. suggested the mathematical conditions that
the coherence measure should satisfy. Furthermore, they demonstrated that the l1−norm coherence and
relative entropy of coherence satisfied those conditions. Since the study of Reference [33], various coherence
measures have been proposed [34,35].

The concept of coherence, which may explain wave-particle duality [36–39], may facilitate
understanding of entanglement, quantum discord, and non-locality in a unified manner [40]. Therefore,
coherence may contribute to various quantum algorithms. For example, J. Ma et al. [41] suggested that
the quantum discord of DQC1 may be related to the consumption of coherence. Further, M. Hillery [42]
insisted that coherence may contribute to performing Deutsch-Josza algorithm [43].

H.-L. Shi et al. [32] demonstrated that the success probability of the Grover algorithm and generalized
Grover algorithm [44] was proportional to coherence depletion. Further, coherence depletion may be related
to the performance of the Deutsch-Jozsa algorithm and Shor algorithm [45]. Therefore, coherence depletion
can be considered as an important phenomenon in performing a quantum algorithm. Because the Grover
algorithm can be used for the efficient implementation of quantum perceptron [46,47], coherence depletion
may contribute to a machine learning task using a quantum property.

Recently, Y. Du et al. [47] proposed a variational quantum perceptron (VQP) using a multi-layer
parametric quantum circuit (MPQC) and the Grover algorithm. In a VQP, the classical dataset is encoded on
a quantum system composed of a feature register and an index register. After the MPQC and controlled-Z
gate, the Grover algorithm is performed on the index register.

To understand the resource of the variational quantum perceptron, in this study, we investigate how
coherence distribution [48–50] and coherence depletion occur in VQP training. First, we study the coherence
distribution in the MPQC. We discover that when the VQP is correctly trained, the MPQC distributes the
entire system’s coherence to the partial state in the index register. Further, as the number of iterations
in training increases, the coherence of the partial state increases as well. In addition, we demonstrate
that when VQP training is not correctly performed, the MPQC cannot distribute every coherence of
the total system into the coherence of the partial state in the index register. This implies that accessible
coherence disturbs VQP training, but the coherence of the partial state in the index register facilitates VQP
training. Subsequently, we analyze the coherence depletion of the Grover algorithm. We discover that if
VQP training is performed correctly, then coherence depletion occurs in the Grover algorithm. However,
when VQP training is not performed correctly, coherence depletion does not occur in the Grover algorithm.

In addition, we analyze the behavior of entanglement in VQP training, by measuring concurrence [51–53].
First, we investigate the bipartite concurrence [51] between the feature and index registers after operating
the MPQC. We discover that the bipartite concurrence between the feature and index registers diminishes.
It is due to that Grover operation is only performed on the index register. Subsequently, we investigate
the behavior of concurrence [52] of two qubits of index register after Grover operation. We show that the
concurrence increases as VQP is successfully trained.
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Our result can show how coherence and entanglement may influence the performance of the quantum
computer and quantum perceptron. It tells that the quantum system’s various characters can affect the
performance of the quantum computer and quantum perceptron. Further, our work can shed light on
understanding quantum supremacy.

The remainder of this paper is organized as follows. In Section 2, we briefly explain the mathematical
tool for coherence distribution. In Section 3, we present the behavior of coherence in VQP training.
Specifically, we explain the distribution of coherence in the MPQC. Also, we investigate how coherence
depletion occurs in the Grover algorithm. In Section 4, we discuss the coherence distribution and coherence
depletion in two examples (Sections 4.1 and 4.2). Also, we investigate the behavior of entanglement by
evaluating concurrence in the two examples. In Section 5, we discuss and conclude our results.

