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In this study, we define a metric for the intensity of internal climate variability (ICV) based

on global surface temperature in the present climate and suggest that it can be used

to understand the diversity of projected changes in ENSO amplitude in the future. We

analyze both the 35-member Community Earth System Model Large Ensemble and the

30-members from Geophysical Fluid Dynamical Laboratory Large Ensemble from the

present climate to future climate. While ENSO amplitude tends to decrease from the

present climate to the end of 21st century in some ensemble member with a strong ICV

during the present climate, it increases or stays the same in other ensemble members

with a weak ICV. The result indicates that the intensity of ICV in the present climate in

climate models may cause the difference of ENSO amplitude changes in a warmer world.

Therefore, the intensity of ICV in the present climate should be cautiously examined in

climate models to correctly project the ENSO amplitude changes in a changing climate.

Keywords: internal climate variability, diversity, ENSO (El Niño/Southern Oscillation), large ensemble,

future climate

INTRODUCTION

Internal climate variability (ICV) refers to as the natural variability of the climate system
that occurs in the absence of evolving external forcing and includes processes intrinsic to the
atmosphere, ocean, land, and cryosphere and their interactions (Deser et al., 2012; Kay et al.,
2015). To examine the role of ICV in climate system, surface temperature has been used in
many previous studies (Smith et al., 2007; Thompson et al., 2015; Monerie et al., 2017; Dai and
Bloecker, 2019; Hyun et al., 2020). For example, ICV could contribute to changes in surface
temperature variability caused by climate change. Furthermore, in some cases, surface temperature
variability associated with ICV exceeds externally forced surface temperature changes caused
by solar irradiance, aerosols, volcanic activity, or greenhouse gases. In this sense, ICV has
been argued as one of the major sources of uncertainty in estimating the changes in surface
temperature and its variability in future climate (Hawkins and Sutton, 2009; Deser et al., 2012,
2014; Thompson et al., 2015; Hyun et al., 2017; Zheng et al., 2018). Therefore, understanding
the ICV must be essential to understand changes in climate and its variability including El
Niño and Southern Oscillation (ENSO), which is the most dominant sea surface temperature
(SST) variability in the tropical Pacific on interannual timescales (McPhaden et al., 2006).
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Indeed, there is significant interest regarding how ENSO
properties including its amplitude, frequency and spatial pattern
will change in a changing climate (Cai et al., 2021 and reference
therein). While some studies suggested that the frequency of
extreme ENSO events would increase in a warmer world (Cai
et al., 2014, 2015a,b, 2018), others argued that ENSO amplitude
would decrease (Kim et al., 2014; Callahan et al., 2021). ENSO
amplitudes changes under global warming largely depend on
the balance of the atmospheric and oceanic feedbacks in climate
models, which cause a large inter-model diversity in future
climate projections (Collins et al., 2010; DiNezio et al., 2012;
Stevenson, 2012; Watanabe et al., 2012; Beobide-Arsuaga et al.,
2021). There is still no consensus for why simulated changes in
ENSO variability in a warming climate are so diverse in climate
models (Guilyardi et al., 2009; Collins et al., 2010; Bellenger et al.,
2014; Capotondi et al., 2015; Brown et al., 2020; Fredriksen et al.,
2020).

We hypothesize that the current climate models differ in
their simulation of the intensity of ICV in the present climate.
Consequently, it may lead to different ENSO amplitude changes
in response to anthropogenic forcing. Cai et al. (2020) found a
negative relationship between past and future ENSO amplitude
change. However, while ENSO itself is an important part of
ICV, there are myriad of other contributing factors. Thus, it
is not immediately clear whether such relationship holds for
ICV and ENSO amplitude change in general. Recently, Yeh
et al. (2021) quantified ICV of surface temperature in large
ensemble simulations based on the spread of simulated global
mean surface temperature from their ensemble mean. Following
this methodology, we defined a metric for the intensity of ICV
based on global surface temperature in the present climate
using the 35-member Community Earth System Model Large
Ensemble (CESM-LENS) and the 30-members Geophysical Fluid
Dynamics Laboratory Large Ensemble (GFDL-LENS). Then we
suggest that the intensity of ICV in the present climate can be
used to understand the diversity of projected changes in ENSO
amplitude in the future in coupled climate models.

