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Abstract: Particle swarm optimization (PSO) has witnessed giant success in problem optimization.
Nevertheless, its optimization performance seriously degrades when coping with optimization
problems with a lot of local optima. To alleviate this issue, this paper designs a predominant
cognitive learning particle swarm optimization (PCLPSO) method to effectively tackle complicated
optimization problems. Specifically, for each particle, a new promising exemplar is constructed
by letting its personal best position cognitively learn from a better personal experience randomly
selected from those of others based on a novel predominant cognitive learning strategy. As a result,
different particles preserve different guiding exemplars. In this way, the learning effectiveness and
the learning diversity of particles are expectedly improved. To eliminate the dilemma that PCLPSO is
sensitive to the involved parameters, we propose dynamic adjustment strategies, so that different
particles preserve different parameter settings, which is further beneficial to promote the learning
diversity of particles. With the above techniques, the proposed PCLPSO could expectedly compromise
the search intensification and diversification in a good way to search the complex solution space
properly to achieve satisfactory performance. Comprehensive experiments are conducted on the
commonly adopted CEC 2017 benchmark function set to testify the effectiveness of the devised
PCLPSO. Experimental results show that PCLPSO obtains considerably competitive or even much
more promising performance than several representative and state-of-the-art peer methods.

Keywords: predominant cognitive learning; multimodal problems; particle swarm optimization;
global numerical optimization; black-box optimization

MSC: 68-04; 65-04

1. Introduction

Optimization problems emerge commonly and become more and more complicated
in many research fields and industrial engineering [1,2], such as object detection and
tracking [3,4], automatic design of algorithms for visual attention [5,6], path planning
optimization [7,8], and control of pollutant spreading on social networks [9]. In particular,
these complicated optimization problems usually are non-differentiable, discontinuous,
non-convex, non-linear, or multimodal [10–12]. Confronted with such kinds of complicated
optimization problems, the optimization effectiveness of traditional optimization methods,
such as conjugate gradient methods [13,14], space-filling curve methods [15,16], quasi-
Newton methods [17,18], line search methods [19–21], and trust-region methods [22,23],
deteriorates rapidly. In extreme cases, they are even infeasible for solving these complex
problems. As a consequence, effective optimization algorithms are increasingly demanded
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to solve increasingly emerging complex optimization problems, such that the development
of related fields could be boosted.

In recent years, evolutionary algorithms (EAs), such as particle swarm optimization
(PSO) [24,25] and differential evolution (DE) [26,27], have presented good optimization
ability in problem optimization, especially in solving those problems that traditional
optimization methods cannot tackle, such as locating multiple global optima of optimization
problems [28–31], and simultaneously optimizing more than one objective [32,33], etc.
Different from traditional mathematical optimization methods [34–36], which usually adopt
only one feasible solution to iteratively search the solution space, EAs generally employ a
population of candidate solutions to undergo iterative evolution to seek the global optimum.
In this manner, compared with traditional mathematical approaches [16,36,37], EAs own
many unique merits. (1) EAs have no requirements on the mathematical properties of the
problem to be optimized [38,39], or even can deal with problems without mathematical
models. However, most traditional optimization methods [16–18], especially gradient-
based approaches [17,18], have critical requirements on the properties of optimization
problems, such as continuous, differentiable, and convex. Theoretically, EAs can be adopted
to optimize any kinds of problems. However, in the literature [40,41], EAs are mainly
employed to tackle optimization problems that traditional optimization techniques cannot
cope with. (2) EAs usually have strong global search ability since they maintain a population
of individuals to explore the search space in different directions [38,41]. Therefore, falling
into local regions could be avoided with a high probability. Nevertheless, traditional
mathematical optimization methods [42–44] usually employ only one feasible candidate,
and thus search the solution space in only one direction to seek the global optimum. As
a consequence, it is likely for them to fall into local areas, especially when dealing with
optimization problems with a lot of wide and flat local basins.

As a kind of EA, PSO [45,46] has been successfully employed to cope with different
kinds of optimization problems since its first introduction in 1995 by Kennedy and Eber-
hart [47,48]. During the optimization, PSO maintains a population of candidate feasible
solutions to search the solution space iteratively. By means of its great advantages, such
as independence of the mathematic properties of problems to be optimized, fast conver-
gence, and inherent parallelism [49], PSO has been researched by a lot of researchers. As
a result, PSO has been not only widely applied to solve complex problems, such as mul-
timodal optimization [28–31], and multi-objective optimization [32,33], but also has been
commonly adopted to tackle real-world optimization problems, such as vehicle routing
problems [45,50], neural networks [51,52], and task assignment [53,54].

In the literature [55–59], it is widely accepted that the learning strategy in updating
the velocity of particles has a significant influence on assisting PSO to obtain good per-
formance because it determines the way of information diffusion within the swarm. As a
result, researchers have designed a lot of novel learning schemes for PSO to promote its
optimization performance [11,60], such as comprehensive learning strategies [56,61,62], or-
thogonal learning mechanisms [57,63,64], and hybrid algorithm learning methods [55,65,66].
Roughly, existing learning mechanisms for PSO could be classified into two categories:
exemplar construction-based learning methods [55–57] and topology-based learning strate-
gies [58,59,67].

Exemplar construction-based learning strategies aim to construct new learning exem-
plars for particles to learn from [55–57] that may not be visited by particles. In most existing
studies, the constructed exemplar is generated by some dimension recombination methods
based on historically best positions of particles. By this method, it is expected that the con-
structed exemplars could provide guidance for the evolution of the swarm, so that particles
could move to more promising areas. Along this line, the most representative approach is
the comprehensive learning PSO (CLPSO) [56]. To improve the construction efficiency of
exemplars, researchers have devised many other exemplar-construction methods, such as
the orthogonal learning PSO (OLPSO) [57] and the genetic learning PSO (GL-PSO) [55].
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Different from exemplar construction-based learning strategies, topology-based learn-
ing strategies mainly adopt certain kinds of topologies to select guiding exemplars to
update particles [58,59,67,68]. Different topology structures affect the way of information
exchange between particles and the speed of information circulation, thereby affecting
the performance of PSO. Specifically, in most topology-based learning strategies, each
particle cognitively learns from its own historically best position and socially learns from
the historically best position among the neighbors connected by the associated topolo-
gies. In the classical PSO [47,48], a global topology connecting all particles was utilized to
select the best position among the personal best positions of all particles as the learning
exemplar for each particle. This global best position brings in overly greedy attraction,
such that when dealing with multimodal problems [10,48], the swarm often falls into local
regions. To alleviate this dilemma, many different neighborhood topologies have been
designed [58], such as ring topology, four-cluster topology, pyramid topology, and square
topology. Some researchers even proposed dynamic topologies [59,68] and composited
different topologies [67] to select promising exemplars to direct the update of particles, so
that the learning abilities of particles are further promoted.