2. Mathematical Tools for Coherence Distribution

In this section, we briefly describe the measures for evaluating coherence. The starting point is that
the state without superposition [54] can be well expressed using a diagonalized operator having classical
probability distributions [1]. Moreover, the state is defined as an incoherent state. Next, we denote the set
of incoherent states as I . Subsequently, we can define a quantum operation, by which I is sent into I .
The operation can be considered as an incoherent operation. If the operation preserves the trace, one can
define the operation as an incoherent completely positive and trace-preserving map(ITPCPM). Hence,
the conditions that the coherence measure C(·) should satisfy are expressed as follows:

(C1) The necessary and sufficient condition for C(δ) = 0 is δ ∈ I .
(C2) Suppose that ICPTPM Φ(·) = ∑i Ki(·)K†

i
(C2-1) ICPTPM does not increase coherence, which implies that C(ρ) ≥ C(Φ(ρ)).
(C2-2) A selective operation Ki(·)K†

i does not increase coherence, which implies that C(ρ) ≥ ∑i piC(ρi).
Here, pi = Tr(KiρK†

i ), ρi = KiρK†
i /pi.

(C3) State mixing does not increase coherence, which implies that the convexity ∑i piC(ρi) ≥ C(∑i piρi)

holds.

One can see that the l1−norm coherence (Cl1) and the relative entropy of coherence (Crel) satisfy the
conditions above [33]. The l1−norm coherence (Cl1) and the relative entropy of coherence (Crel) can be
analytically defined as:

Cl1(ρ) = min
δ∈I
||ρ− δ||l1 = ∑

i 6=j
|ρij|,

Crel(ρ) = min
δ∈I

S(ρ||δ) = S(δ)− S(ρ).

Here, ||M||l1 = ∑i,j |Mij| is the l1−norm, S(·||·) is the relative von Neumann entropy, and S(·) is the
von Neumann entropy. Because l1−norm coherence and relative entropy of coherence satisfy (C1),
the minimum of these coherence measures is zero. Meanwhile, when ρd is a d-dimensional maximally
coherent state, the maximum of l1−norm coherence (relative entropy of coherence) is d− 1 (log2 d).

Unlike a quantum correlation, coherence can be applied to a single system. In addition, the coherence
of a multipartite system can be defined. For a bipartite system AB, the coherence C(ρAB) of ρAB is expressed
as [48]

C(ρAB) = C(ρA) + Cacc
A + C(ρB) + Cacc

B + Cr
AB.
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Here, ρA = TrBρAB and ρB = TrAρAB. Cacc
A (Cacc

B ) is the accessible coherence of system A(system B),
where Cacc

A is defined as follows:

Cacc
A = ∑

i
piC(ρA,i)− C(ρA), ρA,i =

TrB[I ⊗ΠiρAB I ⊗Πi]

Tr[I ⊗ΠiρAB I ⊗Πi]
, pi = Tr[I ⊗ΠiρAB I ⊗Πi].

Here, Πi = |i〉 〈i| is an orthogonal basis of Hilbert space of system B. Cacc
B can be defined similarly as

Cacc
A . Therefore, the local coherence of system A(B) is given as CA = C(ρA) + Cacc

A (CB = C(ρB) + Cacc
B ).

Cr
AB is remaining coherence. The remaining coherence is not localized on system A or system B. If the

l1−norm coherence or the relative entropy of coherence is used as a coherence measure, then the remaining
coherence becomes non-negative [48].

3. Coherence Processing in VQP Training

VQP is an quantum computer algorithm of a perceptron [55]. In a classical algorithm, a perceptron
can be performed as follows. Suppose that a training datasetD = {(~xi, yi)}N−1

i=0 is provided. Here, ~xi ∈ RM

is a data vector and yi ∈ {+1,−1} is the label corresponding to data vector ~xi. The purpose of perceptron
is to find the hyperplane ~W ∈ RM that minimizes −∑N

i=1 sign(yi ~W · ~xi). When in the VQP algorithm
hyperplane ~W is correctly found, two halfspaces contain data vectors with correct labels. If a mislabeled
data vector ~xk is in the halfspace, we must find the ~xk among every data vector in the half-space. When we
use the Grover algorithm in this process, we can find the mislabeled data vector, with query complexity
of O(

√
N).