METHODS

CESM-LENS and GFDL-LENS Simulations
CESM consists of atmosphere (Community Atmosphere Model
version 5, CAM5), ocean (Parallel Ocean Program version 2,
POP, 60 vertical levels), land (Community Land Model version 4,
CLM4), and sea ice (Los Alamos sea ice model version 4, CICE)
model components with 1.25 (longitude) by 0.75 (latitude) grid.

In this study, we analyze the CESM-LENS simulations from
the historical (1960–2005) and the Representative Concentration
Pathway (RCP8.5) (2006–2100) periods, which were specifically
designed to better understand and quantify ICV in the presence
of increasing greenhouse gases (Kay et al., 2015). Note that
while the simulation period of CESM-LENS is 1920–2100, the
analyzed period is limited to 1960–2100 to directly compare with
the GFDL-LENS simulations. The CESM-LENS has 35 ensemble
members that have the same external forcing and model
simulation, but small round-off level differences in their initial
conditions, i.e., 1 day lagged differences of ocean temperature

from member 1 in member 2, and 10−14 K atmospheric
temperature differences from member 1 and member 3–35. The
other initial conditions within member 3–35 are the same. Note
that initial condition in ensemble member 1 is from a randomly
selected date (January 1) in CESM pre-industrial run of 1,100
years of simulation. While there are 40-ensemble members in
CESM-LENS simulations, we only use 1–35 ensemble members
since we found some inconsistency of global surface temperature
simulated in the ensemble members of 36–40 in the RCP8.5
(2006–2100) compared to that of ensemble member 1–35
members (not shown here).

We also analyze GFDL-LENS which consists of atmosphere
(The Atmospheric Model version 2, AM2), ocean (Modular
Ocean Model version 4p1, MOM4p1) including sea ice model
components, and land (Land Model version 3.0, LM3.0)
component (Dunne et al., 2012, 2013). Similar to the CESM-
LENS simulations, we used the surface air temperature data
obtained from the historical (1960–2005) and the RCP8.5 (2006–
2100) in the 30-ensemble members GFDL-LENS simulations.
While the GFDL-LENS simulations run from 1950, the first
10-year period of simulation result is excluded to obtain
stabilized outputs. The initial conditions for the 30 ensemble
members,1 January 1950, differed in the initial state of the
atmospheric component. This was accomplished by using model
state snapshot for the ends of days 1–29 in January 1950 as the
initial model states for 1 January 1950 for each of the ensemble
members 2–30 (Rodgers et al., 2015). All simulated fields from
the GFLD-LENS and CESM-LENS were interpolated onto a 2.5
(longitude) by 2.0 (latitude) grid.

Internal Climate Variability
Since each CESM-LENS and GFDL-LENS ensemble member has
a unique climate trajectory due to small differences in their initial
conditions, the deviation of each member from their ensemble
mean is only due to ICV. Unless otherwise stated, all results
are based on the boreal winter (December–January–February)
when ENSO amplitudes tend to maximize (Trenberth, 1997;
Deser et al., 2010). Note that both CESM-LENS and GFDL-
LENS simulate the maximum ENSO amplitude in boreal winter
(figure not shown). Following Yeh et al. (2021), the ICV of global
surface temperature in each member is defined as the square root
of global (60◦N−60◦S, 0–360◦E) surface temperature including
both land and ocean following the equation:

ICV of global surface temperature =

i=360◦E,j=60◦N
∑

i=0,j=60◦S

√

(xi,j − xi,j)
2

M × N
(1)

where xi,j represents the surface temperature simulated for
each member at grid point, i, j, during boreal winter, and xi,j is
the respective ensemble mean surface temperature at grid point i,
j for the 35- and 30-members during boreal winter in the CESM-
LENS and GFDL-LENS, respectively. M, N denote the number
of total grid point corresponding at 0–360◦E and 60◦S−60◦N,
respectively. The reason of why we focused on 60◦S−60◦N
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instead of 90◦S−90◦N is that the global ICV is largely determined
in the surface temperature variability in low latitude regions (Yeh
et al., 2021) and to exclude largemodel biases of unknown physics
and parameters on polar regions (Hyun et al., 2017). Note that the
main results are similar if the region expanded to 90◦S−90◦N.
Hereafter, this metric will be identified by the acronym ICV,
which stands for ICV of global surface temperature. A large value
of ICV indicates strong ICV of global surface temperature and
vice versa.