Though PSO has been advanced significantly, and a lot of remarkable PSO
variants [55,56,59,62,69–71] have shown their great feasibility in coping with optimiza-
tion problems, their optimization ability encounters great challenges when dealing with
complicated problems with a number of interacting variables and a lot of wide and flat
local basins. Unfortunately, these complicated problems are ubiquitous in the era of big
data and Internet of Things (IoT) [72]. As a result, there is still an increasing and ur-
gent demand for effective and efficient PSOs to tackle the increasingly emerging complex
optimization problems.

To further promote the optimization performance of PSO in dealing with complicated
optimization problems, this paper designs a predominant cognitive learning particle swarm
optimization (PCLPSO) algorithm, which utilizes a predominant cognitive learning strategy
to construct guiding exemplars for particles. Specifically, the main components of PCLPSO
are summarized as follows:

(1) A predominant cognitive learning strategy (PCL) is devised to construct guiding
exemplars to update particles. Different from existing exemplar construction-based
learning PSOs [55–57] that construct the guiding exemplars in an elementwise way, the
proposed PCL constructs a promising exemplar to guide the update of each particle by
letting its personal best position cognitively learn from a predominant one randomly
selected from those better than the personal best position of the updated particle. On
the one hand, the personal best position of this particle learns from a better one, and
thus it is expected that the constructed exemplar is more promising. As a result, the
learning effectiveness of particles is expectedly promoted. On the other hand, due to
the random selection in PCL, different particles generally preserve different guiding
exemplars, and thus the learning diversity of particles is expectedly improved. In this
way, the proposed PCLPSO could expectedly compromise the search diversity and
the search convergence well to find satisfactory solutions.

(2) Dynamic parameter adjustment strategies are further designed to alleviate the predica-
ment that PCLPSO is sensitive to involved parameters. With these dynamic strategies,
different particles usually preserve different parameter settings, which is beneficial
for further improving the learning diversity of particles.

To validate the optimization effectiveness and efficiency of PCLPSO, comprehensive
experiments were carried out on the commonly adopted CEC 2017 benchmark function
set [73] with three dimensionality (namely 30, 50, and 100) by comparing PCLPSO with
seven representative and state-of-the-art PSO variants. At the same time, deep investigations
on PCLPSO were also executed to determine what contributes to its promising performance.

The remainder of this paper is arranged as follows. Closely related works on PSOs
are briefly reviewed in Section 2. Then, the developed PCLPSO is described in Section 3.
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In Section 4, comparative experiments are executed to testify the effectiveness of PCLPSO.
Finally, Section 5 concludes this paper.

2. Related Work

Without loss of generality, this paper aims to find the global minima of the following
defined problems:

minimize f (x) x = [x1, . . . , xd, . . . xD] ∈ RD (1)

where x is the decision variable vector composed of D variables. In this paper, the objective
value of the problem is used as the fitness of one particle.

In the literature, there are an ocean of optimization methods, including traditional
mathematical optimization methods [15,18,20,21,36,44] and heuristic algorithms, such as
evolutionary algorithms [25,27,30,38,55,56]. However, since this paper mainly proposes a
PSO variant to solve complicated optimization problems, we mainly review closely related
studies on PSO in the following.

2.1. Canonical PSO

Typically, each particle in the classical PSO [47,48] is updated by learning from its own
experience and the social experience of the entire swarm. Specifically, in PSO, each particle
is represented by one position vector and one velocity vector. Based on these two vectors,
each particle is updated in the following way:

vt+1
i = ω× vt

i + c1 × r1 × (pbestt
i − xt

i) + c2 × r2 × (gbestt − xt
i) (2)

xt+1
i = xt

i + vt+1
i (3)

where xi is the position vector of the ith particle, vi is its velocity vector, and pbesti is its
personal best position found so far, while gbest is the global best position of the entire
swarm found so far. t denotes the generation index. ω denotes the inertia weight. c1 and
c2 represent two acceleration coefficients in charge of the effect of pbesti and gbest on the
updated particle. r1 and r2 are uniformly and randomly sampled within [0, 1].

Equation (2) shows that in the canonical PSO, all particles learn from the global best
position gbest of the whole swarm found so far. Such an exemplar is too greedy and
thus easily leads to falling into local basins of the swarm when coping with optimization
problems with many local regions [49,74,75].

To improve the effectiveness of PSO in exploring and exploiting multimodal space,
many researchers have developed a lot of novel and effective learning schemes [25,55–59]
to guide the update of particles. In a broad sense, existing learning methods are roughly
separated into two types: constructive learning strategies [55–57] and topology-based
learning strategies [58,59,67].

2.2. Constructive Learning Strategies for PSO

Constructive learning strategies [55–57] mainly adopt some dimension recombina-
tion methods to randomly recombine dimensions of multiple personal best positions of
particles to construct promising guiding exemplars to update particles. In the literature,
the most representative constructive learning PSOs are the comprehensive learning PSO
(CLPSO) [56], the orthogonal learning PSO (OLPSO) [57], and the genetic learning PSO
(GLPSO) [55], which will be described in detail next.

2.2.1. CLPSO

CLPSO [56] utilizes the devised comprehensive learning (CL) strategy to recombine
dimensions of pbests of different particles to construct new exemplars dimension by
dimension. Specifically, the velocity of each particle is updated in the following way:

vt+1
i,d = ω× vt

i,d + c× rd × (pbestt
fi(d),d

− xt
i,d) (4)
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where xi,d is the dth dimension in the position vector of the ith particle, while vi,d is the dth
dimension in the velocity vector of the ith particle. pbestfi(d),d is the dth dimension in the
personal best position pbestfi(d), where fi(d) denotes the index of the selected personal best
position for the dth dimension in the updated particle; t denotes the generation index; ω
denotes the inertia weight; c represents the acceleration coefficient and rd is uniformly and
randomly sampled within [0, 1].

With the above CL strategy, each particle learns from multiple historical experiences
of particles. Since the personal best positions are all randomly selected, the constructed
exemplars for different particles are likely different and thus the learning diversity of
particles is expectedly improved largely. On the other hand, by learning from multiple
personal best positions, the potentially useful information embedded in the multiple
personal best positions could be integrated to direct the update of particles. As a result, the
learning effectiveness of particles is expectedly promoted as well.