The VQP proposed by Reference [47] is shown in Figure 1. It comprises a log2 M qubit feature
register(RF) and log2 N qubit index register(RI). The initial state of the feature register and the index
register is expressed as |0〉⊗ log2 N+log2 M. Udata encodes the values of the dataset into the initial state.
Suppose that the label of the k-th data vector is incorrect and Udata provides a quantum state of
|Φk〉 = Udata |0〉⊗ log2 N+log2 M. Hence, the quantum computer performs P-times of the multi-layer
parametric quantum circuit (MPQC) V1(~θ,~φ), V2(~φ), · · · , VP(~φ) on |Φk〉. Here, V1(~θ,~φ)(Vi 6=1(~φ)) depends
on ~θ,~φ(~φ). Vi is described in Figure 1b. In Figure 1b, UL1(

~θ), UL2(~φ), ~θ, and ~φ are expressed as
UL1(

~θ) = ∏L1
i=1 U(~θi), UL2(~φ) = ∏L2

i=1 U(~φi), ~θ = (~θ1, · · · ,~θL1), and ~φ = (~φ1, · · · ,~φL2), respectively.
In V1(~θ,~φ), UL1(

~θ) and the multiqubit controlled-Z gate changes the phase of the mislabeled data.
UL2(~φ) eliminates entanglement between the feature register and the index register. G1 performs the
Grover algorithm on the index register. In Vi 6=1(~φ), UL1 is replaced by U†

L2
. To perform an identical

calculation, the entanglement between the feature register and the index register should be created.
The quantum circuit U(~θi) can be found in Figure 1c. Here, RX , RY, and RZ are single-qubit rotation gates
of the x, y, and z components, respectively.

When quantum computations are performed in P-times, quantum computer measures each qubit
using a projective measurement {|0〉 〈0| , |1〉 〈1|}⊗ log2 N . Suppose that the result of the measurement is
~q(~θ,~φ) = (q(0;~θ,~φ), · · · , q(N − 1;~θ,~φ)). Here, q(i;~θ,~φ) is the probability that the result of the index
register is i. The purpose of the VQP is to train the quantum circuit such that the measurement probability
distribution ~q becomes close to the target probability distribution ~p = (p(0), · · · , p(N − 1)). Here,
when i 6= k, we have p(i) = 0. When i = k, we have p(k) = 1. The training of a quantum circuit is
provided by a classical algorithm. The measurement probability distribution, target probability distribution,
and (untrained) circuit parameter determine the loss of the maximum mean discrepancy (MMD):

LMMD(~θ,~φ;~p,~q) = ∑
x,y

q(x;~θ,~φ)q(y;~θ,~φ)K(x, y)− 2 ∑
x,y

q(x;~θ,~φ)p(y)K(x, y) + ∑
x,y

p(x)p(y)K(x, y).
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Here, K(x, y) = exp(−|x − y|2/2σi) is a Gaussian kernel [56], and σi is the bandwidth. The quantum
circuit is trained in the manner in which the MMD loss diminishes. Assuming that the learning rate is r,
the parameter is updated as (~θ,~φ)→ (~θ,~φ)− r~∇~θ,~φLMMD(~θ,~φ;~p,~q) [57]. Here, ~∇~θ,~φ is the gradient with

respect to~θ and ~φ.
The quantum algorithm comprises two processes. First, the MPQC should focus on the encoded

information of the quantum state in the index register. Second, the Grover algorithm should effectively
obtain the concentrated information in the index register. One can guess that the former is related to the
coherence distribution, and the latter is related to coherence depletion.

Figure 1. Schematic of variational quantum Perceptron (VQP) model [47]. (a) Entire VQP schematic is
shown. (b) Structure of multi-layer parametric quantum circuit (MPQC) composing VQP. (c) Structure of
quantum circuit U(~θ) is shown.