RESULT

ENSO Amplitude Changes
We analyzed total 65-ensemble members including CESM-
LENS and GFDL-LENS simulations to examine the relationship
between ICV in the present climate and ENSO diversity in
the future climate (i.e., RCP8.5). It should be noted that the
respective ensemble mean value from CESM-LENS and GFDL-
LENS members are subtracted from each member to calculate
the ICV intensity in Equation (1), therefore, the SST anomaly
deviation in each member could be largely due to ICV.

To show the time-varying ENSO amplitude from the present
to future climate, we display the 50-years running standard
deviation of the NINO3.4 (170◦W−120◦W, 5◦N−5◦S) SST
index simulated in each member for 1960–2100 (141 years),
and the observational estimate (Figure 1). The observational
SST data is obtained from the Hadley Centre Sea Ice and Sea
Surface Temperature (HadISST) datasets (Rayner et al., 2003)
and Extended Reconstructed Sea Surface Temperature version 5
(ERSST v5) datasets (Huang et al., 2017) for 1960–2021. Note
that the NINO 3.4 SST index for each 50-year running period
is unfiltered, however, the linear trend for each 50-year period
is removed in both simulations and observation. While several
studies have shown that 50-years running period is not enough to
robustly distinguish ENSO amplitude changes (Wittenberg, 2009;
Stevenson et al., 2010; Li et al., 2011), it is sufficient to capture the
variations in ENSO amplitude on decadal timescales (Kim et al.,
2014).

The ENSO amplitude in observational estimate shows a
gradual increase during 1960–2021, in particular, since the mid-
1970s, which is mostly due to the occurrence of extreme El Niño
events after the late of 20th century (Santoso et al., 2013; Wang
et al., 2019). The observed ENSO amplitude is not within the
range of the 65-ensemble member, indicating that two LENS
simulations tend to simulate larger ENSO amplitude than the
observation. This is consistent with the former study which
showed that current climatemodels tend to simulate larger ENSO
amplitude than the observation (Kim et al., 2014).

In spite of a large ENSO amplitude in both LENS simulations
compared with the observation, it is found that ENSO amplitude
in each ensemble member increases or decreases or stays the
same from the present climate (1960–2010) to the end of 21st
century (2050–2100) in 65-ensemble members (Table 1). Note
that ensemble member in which the changes in ENSO amplitude
in the end of 21st century is within ±10% from the present
climate is considered to stay the same. ENSO amplitude decreases
(increases) in the end of 21st century in 45% (23%) out of

FIGURE 1 | ENSO amplitude in the 65-ensemble members from CESM-LENS

and GFDL-LENS and observation (red). The 50-year running standard

deviation of the Nino 3.4 SST index from each ensemble without a linear trend

is calculated in each 50-year running window for the 65 simulation period of

1960–2100. Solid (dashed) red line indicates the HadISST (ERSST)

observation for 1960–2021 and thick blue denotes the ensemble mean ENSO

amplitude. Note that the last year of each 50-years running period is plotted

on the x-axis. For example, the ENSO amplitude at 2020 indicates the ENSO

amplitude for 1971–2020. Unit is ◦C.

TABLE 1 | The number of ensemble members in which ENSO amplitude

increases, decrease or stays the same from the present (1960–2010) to the end of

21st century (2050–2100) in 65-ensemble members. Note that ensemble member

in which the changes in ENSO amplitude in the end of 21st century are within

±10% from the present climate is considered to stay the same.