To further promote the optimization performance of CLPSO, some researchers have
attempted to introduce or design some additional mechanisms [61,62,69,76] to assist the
evolution of the swarm. For example, Lynn et al. [62] designed a heterogeneous CLPSO
(HCLPSO) by partitioning the swarm into two subpopulations with one responsible for
exploration and another in charge of exploitation. With respect to the subpopulation for
exploration, the guiding exemplars are constructed by using pbests of particles in this
subpopulation. While regarding the subpopulation for exploitation, the guiding exemplars
are constructed by pbests of all particles in the entire swarm. In [76], a heterogeneous com-
prehensive learning and dynamic multi-swarm particle swarm optimizer (HCLDMS-PSO)
was devised by introducing an improved dynamic multi-swarm (DMS) scheme and two
mutation operators (a non-uniform mutation operator and a Gaussian mutation operator)
into HCLPSO to further promote its optimization performance. In [77], an adaptive strategy
for regulating the probability of conducting the CL strategy and a cooperative archive
(CA) were devised and then embedded into CLPSO, leading to an adaptive CLPSO with
collaborative archiving (ACLPSO-CA). In [69], a novel local search method was developed
and then introduced into CLPSO, leading to a variant of CLPSO, named CLPSO-LS. With
the help of this local search operator, the accuracy of the obtained solution is improved
evidently. In [61], a local optima topology (LOT) structure was devised and then introduced
into CLPSO, leading to CLPSO-LOT. Specifically, such a topology structure comprises the
local optima, so that the search space of particles could be enlarged and the convergence of
the swarm could be boosted with a certain probability.

2.2.2. OLPSO

Although CLPSO has shown promising performance on complicated problems, such
as multimodal problems, it is inefficient to construct a new valid exemplar because the
reorganization of dimensions is completely random and directionless. To afford effective
recombination of dimensions, in [57], OLPSO was devised through the orthogonal experi-
mental design to roughly seek useful recombination of the historical positions of particles.
To be specific, the algorithm selects the dimension combinations with the best average
fitness value by constructing an orthogonal matrix and then constructs a potentially useful
exemplar for each particle. In particular, the velocity of each particle is updated in the
following way:

vt+1
i,d = w× vt

i,d + c× rd × (pbestt
o,d − xt

i,d) (5)

where xi,d and vi,d are the dth dimension in the position and the velocity vectors of the ith
particle, respectively. pbesto,d is the determined personal best position by the orthogonal
matrix for the dth dimension; t denotes the generation index; ω denotes the inertia weight;
c represents the acceleration coefficient; rd is uniformly and randomly sampled from [0, 1].

With the orthogonal matrix, the dimension recombination of different personal best
positions is effective to generate a good exemplar for each particle with a high probability.
Therefore, OLPSO achieves much better performance than CLPSO when dealing with
multimodal problems [57,63,78].
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After the emergence of OLPSO, researchers have introduced a lot of other tech-
niques [63,64,78] into OLPSO to further promote its optimization performance. For example,
in [63], a variable relocation strategy (VRS) is combined with the OL strategy to develop
a variant of OLPSO, named OLPSO-VRS to effectively solve dynamic optimization prob-
lems. In [64], the metropolis-based probabilistic acceptance criterion was incorporated into
OLPSO, leading to a hybrid OLPSO (HOLPSO). The searching capability of the algorithm is
improved by selecting guiding particles based on the probabilistic acceptance mechanism.
In [78], a quadratic interpolation based OLPSO-G (QIOLPSO-G) was proposed, where a
quadratic interpolation-based construction mechanism was applied to pbests of all particles
to construct effective exemplars.

Although the above OLPSO variants can generate more effective learning exemplars
with high probability, they consume a lot of fitness evaluations, because the OL strategy
requires extensive fitness evaluations in the orthogonal experimental design.

2.2.3. GL-PSO

Different from the above two construction methods, GL-PSO [55] utilized the selection
strategy, the crossover scheme, and the mutation mechanism in genetic algorithms (GA) to
construct learning exemplars for each particle. At first, GL-PSO constructs an exemplar
based on the classical update strategy of PSO as follows:

et+1
i,d =

c1 × r1,d × pbestt
i,d + c2 × r2,d × gbestt

d

c1 × r1,d + c2 × r2,d
(6)

where pbesti,d is the dth dimension in pbesti of the ith particle; gbestd is the dth dimension in
gbest of the entire swarm; ei,d is the dth dimension of the constructed learning exemplar. t
denotes the generation index; c1 and c2 represent two acceleration coefficients, and r1,d and
r2,d are randomly and uniformly sampled from [0, 1].

Then, GL-PSO constructs another learning exemplar for each particle via utilizing the
operators in GA as follows:

(1) Crossover: First, the crossover operation is used to recombine pbests and gbest to build
an offspring oi in the following way:

ot+1
i,d =

{
rd × pbestt

i,d + (1− rd)× gbestt
d, if f (pbestt

i) < f (pbestt
kd
)

pbestt
kd ,d, otherwise

(7)

where rd is randomly and uniformly sampled in [0, 1], kd is the index of a randomly
selected pbest for the dth dimension; f (•) is the fitness function.

From Equation (7), it is found that this crossover operator actually generates the
offspring dimension by dimension. Specifically, for each dimension, one pbest is first
randomly chosen from all pbests in the current generation, and then the selected pbest
is compared with pbesti. If the selected pbest is better, the dimension of the offspring
inherits the value from the selected pbest; otherwise, it inherits the value from the linear
composition of pbesti and gbest.

(2) Mutation: After crossover, the generated offspring oi performs the uniform mutation
operation with a probability (pm) as follows:

ot+1
i,d = rand(lbd, ubd), if rd < pm (8)

where lbd and ubd are the lower bound and the upper bound of the dth dimen-
sion, respectively; rd is randomly and uniformly sampled from [0, 1]; pm is the
mutation probability.

Such a mutation operation is actually the typical uniform mutation. Specifically, for
each dimension, a real number rd is first uniformly sampled within [0, 1]. Then, if the
generated rd is lower than pm, the dth dimension of oi is resampled in the search range [55].
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(3) Selection: At last, the selection operation is performed to determine the final learning
exemplar for each particle to update. Specifically, the selection operator is conducted
between the first learning exemplar constructed by Equation (6) and the one con-
structed by Equations (7) and (8) as follows:

et+1
i =

{
ot+1

i , if f (ot+1
i ) < f (et+1

i )

et+1
i , otherwise.