3.1. Coherence Distribution Process

In the VQP, every information of dataset D is encoded into the feature and index registers. We can
guess that for the Grover algorithm to find a mislabeled data, the MPQC should concentrate coherence into
the index register. Therefore, we should train the VQP such that after operating the MPQC, the coherence
distribution behaves as in the case of a successful training, as shown in Figure 2a. One should note that
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every coherence of the index register does not facilitate the Grover algorithm. The index register’s local
coherence comprises the coherence and the accessible coherence of the partial state. We can see that the
index register’s local coherence seems to be directly related to VQP training. The following two findings
are obtained from our results. First, when the VQP is correctly trained, the accessible coherence of the
index register and the feature register disappear. Second, the coherence of the index register state increases
up to a specific value. Therefore, one can conclude that the accessible coherence hinders VQP training,
whereas the coherence of the index register state facilitates VQP training.

3.2. Coherence Depletion Process

As we explained previously, the MPQC composing the VQP strengthens the coherence of the index
register state. As shown in Figure 2b, when VQP training is correctly trained, the Grover algorithm
consumes the coherence of the index register state. Further, we will demonstrate that even when during
performing the Grover algorithm accessible coherence occurs, the Grover algorithm consumes the
accessible coherence. However, as shown in Figure 2b, if VQP training is not correctly trained, the index
register’s local coherence increases, which degrades the Grover algorithm’s performance. This is because
coherence depletion should occur when the Grover algorithm is correctly performed [32].

Figure 2. (a) Coherence distribution after operating i-th MPQC. In the schematic and graph, Cacc
F,i (Cacc

I,i ) is
the accessible coherence of the feature register(the index register). (b) Coherence depletion after performing
i-th Grover algorithm.

4. Simulation Examples of Training

In this section, we analyze the relationship between VQP training and coherence, by using the
examples in Reference [47].

4.1. Example 1

We consider an example where the dataset is D = {(1, 0, 1), (1, 0, 1), (1, 0, 1), (0, 1,−1)} [47].
We assume that the mislabeled data is ~x4 = (0, 1) in the dataset. The VQP for this problem is described
in Figure 3a. In Figure 3a, Udata is composed of the Hadamard gate and controlled-controlled-X gate.
Because in this example we have M = 2 and N = 4, the MPQC comprise single qubit rotation gates RX , RY,
and RZ. The disentanglement gate can be constructed by the controlled-controlled-X gate. If training can be
performed correctly, the measurement probability~q(~θ) converges to the target probability ~p = (0, 0, 0, 1).
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In the process of training VQP of Figure 3a, the coherence distribution and the coherence depletion
are displayed in Figure 3b–f. Figure 3c,e show the l1−norm coherence, and Figure 3d,f show the relative
entropy of coherence. Since the index register (feature register) is a 4-dimensional (2-dimensional) quantum
system, the maximum of l1−norm coherence is 3 (2), and the maximum of relative entropy of coherence is
2 (1). As shown in Figure 3, the local coherence of the index register (purple solid line) shows maximal
coherence regardless of the iteration. Meanwhile, the accessible coherence of the index register (dotted blue
line) converges to zero as the number of iterations increases. In addition, the coherence of the index register
state(solid blue line) converges to local coherence. This implies that the coherence of the index register
state contributes to the VQP training.

Figure 3. (a) Schematic of VQP model for dataset of Example 1. (b) Probability q(4) for the measurement
result to be i = 4. (c) l1−norm coherence before performing Grover algorithm G. (d) Relative entropy
of coherence before performing Grover algorithm G. (e) l1−norm coherence after performing Grover
algorithm G. (f) Relative entropy of coherence after performing Grover algorithm G. [Line description
of (c,d)] Solid black (blue) line corresponds to a coherence of feature (index) register state C(ρF) (C(ρI)).
Dashed black (blue) line corresponds to an accessible coherence of feature (index) register Cacc(ρF)

(Cacc(ρI)). Solid red (purple) line corresponds to a local coherence of feature (index) register C(ρF) +

Cacc(ρF) (C(ρI) + Cacc(ρI)). [Line description of (e,f)] Solid black line corresponds to a coherence of index
register state C(ρI). Dashed black line corresponds to an accessible coherence of index register Cacc(ρI).
Solid red line corresponds to a local coherence of index register C(ρI) + Cacc(ρI).
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As shown in Figure 3, the coherence of the feature register state(solid black line) converges to zero.
Also, the accessible coherence of the feature register(dotted black line) converges to zero. Therefore,
the local coherence of the feature register decreases as the number of iterations increases.