ENSO amplitude change Number of ensemble model

Increase 15

Stay 21

Decrease 29

Number of total ensemble member 65

65-ensemble members and it stays the same in 32% out of
65-ensemble members. Consequently, the 65-ensemble mean
ENSO amplitude shows neither significant decrease nor increase
from the present climate to the end of 21st century (Figure 1).
This is generally consistent with previous studies using Coupled
Model Intercomparison Project (CMIP) class climate models
(Guilyardi et al., 2009; Collins et al., 2010; Christensen et al., 2013;
Bellenger et al., 2014; Zheng et al., 2016), which have shown large
spread in simulated future changes in ENSO amplitude across
climate models.

This result raises an important question as to what causes
the diversity of simulated ENSO amplitude changes in a warmer
world. We remind the reader that all 35 ensemble members
of the CESM-LENS simulations and 30 ensembles of GFDL-
LENS use the same evolving external forcing (i.e., RCP8.5),
differing in small differences in atmospheric initial conditions in
each ensemble simulation set. Therefore, the respective diversity
in each ensemble simulation set of both LENS simulations
(Figure 1) does not result from differences in external forcing.
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FIGURE 2 | The ICV simulated in 65-ensemble members including both CESM-LENS and GFDL-LENS simulations during the present climate (1960–2010). Each

blue bar represents the ICV simulated by each ensemble member during the present climate, ranked by the intensity of ICV from the strongest to the weakest among

65-ensemble member (1–65). Unit is ◦C.

FIGURE 3 | (A) Time-varying ENSO amplitude simulated in 10-ensemble members from the Strong_ICV (blue) and Weak_ ICV (red) as well as their ensemble means

(thick lines). (B) The difference of surface temperature standard deviation between Strong_ICV and Weak_ICV during the present climate (Strong_ICV minus

Weak_ICV). The dotted area indicates the region where the difference is statistically significant at the 95% confidence. (C) Scatter plot of ICV vs. ENSO amplitude in

the present climate (1960–2010). Blue (red) dots in (C) denotes Strong_ICV (Weak_ICV) group. Unit is ◦C. Note that numbers in (C) denote the 65-ensemble members

ranked by the intensity of ICV from the strongest to the weakest during the present climate (see Figure 2).
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FIGURE 4 | The linear trend (◦C/decade) of the surface temperature standard

deviation during 1960–2100 in (A) the Strong_ICV and (B) Weak_ICV group,

respectively. Note that the dotted indicates the region where the trend is

statistically significant at the 95% confidence level compared to the ensemble

mean trend.

We infer that ICV itself, which differs across ensemble members
in the present climate, might be associated with future changes in
ENSO amplitude.

ENSO Amplitude Change and Internal
Climate Variability in the Present Climate
Figure 2 displays the ICV simulated in each ensemble simulation
from the strongest to the weakest, indicating that there exists a
large diversity of ICV in the present climate in climate model.
The maximum ICV is 0.69◦C and the minimum ICV is 0.53◦C.
The mean ICV from 65-ensemble members is 0.62◦C and one
standard deviation is ±0.04◦C. To examine the ICV associated
with ENSO amplitude changes in a warmer world, we select
two groups from 65-ensemble members of LENS simulations in
which ICV is the strongest and the weakest, respectively, in the
present climate (1960–2010) based on the results in Figure 2.
One group contains the top 10 members with the strongest
ICV magnitudes in the present climate, hereafter, Strong_ICV
(ensemble member 1–10 in Figure 2). The other group contains
the 10 weakest members based on ICV intensity in the present
climate, hereafter, Weak_ICV (ensemble member 56–65 in
Figure 2). The mean ICV in Strong_ICV and Weak_ICV is
0.67◦C and 0.57◦C, respectively.

FIGURE 5 | ICV in the present climate vs. ENSO amplitude change from the

present climate (1960–2010) to the future climate (2050–2100) (A). (B) is the

same as in (A) except the ENSO amplitude in the future climate. Note that

numbers in figure denote the 65-ensemble members ranked by the intensity of

ICV from the strongest to the weakest during the present climate (see

Figure 2) and black circles in (A) indicates the ensemble member in which the

ENSO amplitude changes stays the same from the present climate to the

future climate. Unit is ◦C.