(9)

After the selection, the velocity of each particle is updated in the following way:

vt+1
i,d = ω× vt

i,d + c× rd × (et+1
i,d − xt

i,d) (10)

In GL-PSO, due to the selection operator and the random construction of the learning
exemplars, the finally constructed exemplars for different particles are expectedly different.
With this exemplar construction strategy, the global search capability and the optimization
performance of PSO are expectedly enhanced. Inspired from GL-PSO, many researchers
have attempted to employ operators in other evolutionary algorithms to construct learning
exemplars based on pbests of particles and gbest of the whole swarm [65,66,79]. For
instance, in [65], a global GL-PSO with diversity enhancement (GGL-PSOD) was developed
by changing the global topology with a local ring topology during the construction of
exemplars to further enhance the search diversity of the algorithm. In [79], a triple archive
PSO (TAPSO) maintains three archives to generate a promising guiding exemplar for each
particle in the dimension-wise way. Specifically, this algorithm constructs a new exemplar
based on the operators of GA by randomly selecting two particles the first archive and
the second archive. In [66], a PSO with two differential mutation operators (PSOTD) was
devised by designing a topology structure composed of two swarms and two layers. In
this algorithm, two different differential mutation operations with two different control
parameters are utilized to generate learning exemplars for particles.

The above variants of GL-PSO have shown promising performance in solving opti-
mization problems. However, during the exemplar construction, they all consume many
function evaluations to evaluate the constructed exemplars. This definitely reduces the
number of fitness evaluations used for evolving the swarm, which may lead to insufficient
evolution of the swarm to find high-quality solutions.

2.3. Topology-Based Learning Strategies for PSO

Different from the constructive learning strategies, the topology-based learning strate-
gies [58,80] mainly select learning exemplars from pbests in the current generation based
on some certain kinds of topologies. Specifically, the topologies are used to connect parti-
cles via information exchange to seek proper learning exemplars to guide the update of
particles [81,82].

In [58], Mendes and Kennedy have designed many different neighborhood topologies,
such as ring topology, four-cluster topology, pyramid topology, and square topology, where
each particle is connected to a small number of individuals from a local community. Unlike
the greedy global topology, these local topologies can select less greedy exemplars and
thus high diversity could be maintained, which is profitable for PSO to avoid falling into
local basins. In [80], Zou et al. devised a PSO based on a ring neighborhood topology,
which is formed on the basis of the calculated Euclidean distance between particles, to solve
multimodal optimization problems. Specifically, each particle builds its own topology and
evolves in the associated local range. Instead of using fixed topologies, some researchers
have employed dynamic topologies [59,83] to further enhance the search diversity of
particles. Since different topology-based learning strategies preserve different properties
and advantages, some researchers have attempted to use different topology-based learning
strategies to update particles, so that different particles may interact with others with
different topologies [67].
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Though the abovementioned PSO variants have shown good performance on certain
kinds of optimization problems, issues such as premature convergence and stagnation still
occur when they deal with complicated problems, such as problems with a lot of interacting
variables and many wide and flat local basins. With these limitations, the abovementioned
algorithms cannot be adopted to tackle multimodal problems that increasingly emerge
in real-world applications. To promote the optimization performance of PSO in coping
with complicated problems, we design a predominant cognitive learning particle swarm
optimization (PCLPSO) in this paper by constructing promising exemplars to improve the
learning diversity and the learning effectiveness of particles.

3. Proposed PCLPSO

To elevate the search effectiveness and the search diversity of particles in tackling
complicated optimization problems, this paper devises a predominant cognitive learning
particle swarm optimization (PCLPSO) via utilizing the devised predominant cognitive
learning strategy to construct promising learning exemplars for particles to update. There-
fore, the proposed PCLPSO is a constructive-learning-based PSO variant.

3.1. Predominant Cognitive Learning Strategy

In the three classical constructive learning PSOs (namely CLPSO [56], OLPSO [57],
and GL-PSO [55]), the construction efficiency for promising guiding exemplars cannot be
guaranteed in CLPSO on account of its random selection of pbests dimension by dimension.
Although OLPSO and GL-PSO construct promising exemplars more efficiently than CLPSO,
they usually consume a great number of fitness evaluations during the construction of
promising exemplars, which leads to the number of fitness evaluations used for the swarm
evolution being reduced and consequently it is not beneficial for the algorithm to seek
high-accuracy solutions.

To alleviate the above issues, this paper proposes a predominant cognitive learning
strategy (PCL) to construct promising exemplars for particles. Specifically, given that
the number of particles maintained in the swarm is NP, then, we sort the personal best
positions pbests of all particles from the best to the worst. Subsequently, for each particle
(xi, 0 ≤ i ≤ NP), we construct a promising guiding exemplar as follows:

et+1
i =

{
gbestt if pbestt

i = gbestt

pbestt
i + Fi × (pbestt

rb − pbestt
i) otherwise

(11)

where pbesti is the personal best position found by the ith particle so far; gbest is the
global best position found by the entire swarm so far; pbestrb is the personal best position
randomly selected from those which are better than pbesti; ei is the constructed exemplar
for the ith particle; Fi is a control parameter within [0, 1], which can be seen as a learning
step of pbesti of the ith particle, and t denotes the generation index.

From Equation (11), we can see that the learning exemplar (ei) for each particle (xi) is
constructed by letting its cognitive experience (namely pbesti) learn from a predominant
cognitive experience of other particles (namely a better personal best position pbestrb),
which is randomly selected from those pbests with better fitness than pbesti. In this way, the
constructed exemplar is expectedly close to promising areas. It means that if the personal
best position (pbesti) of one particle is just gbest, we do not construct a guiding exemplar
for this particle since there is no better one to learn from. In this situation, we directly use
pbesti (also gbest) to direct the update of this particle.

After the construction of the guiding exemplar for the ith particle, it is updated in the
following way:

vt+1
i = ω× vt

i + ci × r× (et+1
i − xt

i) (12)

xt+1
i = xt

i + vt+1
i (13)
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where xi and vi denote the position and the velocity vectors of the ith particle, respectively;
ei is the constructed guiding exemplar for the ith particle; t denotes the generation index; ω
denotes the inertia weight; ci represents the acceleration coefficient for the ith particle; r is
randomly and uniformly sampled from [0, 1].