4.2. Example 2

This example has the dataset D = {(~xi, yi)}7
i=0, given by the following data vectors [47]:

~x0 = [0.6, 0.8,− 1√
2

,− 1√
2
], ~x1 = [1, 0,− 1√

3
,−

√
2
3
], ~x2 = [0, 1,−1

3
,−
√

8
3

],~x3 = [
1
2

,

√
3

2
,−1, 0],

~x4 = [0.8, 0.6,−
√

3
3

,−
√

6
3

], ~x5 = [

√
6
7

,
1√
7

,− 1√
5

,−
√

20
5

], ~x6 = [−
√

3
3

,−
√

3
6

, 0.6, 0.8],

~x7 = [−
√

3
3

,−
√

3
6

, 0.6, 0.8].

Here, the correct classification is defined as follows: For data vector ~xi = [xi1, xi2, xi3, xi4], when xi1, xi2 > 0
and xi3, xi4 ≤ 0, the label yi = +1 is assigned, but when xi1, xi2 ≤ 0 and xi3, xi4 > 0, the label yi = −1 is
assigned [47]. In this example, we assume that y0 = y1 = · · · = y5 = + 1, y6 = − 1, y7 = 1, which means
that the mislabeled data is y7.The VQP model for this example is shown in Figure 4. Because the number
of mislabeled data is one, the number of optimal iterations is l = (π − 2θ)/4θ ' 1.6734 [3]. Here, we have
θ = sin−1(1/

√
8). Therefore, the VQP model contains two Grover operations G1 and G2. In addition,

we have L1 = L2 = 3.
After training is completed, the probability of success becomes 80.2%. When the number of iterations

is 12, the success probability of the VQP becomes a local minimum. Since the index register (feature register)
is an 8-dimensional (4-dimensional) quantum system, the maximum of l1−norm coherence is 7 (3), and the
maximum of relative entropy of coherence is 3 (2). Figure 4c–f show the l1−norm coherence before(after)
performing G1 and G2. The success probability in Figure 4b is similar to the coherence of the index register
state shown in Figure 4c,d. When the number of iterations is approximately 12, the coherence of the index
register state(solid blue line) becomes a minimum. As the number of iterations increases, the coherence of
the index register state converges to a maximum. Meanwhile, the accessible coherence of the index register
state(dotted blue line) and the feature register state(dotted black line) vanishes as the number of iterations
increases. Therefore, most of the local coherence in the index register is the coherence of the index register
state. Further, the manner in which G1 and G2 affect the local coherence of the index register is noteworthy.
That is, while G1 does not consume the local coherence, the local coherence of the index register diminishes
in G2. Therefore, to understand VQP training, it is important to determine where coherence depletion
occurs in the Grover operation.

Figure 5 shows the case where VQP training fails. Here, we consider y0 = y1 = · · · = y5 = y6 =