In Figure 3A, we display the time-varying ENSO amplitude
simulated in the Strong_ICV and Weak_ICV groups,
respectively. It is found that the ENSO amplitude simulated
in the Strong_ICV is significantly larger than that in the
Weak_ICV in the present climate (Figures 3A,B). Furthermore,
we display the scatter plot showing the relationship between
ENSO amplitude and ICV in the present climate in 65-ensemble
members (Figure 3C). A correlation coefficient between ENSO
amplitude and ICV in the present climate is 0.81, which is
statistically significant at the 95% confidence level. The stronger
the intensity of ICV is in the present climate, the larger the
ENSO amplitude is in the same period. This might be due
to the fact that ENSO variability largely contributes to the
variability of global surface temperature in the present climate
(Thompson et al., 2009). Yeh et al. (2021) also argued that surface
temperature variability at low latitudes (30◦S−30◦N) could be
considered as a key source for determining the intensity of ICV
in climate models.
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FIGURE 6 | ICV in the present climate vs. ENSO amplitude change from the

present climate (1960–2010) to the future climate (2050–2100) in CESM-LENS

(A) and GFDL-LENS (B) simulations. Unit is ◦C.

It is found that the ENSO amplitude simulated in the
Strong_ICV group either decreases (90%) or stay (10%) the same
in the future out of 10-ensemble members. In contrast, the ENSO
amplitude simulated in the Weak_ICV group increases (70%) or
stay (20%) and decrease (10%) during the end of the 21st century
out of 10-ensemble members. These results are confirmed by
spatial maps of the linear trends in SST standard deviation
from 1960 to 2100 in the Strong_ICV and Weak_ICV groups,
respectively (Figures 4A,B). The linear increase in SST standard
deviation simulated in the Weak_ICV is significant in the
central-to-eastern tropical Pacific (Figure 4B), whereas the linear
decrease in SST standard deviation simulated in the Strong_ICV
is evident throughout the tropical Pacific (Figure 4A).

To further support this notion, we display a scatter plot
showing the relationship between the intensity of ICV in
the present climate and ENSO amplitude changes from the
present climate (1960–2010) to future climate (2050–2100)
(i.e., future climate minus the present climate) across 65-
ensemble members (Figure 5A). The intensity of ICV simulated
in the present climate is significantly negatively correlated with
the changes in ENSO amplitude from the present to future

climate (r = −0.84, where r is the correlation coefficient;
significant at the 95% confidence level). It is noteworthy
that the respective variables corresponding to the present
climate (i.e., the intensity of ICV) and the future climate
(i.e., ENSO amplitude) have a very high correlation with
each other (Figure 5B) (r = −0.67 is statistically significant
at the 95% confidence level). Therefore, the correlation
coefficient shown in Figure 5A does not simply stem from a
statistical artifact associated with correlating a variable with its
own change.

In a weak ICV in the present climate, ENSO amplitude tends
to increase or stay the same in future climate. In contrast,
ENSO amplitude tends to decrease or stay the same in future
climate when the ICV is strong in the present climate. It
is also noteworthy that similar phenomena are found in two
LENS simulations, respectively (Figure 6). The intensity of
ICV simulated in the present climate is significantly negatively
correlated with the changes in ENSO amplitude from the present
to future climate in CESM-LENS (r=−0.57) andGFDL_LENS (r
= −0.60) simulations, respectively. Both correlation coefficients
are statistically significant at the 95% confidence level. These
results suggest that the changes in ENSO amplitude due
to external forcing (i.e., RCP8.5) in climate models may be
dependent on whether the ICV in the present climate is strong
or weak.

SUMMARY AND DISCUSSION

Using two sets of CESM-LENS and GFDL-LENS simulations,
we tested a hypothesis that the current climate models differ in
their simulation of the intensity of ICV in the present climate.
We suggested that the ICV in the present climate can be used to
understand the diversity of projected changes in ENSO amplitude
in the future. This hypothesis might be true at least in two sets
of the CESM-LENS and GFDL-LENS simulations. While ENSO
amplitude tends to increase or stay the same in future climate
with a weak ICV in the present climate, it tends to decrease
or stay the same in future climate with a strong ICV in the
present climate.