In-depth observation of Equations (11) and (12) shows that the proposed PCL strategy
preserves the following merits:

(1) The constructed guiding exemplar for each particle is hopefully more promising than
its personal best position because the exemplar is generated by letting its personal
best position cognitively learn from a randomly selected better one. Therefore, the
learning effectiveness of particles is hopefully promoted, which helps particles locate
optimal areas fast.

(2) Due to the random selection of the learning candidates in PCL, the constructed
exemplars to guide the update of different particles are likely different. Hence, the
learning diversity of particles is also expectedly promoted, which is helpful for the
swarm to escape from local basins.

(3) In particular, we find that different particles have different numbers of learning can-
didates in PCL to construct exemplars, which results in pbests of different particles
having different ranges to learn. Specifically, the better the pbest is, the fewer candi-
dates this pbest has to learn from, and thus the narrower range this position moves
in. Implicitly, it is found that particles with worse personal best positions prefer to
explore the solution space, while particles with better personal best positions prefer
to exploit the solution space.

(4) By means of the above merits, the devised PCL is expected to compromise exploration
and exploitation well to search the solution space appropriately. Therefore, it is likely
that the proposed PCLPSO could achieve good performance in coping with different
kinds of optimization problems.

Remark

Compared with the three classical constructive learning PSOs, namely CLPSO [56],
OLPSO [57], and GL-PSO [55], the proposed PCLPSO differs from them in the following aspects:

(1) As shown in Equations (11) and (12), the proposed PCLPSO constructs the guiding
exemplars in a whole way, namely taking all dimensions together to construct the
guiding exemplars, while CLPSO (Equation (4)), OLPSO (Equation (5)), and GL-PSO
(Equation (7)) all construct the guiding exemplars in an elementwise way, namely
constructing the exemplars dimension by dimension. By learning from predominant
experience of other particles as a whole, the proposed PCL could implicitly take the
variable correlations into consideration to effectively construct promising guiding
exemplars. At the same time, it can also reduce the computational complexity and
time cost during the exemplar construction.

(2) The proposed PCLPSO constructs a learning exemplar to guide the update of each
particle by letting the personal best position of this particle cognitively learn from a
randomly selected better personal best position. While CLPSO constructs a guiding
exemplar for each particle dimension by dimension based on the personal best posi-
tions of all particles. Since the dimension recombination of the personal best positions
are random, the quality of the constructed exemplar in CLPSO is uncertain. However,
in PCLPSO, by learning from a better position, the quality of the constructed exemplar
is expectedly improved. Therefore, compared with CLPSO, the proposed PCLPSO
preserves higher efficiency in constructing more promising exemplars.

(3) There is no additional consumption of fitness evaluations in the exemplar construc-
tion in PCLPSO, while in both OLPSO and GL-PSO, a lot of fitness evaluations are
consumed during the construction of the guiding exemplars. In OLPSO, a lot of fitness
evaluations are used to construct the orthogonal matrix to seek the effective recom-
bination of dimensions to generate a more promising exemplar. In GL-PSO, in the
selection operation, for each particle, two fitness evaluations are taken to evaluate the
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constructed exemplars, so that a better one can be determined as the guiding exemplar
of this particle. Different from these two constructive learning PSOs, PCLPSO directly
utilizes the constructed exemplars to direct the update of particles. Though it cannot
guarantee that the constructed exemplar for each particle is definitely better than
its personal best positions, the constructed exemplars are hopefully better than the
associated personal best positions since they are constructed by letting the associated
personal best positions learn from predominant ones. Therefore, it is expected that the
proposed PCLPSO achieves more promising performance than OLPSO and GL-PSO.

3.2. Dynamic Strategies for Control Parameters

From Equations (11) and (12), it is found that PCLPSO has three key parameters,
namely inertia weight ω, acceleration coefficient c, and control parameter F. With respect
to the inertia weight ω, we directly utilize the following linear decay strategy, which is
commonly employed in the literature [56,62,67,69,84]:

ω = 0.9− 0.7× t
Tmax

(14)

where t is the current generation, while Tmax denotes the preset maximum number
of generations.

Taking observation of Equation (14), we can see that the inertia weight ω linearly
reduces from 0.9 to 0.2 as the evolution progresses. Therefore, in the early stage, a large
ω is maintained to keep the moving inertia of particles, which is profitable for particles
searching the solution space with high diversity. In the late stage, a small ω is maintained
to decrease the influence of the inertia part. As a result, the swarm expectedly tends to
exploit the found promising areas to obtain high-accuracy solutions.

With respect to the control parameter F and the acceleration coefficient c, we devise
the following dynamic strategies.

3.2.1. Adaptive Strategy for F

In Equation (11), the control parameter F controls the learning step that the personal
best position (pbesti) of the updated particle takes learning from the randomly selected
predominant one (pbestrb). Therefore, it has a great effect on the quality of the constructed
exemplars. In particular, a too large Fi leads to too greedy learning, which results in the
constructed exemplar being too close to the randomly selected pbestrb. In this situation,
the updated particle may approach promising areas too fast, which may lead to the risk
of falling into local basins and premature convergence. By contrast, a too small Fi results
in insufficient learning, which results in the constructed exemplar for each particle being
close to its pbest. In this situation, the learning effectiveness of particles is improved very
limitedly, which may slow down the convergence. Moreover, since the learning ranges of
different particles are different, the settings of Fi should be different for different particles
as well.

Bearing the above considerations into mind, we devise the following adaptive strategy
for F:

Fi = Gaussian(
rank(i)

NP
, 0.1) (15)

where rank(i) is the ranking of the personal best position (pbesti) of the ith particle after
all pbests are sorted from the best to the worst. Fi is the setting of the control parameter F
of the ith particle. NP represents the number of particles in the swarm. Gaussian ( rank(i)

NP , 0.1)
randomly samples a real random number according to the Gaussian distribution with the
mean value set as rank(i)

NP and the standard deviation set as 0.1. Here, it should be mentioned
that the Gaussian distribution with a small variance (0.1) is utilized because such a Gaussian
distribution has a narrow sampling range and thus could generate diverse values around
the mean value. This offers slight diversity in the exemplar construction for each particle
without damaging the construction efficiency.
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From Equation (15), we can see that the control parameter Fi for each particle is
randomly generated by the Gaussian distribution with the mean value set as the division
between the rank of its personal best position and the population size NP and the variance
set as a small value, namely 0.1. Such an adaptive strategy brings the following benefits to
the proposed PCLPSO:

(1) Different particles have different settings of Fi. Because of the rank of the personal
best position of each particle being different from each other, the mean value of the
Gaussian distribution is different for different particles and thus, for different particles,
the learning step Fi is different during the exemplar construction. This is beneficial for
further improving the learning diversity of particles and thus profitable for assisting
the swarm to get out of local basins.