+1, y7 = −1, where the mislabeled data is y7. As shown in Figure 5a, the success probability q(7) decreases
from 43.28% to 38.26%. In Figure 5a,b, the accessible coherence of the index register(dotted blue line) and
the accessible coherence of the feature register(dotted black line) do not vanish. Further, the coherence of
the index register state(blue solid line) diminishes constantly before performing G2. Figure 5c,d shows
that the coherence depletion occurs in G1, but the coherence increase in G2. This implies that these Grover
operations cannot consume the l1−norm coherence appropriately.
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Figure 4. VQP model of example 2 [47] for succeful case. (a) The schematic of VQP model. (b) The success
probability of VQP. (c) l1−norm coherence before performing GA1. (d) l1−norm coherence before
performing GA2. (e) l1−norm coherence after performing GA1. (f) l1−norm coherence after performing
GA2. [Line description of (c,d)] Solid black (blue) line corresponds to the coherence of feature (index)
register state C(ρF) (C(ρI)). Dashed black (blue) line corresponds to the accessible coherence of feature
(index) register Cacc(ρF) (Cacc(ρI)). Solid red (purple) line corresponds to the local coherence of feature
(index) register C(ρF) + Cacc(ρF) (C(ρI) + Cacc(ρI)). [Line description of (e,f)] Solid black line corresponds
to the coherence of index register state C(ρI). Dashed black line corresponds to the accessible coherence of
index register Cacc(ρI). Solid red line corresponds to the local coherence of index register C(ρI) + Cacc(ρI).
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Figure 5. VQP model of example 2 [47] for a failed case. (a) The success probability of VQP. (b) l1−norm
coherence before performing GA1. (c) l1−norm coherence before performing GA2. (d) l1−norm coherence
after performing GA1. (e) l1−norm coherence after performing GA2. [Line description of (b,c)] Solid
black (blue) line corresponds to the coherence of feature (index) register state C(ρF) (C(ρI)). Dashed black
(blue) line corresponds to the accessible coherence of feature (index) register Cacc(ρF) (Cacc(ρI)). Solid red
(purple) line corresponds to the local coherence of feature (index) register C(ρF) + Cacc(ρF) (C(ρI) +

Cacc(ρI)). [Line description of (d,e)] Solid black line corresponds to the coherence of index register state
C(ρI). Dashed black line corresponds to the accessible coherence of index register Cacc(ρI). Solid red line
corresponds to the local coherence of index register C(ρI) + Cacc(ρI).

4.3. Investigation of Entanglement in Two Examples

One of the known resources of quantum supremacy is entanglement. Therefore, in this study,
we verify whether entanglement contributes to the performance of the VQP model. Figure 6 shows
the concurrence [51–53] of two examples discussed in the previous section. The concurrence between
two-qubit state ρIi Ij of index register Ii and Ij is defined as follows [52]:

Ec(ρIi Ij) = max{
√

λ1 −
√

λ2 −
√

λ3 −
√

λ4, 0}.

Here, λi is eigenvalue of ρIi Ij σy ⊗ σyρ∗Ii Ij
σy ⊗ σy, and the relation λ1 > λ2 > λ3 > λ4 is required. Also the

bipartite concurrence between the feature register and the index register is defined as [51]

E(bip)
c (|ψ〉FI) =

√
2(1− Trρ2

I ).

In Example 1, the multipartite entanglement of the entire system is defined as follows [53]:

E(mul)
c (|ψ〉FI) =

2√
8

√√√√6−
6

∑
α=1

ρ2
α,

ρ1 = ρF, ρ2 = ρI1 , ρ3 = ρI2 , ρ4 = ρFI1 , ρ5 = ρFI2 , ρ6 = ρI1 I2 .
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Because the quantum state of the entire system is a pure state, E(bip)
c and E(mul)

c can be descried as above.
The maximum of concurrence of two-qubit state is one, but the maximum of bipartite concurrence is given
by

√
2(dF − 1)/dF, (Here is the proof. Suppose that the dimension dF of the feature register is smaller than

the dimension dI of the index register. Then, the pure entangled state of these register can be described
as |ψ〉FI = ∑dF

i=1 λi |λi〉F ⊗ |λi〉I , from Schmidt decomposition. Here, {|λi〉X} is an orthonormal basis of
system X ∈ {F, I}. In the case of maximal entanglement, we can have λi = 1/

√
d (∀i). Then, the trace of

the square of the partial state of |ψ〉 〈ψ| becomes 1/dF. Substituting the value, we find that the maximum
of bipartite concurrence is given by

√
2(dF − 1)/dF.) where dF is the dimension of the feature register.