We understand that simulations that have weak ICV as well as
weak ENSO amplitude in the present climate at least leave room
for ENSO amplitude to increase in a warmer climate. Therefore,
the ENSO amplitude may either increase or stay the same in a
warmer climate. In contrast, climate models which have strong
ICV as well as strong ENSO amplitude in the present climate
have little room for ENSO amplitude to increase in a warmer
climate. Therefore, the ENSO amplitude may either decrease
or stay the same in a warmer climate. Furthermore, we do not
exclude the notion that our result could depend on the length of
selected time period. When the ENSO amplitude in Weak_ICV
increase to a relative high state in the end of 21st century, there
is no more room for continuing increase in these members.,
implying a decrease trend in further simulation as the situation
in Strong_ICV.

Conclusively, we infer that the ICV condition in the present
climate may affect the response of ENSO amplitude to RCP8.5

Frontiers in Climate | www.frontiersin.org 6 July 2022 | Volume 4 | Article 932978

https://www.frontiersin.org/journals/climate
https://www.frontiersin.org
https://www.frontiersin.org/journals/climate#articles


Hyun et al. Internal Climate Variability and ENSO

FIGURE 7 | ENSO amplitude in the present climate vs. ENSO amplitude change from the present climate (1960–2010) to the future climate (2050–2100) in

65-ensemble members. Note that numbers in (A) denote the 65-ensemble members ranked by the intensity of ICV from the strongest to the weakest during the

present climate (see Figure 2). Unit is ◦C. (B,C) are the same as in (A) except the CESM-LENS and GFDL-LENS, respectively. The values inside (A–C) denote the

correlation coefficients between two corresponding variables.

forcing, resulting in the diversity of ENSO amplitude changes
from the present climate to future climate in climate models.
Recently, Cai et al. (2020) also argued that the changes in
ENSO amplitude under global warming differ across climate
models, which is partially attributed to ICV. They showed that
a greater cumulative oceanic heat loss from ENSO thermal
damping with higher initial ENSO variability in the present
climate (i.e., a strong ICV in the present climate) reduces
stratification of the upper equatorial Pacific Ocean, leading to
a smaller increase in ENSO variability than those with low
initial ENSO variability in the present climate (i.e., a weak ICV
in the present climate) under subsequent greenhouse warming.
This notion is consistent to some extent with the results
in the current study. Indeed, there is a negative correlation
coefficient between the ENSO amplitude in the present climate
and ENSO amplitude changes from the present climate to future
climate in 65-ensemble members (r = −0.74 is statistically
significant at the 95% confidence level) (Figure 7A). Similar

relationship is also found in CESM-LENS and GFDL-LENS,
respectively (Figures 7B,C). On the other hand, several studies
have demonstrated that extratropical forcing including North
Pacific Oscillation, Arctic Oscillation, Aleutian Low, and Arctic
sea ice anomalies play a role in modulating the amplitude,
spatial structure and period of ENSO (Vimont et al., 2001; Chen
et al., 2014, 2020a,b; Chen and Yu, 2020). Indeed, there are
significant differences in the surface temperature variability in the
extratropics between Strong_ICV and Weak_ICV (Figure 3B),
implying that the extratropical forcing in the present climate
also influences the future change of ENSO amplitude. If the
extratropical forcing is strong (weak) in the present climate,
ENSO amplitude tends to decrease (increase) or stay in
future climate.

In this study, we did not examine the details of physical
processes of why the changes in ENSO amplitude due to
external forcing depend on whether the ICV simulated in
climate models is strong or weak in the present climate. In
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spite of that, our result implies that it is crucial to improve
our current ability to correctly simulate the intensity of ICV
in the present climate, which may significantly reduce the
uncertainty in projections of ENSO amplitude in the future.
Furthermore, it might be useful to conduct a large ensemble
experiment using other climate models in addition to CESM
and GFDL climate models to examine the relationship of
ICV in the present climate and ENSO amplitude change in
the future.
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