(2) Particles with better pbests preserve small Fi, while those with worse pbests have large
Fi during the exemplar construction. Specifically, better pbests usually have small
ranks, and thus the mean values of the Gaussian distribution are small. Therefore, the
learning step Fi for particles with better pbests is expectedly small. This just matches
the expectation that the constructed exemplars for those particles with better pbests
should not be too close to the randomly selected better positions. This is because the
learning range of those better pbests is narrow due to the small number of learning
candidates. By contrast, worse pbests usually have large ranks, leading to the mean
value of the Gaussian distribution being large. Therefore, the learning step Fi is
expectedly large during the construction of guiding exemplars for those particles
with worse pbests. This also matches the expectation that particles with worse pbests
should learn more from better ones to accelerate their moving to promising areas.

(3) As a whole, we can see that the devised adaptive scheme for F could implicitly help
PCLPSO compromise the search diversity and the search effectiveness of particles
well to search the solution space properly to obtain high-accuracy solutions.

Experiments conducted in Section 4.3 validate the usefulness of the designed adaptive
strategy for F in helping PCLPSO achieve good performance.

3.2.2. Dynamic Acceleration Coefficient c Strategy

As for the acceleration coefficient c, instead of using fixed values in the
literature [55,56,59,67,69], we develop the following dynamic strategy to generate different
values for different particles

ci = Cauchy(1.6, 0.2) (16)

where Cauchy(1.6, 0.2) generates a real number based the Cauchy distribution with the
position factor set as 1.6 and the scaling factor set as 0.2. ci is the setting of the acceleration
coefficient of the ith particle. It deserves attention that instead of using the Gaussian
distribution, the Cauchy distribution is employed here because the Cauchy distribution has
a long fat tail and thus can generate more diversified values than the Gaussian distribution.
Moreover, we set the position parameter and the scaling factor of the Cauchy distribution
as 1.6 and 0.2, respectively, because in the literature [55,56,59,67,69], researchers have
investigated that the setting of the acceleration coefficient c for PSOs is usually in the range
of [1.0, 2.2] and with these parameter settings, the Cauchy distribution could generate
diversified value in such a range.

With this dynamic strategy, different particles have different settings of ci and the
difference among the values of different particles is relatively large. This is beneficial for
further improving the learning diversity of particles, which is very valuable in solving
complicated optimization problems with many local basins.

Experiments conducted in Section 4.3 demonstrate the usefulness of the designed
dynamic strategy for c in assisting PCLPSO to obtain promising optimization performance.
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3.3. Complete Procedure of PCLPSO

Integrating the abovementioned techniques together, we develop the complete PCLPSO
with the overall procedure presented in Algorithm 1. Specifically, the algorithm first
randomly initializes NP particles and then evaluates their fitness as shown in Line 1. After
the initialization, the algorithm proceeds to the main loops of the optimization (Lines
2~18). Before the update of the swarm (Lines 5~17), pbests of all particles are first sorted
from the best to the worst (Line 3) and then the inertia weight ω is computed based on
Equation (14) (Line 4). Then, for each particle, the control parameter Fi is first calculated
according to Equation (15) (Line 6) and then a promising guiding exemplar is constructed
(Lines 7~12). After the construction of the guiding exemplar, the acceleration coefficient
ci is sampled from the Cauchy distribution (Line 13) and then the particle is updated
(Line 14). Subsequently, the updated particle is reevaluated (Line 15) and its pbest is
updated accordingly (Line 16). The main loop (Lines 2~18) continuously iterates until the
termination condition is satisfied. Finally, when the algorithm terminates, the best solution
among all pbests is obtained as the final output (Line 19).

From Algorithm 1, we can that except for the time used for evaluating the fitness
of particles, at each generation, it takes O(NP×log2NP) to sort all pbests, O(NP) to select
random better pbests for all particles, and O(NP×D) to construct new guiding exemplars
for all particles. Then, it takes O(NP×D) to update all particles and O(NP×D) to update
pbests. On the whole, the time complexity of PCLPSO is O(NP×D). With respect to the
space complexity, the same as the classical PSO, PCLPSO needs O(NP×D), O(NP×D), and
O(NP×D) to store the velocity vectors, the position vectors, and the personal best position
vectors of all particles, respectively.

In summary, it is concluded that PCLPSO remains as efficient as the classical PSO
regarding the time complexity and the space occupation.

Algorithm 1: The Complete Procedure of PCLPSO

Input: Population size NP, Total fitness evaluations FEmax
1: Randomly initialize NP particles and compute their fitness, and fes = NP;
2: While (fes ≤ FEmax) do
3: Sort pbests from the best to the worst;
4: Calculate inertia weight ω based on Equation (14);
5: For i = 1:NP do
6: Calculate the control parameter Fi according to Equation (15);
7: If pbesti == gbest then
8: Use gbest as the learning exemplar ei;
9: Else

10: Select a better pbestrb randomly from those which are better than pbesti;
11: Construct the learning exemplar ei according to Equation (11);
12: End If
13: Obtain the acceleration coefficient ci according to Equation (16);
14: Update particle xi based on Equation (12) and Equation (13);
15: Compute the fitness of xi: f (xi), and fes++;
16: Update its pbesti;
17: End For
18: End While
19: Find the global best solution gbest among all pbests;

Output: f (gbest) and gbest

4. Numerical Analysis

This section mainly presents extensive experiments to comprehensively validate the
effective optimization of PCLPSO. To be specific, Section 4.1 first briefly introduces the used
benchmark functions and the compared methods. Then, extensive comparisons between
PCLPSO and the compared approaches are displayed in Section 4.2. At last, to perform a
deep analysis on the proposed algorithm, investigative experiments are executed to testify
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the influence of each component on the developed PCLPSO, so that readers have a better
view on why the developed method could achieve good performance.

4.1. Experimental Settings

In the experiments, we utilize the CEC 2017 benchmark problem set [73], which
has been commonly used to validate evolutionary algorithms in the literature [75,85,86],
to testify the optimization performance of the proposed PCLPSO. As shown in Table 1,
there are 29 optimization problems including 2 unimodal problems, 7 simple multimodal
problems, 10 hybrid problems, and 10 composition problems in this benchmark set. More
detailed information can be found in [73]. It should be mentioned that to more visually
understand the optimization results, for each particle, we utilize the error computed by the
subtraction between its function value and the true global optimum as its fitness on each
optimization problem.