In Example 1, the maximum of bipartite concurrence is one because of dF = 2. However, in Example 2,
the maximum of bipartite concurrence is given as

√
3/2 ' 1.2247, (For example, in Figure 6d, when the

iteration is 10, the bipartite concurrence becomes 1.088. It implies that when the iteration is 10, the state
between the feature register and the index register is close to the maximally entangled state.) because of
dF = 4. Here, Figure 6a,b is the case of success in example 1, and Figure 6c,d is the case of success in
example 2. In Figure 6a, the solid blue line(the dashed line) is the multipartite concurrence before(after)
the Grover operation is performed [53]. Further, we consider the bipartite concurrence between the feature
register and the index register. The solid(dashed) black line is the bipartite concurrence between the
feature register and the index register before(after) Grover operation is performed. Figure 6a shows that
by performing the Grover operation the multipartite concurrence converges to the bipartite concurrence,
and by iterating Grover operation the bipartite concurrence disappears. This implies that entanglement
should diminish for the successful training of the VQP model. Figure 6b shows the concurrence [52] of
qubits composing the index register. When VQP training is performed correctly, the concurrence before
the Grover operation is performed converges to the value corresponding to the maximally entangled
state. However, after the Grover operation, the concurrence disappears. This coincides with previous
results [32] which implied that entanglement should be removed for the Grover algorithm to be performed
correctly. Figure 6c,d show that the bipartite concurrence between the index register and the feature register
diminishes. It is noteworthy that unlike those shown in Figure 6a,b, the bipartite concurrence does not
converge to zero. Also, the success probability of the VQP is less than one owing to non-zero concurrence.
Figure 6c shows that G2 increases the value of the concurrence among the two qubits of the index register
as the VQP is successfully trained. Figure 6d shows that G2 decreases the bipartite concurrence between
the feature and the index register. The phenomena can be understood because the Grover algorithm is
only operated in the index register.
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Figure 6. (a) Concurrence before and after Grover algorithm in Example 1. (b) Concurrence of index
register before and after Grover algorithm in Example 1. (c) Concurrence of two qubit system Ii Ij (i, j ∈
{1, 2, 3}) before and after GA1 and GA2 in Example 2. (d) Bipartite concurrence between feature and
index register after GA1 and GA2 in Example 2. [Line description of (a)] Solid blue line corresponds to

the multipartite concurrence E(mul)
c (ρFI) before GA. Dashed blue line corresponds to the multipartite

concurrence E(mul)
c (ρFI) after GA. The solid black line is the bipartite concurrence E(bip)

c (ρFI) between the
feature and index register before and after GA. [Line description of (b)] Solid black line corresponds to
the concurrence of index register Ec(ρI) before GA. Dashed black line corresponds to the concurrence of
index register Ec(ρI) after GA. [Line description of (c)] Solid blue, purple, and red lines correspond to the
concurrence Ec(ρI1 I2 ), Ec(ρI2 I3 ), and Ec(ρI1 I3 ) after GA1, respectively. Dashed blue, purple, and red lines
correspond to the concurrence Ec(ρI1 I2 ), Ec(ρI2 I3 ), and Ec(ρI1 I3 ) after GA2, respectively. [Line description of

(d)] Solid black line corresponds to the bipartite concurrence between feature and index register E(bip)
c (ρFI)

after GA1. Dashed black line corresponds to the bipartite concurrence between feature and index register

E(bip)
c (ρFI) after GA2.

5. Conclusions

In this study, we investigated the contribution of coherence to the training of the VQP model.
First, we discovered that before performing MPQC, coherence should be concentrated on the index
register. Second, we demonstrated that the Grover algorithm consumes the coherence of the index register.
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We discovered that coherence distribution and coherence depletion occur in correctly trained VQP model.
Further, we demonstrated that to train the VQP model correctly, the local coherence of the index register
should not contain accessible coherence [48]. Also, we investigated whether entanglement may affect to
training the VQP model. We discovered that VQP model should be trained not to produce entanglement.
Finally, we demonstrated that entanglement depletion does not occur in VQP training. Our result provided
how coherence and entanglement may influence the performance of the quantum computer and quantum
perceptron. And our work will help to understand the essence of quantum supremacy.
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