Table 1. The summarized characteristics of the CEC 2017 benchmark problems.

Category F Functions Fi* = Fi(x*)

Unimodal Functions F1 Shifted and Rotated Bent Cigar Function 100
F3 Shifted and Rotated Zakharov Function 300

Simple Multimodal Functions

F4 Shifted and Rotated Rosenbrock’s Function 400
F5 Shifted and Rotated Rastrigin’s Function 500
F6 Shifted and Rotated Expanded Scaffer’s F6 Function 600
F7 Shifted and Rotated Lunacek Bi_Rastrigin Function 700
F8 Shifted and Rotated Non-Continuous Rastrigin’s Function 800
F9 Shifted and Rotated Levy Function 900
F10 Shifted and Rotated Schwefel’s Function 1000

Hybrid Functions

F11 Hybrid Function 1 (N = 3) 1100
F12 Hybrid Function 2 (N = 3) 1200
F13 Hybrid Function 3 (N = 3) 1300
F14 Hybrid Function 4 (N = 4) 1400
F15 Hybrid Function 5 (N = 4) 1500
F16 Hybrid Function 6 (N = 4) 1600
F17 Hybrid Function 6 (N = 5) 1700
F18 Hybrid Function 6 (N = 5) 1800
F19 Hybrid Function 6 (N = 5) 1900
F20 Hybrid Function 6 (N = 6) 2000

Composition Functions

F21 Composition Function 1 (N = 3) 2100
F22 Composition Function 2 (N = 3) 2200
F23 Composition Function 3 (N = 4) 2300
F24 Composition Function 4 (N = 4) 2400
F25 Composition Function 5 (N = 5) 2500
F26 Composition Function 6 (N = 5) 2600
F27 Composition Function 7 (N = 6) 2700
F28 Composition Function 8 (N = 6) 2800
F29 Composition Function 9 (N = 3) 2900
F30 Composition Function 10 (N = 3) 3000

Search Range: [−100, 100]D

Firstly, to comprehensively testify the effective optimization ability of the proposed
PCLPSO, seven state-of-the-art and representative PSOs were selected for comparison
with it. Specifically, the selected seven algorithms are TCSPSO [59], AWPSO [84], PSO-
DLP [67], GL-PSO [29], CLPSO [56], HCLPSO [62], and CLPSO-LS [69]. The former three
algorithms are topology-based learning PSOs, while the latter four methods are exemplar
construction-based learning PSOs.

Secondly, to comprehensively compare PCLPSO with the selected PSO variants, exten-
sive comparison experiments were conducted on the CEC 2017 benchmark set with three
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dimensionality settings, namely 30-D, 50-D, and 100-D. To make fair comparisons, we set
the total number of fitness evaluations (FEmax) as 10,000*D for all algorithms.

Thirdly, for fairness, except for the swarm size, we set the key parameter settings of the
selected seven algorithms as suggested in the related papers. With respect to the swarm size,
since it is usually problem-dependent, we tuned its settings on the CEC 2017 benchmark
set with three settings of the dimension size for all algorithms. After the preliminary
experiments on fine-tuning, the settings of the swarm size along with the settings of the
other key parameters of all algorithms are presented in Table 2.

Table 2. Parameter settings of PCLPSO and the seven compared PSO variants.

Algorithms D Parameter Settings

PCLPSO
30 NP = 80

ω = 0.9~0.2, ci = Cauchy(1.6, 0.2)50 NP = 80
100 NP = 150

TCSPSO
30 NP = 150

ω = 0.9~0.2, c1 = c2 = 250 NP = 150
100 NP = 80

AWPSO
30 NP = 200

ω = 0.9~0.4, a = 0.000035 m, b = 0.5, c = 0, d = 1.550 NP = 200
100 NP = 200

CLPSO-LS
30 NP = 50

ω = 0.9~0.4, c = 1.49445, β = 1
3 , θ = 0.9450 NP = 50

100 NP = 50

PSO-DLP
30 NP = 200

ω = 0.9~0.3, cs
1 = cs

2 = cm
1 = cm

2 = 2.0, L = 5050 NP = 200
100 NP = 200

GL-PSO
30 NP = 100

ω = 0.7298, c = 1.49618, pm = 0.01, sg = 750 NP = 30
100 NP = 50

HCLPSO
30 NP = 200

ω = 0.99~0.2, c1 = 2.5~0.5, c2 = 0.5~2.5, c = 3~1.550 NP = 160
100 NP = 160

CLPSO 30 NP = 40 ω = 0.9~0.4, c = 1.49445, m = 7

Fourthly, to comprehensively measure the optimization performance of each algorithm,
the median, the mean, and the standard deviation (Std) values in terms of the fitness of the
global best solutions found at the end of the associated algorithms over 30 independent runs
were employed as the measurements. Furthermore, to tell whether there is a significant
difference between the proposed PCLPSO and the compared methods, the Wilcoxon rank
sum test at the significance level of α = 0.05 was conducted to compare PCLPSO with
each of the compared methods on each problem. To investigate the overall optimization
performance of all algorithms on one whole benchmark set, we carried out the Friedman
test at the significance level of α = 0.05 to get the average rank of each algorithm. It should
be mentioned that the above two tests were executed by directing using the API in Matlab.

At last, it should be noticed that all algorithms were coded under PyCharm CE and
run on a server with Inter(R) Core (TM) i7-10700T CPU @ 2.90 GHz and 8G RAM.

4.2. Comparison with State-of-the-Art PSOs

Tables 3–5 exhibit the comparison results in terms of the global best fitness between
PCLPSO and the seven selected PSO variants on the CEC 2017 benchmark sets with
the three dimension sizes (30-D, 50-D, and 100-D), respectively. In the three tables, the
bolded p-values denote that the proposed PCLPSO is significantly better than the compared
algorithms on the associated problems. Besides, the symbol “+” above the p-values denotes
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that PCLPSO obtains significant superiority to the corresponding compared PSO variants
on the related problems, the symbol “-” above the p-values denotes that PCLPSO obtains
significant inferiority to the corresponding compared PSO variants on the associated
problems, and the symbol “=” above the p-values denotes that PCLPSO obtains equivalent
performance with the corresponding compared PSO variants on the associated problems.
Furthermore, “+/=/−” in the three tables counts the numbers of “+”, “=”, and “−” in
the whole benchmark set, respectively. Additionally, the average rank of each algorithm
obtained from the Friedman test is also presented in the three tables. To clearly observe
the statistical comparison results, Table 6 summarizes the statistical comparison results
between PCLPSO and the seven compared peer PSO methods on the CEC 2017 benchmark
set with the three different dimension sizes in terms of “+/=/−”.

Observing Table 3, we summarize the comparison results between PCLPSO and the
seven compared PSOs on the 30-D CEC 2017 functions as follows:

(1) With respect to the Friedman test results, PCLPSO obtains the smallest rank, namely
1.97, and this rank value is much smaller than those of the seven compared algorithms
(at least 2.66). This substantiates that PCLPSO achieves the best overall performance
on the 30-D CEC 2017 benchmark set and shows significant overall dominance to the
seven compared PSO variants.

(2) From the perspective of the Wilcoxon rank sum test results, except for HCLPSO
and CLPSO, PCLPSO significantly outperforms the seven compared PSO algorithms
on at least 23 problems and shows worse performance on at most three problems.
Compared with HCLPSO and CLPSO, PCLPSO shows significant superiority to them
both on 17 problems and displays inferiority to them on at most nine problems. In
particular, we find that PCLPSO shows significant superiority to PSO-DLP on all the
29 problems, and significantly outperforms AWPSO on 28 problems.

(3) In view of the comparison results on different kinds of optimization problems, on the
two unimodal problems, PCLPSO dominates TCSPSO, AWPSO, and PSO-DLP on
the two problems, and achieves competitive performance with the other four algo-
rithms (CLPSO-LS, GL-PSO, HCLPSO, and CLPSO). On the seven simple multimodal
problems, PCLPSO is significantly superior to PSO-DLP on all these problems and
significantly dominates AWPSO and CLPSO-LS both on six problems. Competing
with GL-PSO, PCLPSO shows significant dominance on five problems and displays
no failure to GL-PSO. Compared with the other three algorithms, namely TCSPSO,
HCLPSO, and CLPSO, PCLPSO achieves highly competitive performance with them.
When it comes to the 10 hybrid problems, PCLPSO shows significant superiority
to TCSPSO, AWPSO, CLPSO-LS, and PSO-DLP all on the 10 problems. Compared
with GL-PSO, HCLPSO, and CLPSO, PCLPSO outperforms them significantly on
nine, eight, and six problems, respectively. In terms of the 10 composition problems,
PCLPSO significantly dominates AWPSO and PSO-DLP both on all these problems
and outperforms GL-PSO on nine problems. In comparison with TCSPSO, CLPSO-LS,
and CLPSO, PCLPSO shows significant superiority to them all on seven problems.
Compared with HCLPSO, PCLPSO beats it on five problems and is defeated on only
two problems.
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Table 3. Global fitness comparisons between PCLPSO and the seven selected PSO methods on the CEC 2017 benchmark set with the dimensionality set as 30.

F Category Quality PCLPSO TCSPSO AWPSO CLPSO-LS PSO-DLP GL-PSO HCLPSO CLPSO

F1

Unimodal Functions

Median 6.17 × 102 2.08 × 103 7.16 × 109 1.42 × 104 2.20 × 109 2.10 × 103 5.49 × 103 7.62 × 102

Mean 1.33 × 103 3.78 × 103 7.79 × 109 1.67 × 104 3.17 × 109 2.34 × 104 9.72 × 103 3.88 × 102

Std 1.76 × 103 4.43 × 103 4.03 × 109 7.91 × 103 2.53 × 109 1.08 × 105 8.04 × 103 7.43 × 102

p-value - 6.58 × 10−3 + 3.81 × 10−15 + 7.95 × 10−15 + 4.93 × 10−9 + 2.66 × 10−1 = 6.46 × 10−7+ 9.21 × 10−3 −

F3

Median 1.78 × 103 2.23 × 104 1.39 × 104 6.80 × 10−11 7.80 × 104 1.22 × 104 5.86 × 101 1.08 × 102

Mean 1.97 × 103 2.32 × 104 2.03 × 104 4.28 × 103 7.90 × 104 1.25 × 104 1.21 × 102 4.41 × 104

Std 8.25 × 102 6.36 × 103 1.62 × 104 1.64 × 104 1.14 × 104 6.13 × 103 1.50 × 102 1.02 × 104

p-value - 1.42 × 10−25 + 7.13 × 10−8 + 4.45 × 10−1 = 4.33 × 10−42 + 4.21 × 10−13 + 1.66 × 10−17 − 1.78 × 10−30 +

F1-3 +/=/− - 2/0/0 2/0/0 1/1/0 2/0/0 1/1/0 1/0/1 1/0/1

F4

Simple
Multimodal Functions

Median 1.56 × 102 1.29 × 102 6.71 × 102 8.90 × 101 1.10 × 103 2.10 × 102 8.56 × 101 1.72 × 102

Mean 1.55 × 102 1.28 × 102 7.12 × 102 8.90 × 101 1.26 × 103 2.15 × 102 8.66 × 101 9.12 × 101

Std 1.21 × 101 5.63 × 101 3.40 × 102 4.13 × 10−1 7.70 × 102 5.81 × 101 8.78 × 100 1.59 × 100

p-value - 1.17 × 10−2 − 1.48 × 10−12 + 8.80 × 10−37 − 9.96 × 10−11 + 8.58 × 10−7 + 1.01 × 10−32 − 8.45 × 10−36 −

F5

Median 6.43 × 101 7.26 × 101 1.47 × 102 2.17 × 102 3.67 × 102 6.50 × 101 6.31 × 101 2.39 × 101

Mean 5.04 × 101 7.16 × 101 1.44 × 102 2.18 × 102 3.59 × 102 7.33 × 101 6.72 × 101 7.52 × 101

Std 2.51 × 101 2.19 × 101 3.16 × 101 1.23 × 101 2.66 × 101 3.00 × 101 1.66 × 101 6.81 × 100

p-value - 9.29 × 10−4 + 1.83 × 10−18 + 3.61 × 10−39 + 1.82 × 10−47 + 2.25 × 10−3 + 3.41 × 10−3 + 2.54 × 10−6 +

F6

Median 5.20 × 10−2 1.69 × 102 1.39 × 101 4.32 × 10−1 7.45 × 101 1.24 × 100 3.36 × 10−4 3.87 × 10−1

Mean 6.69 × 10−2 6.97 × 102 1.58 × 101 9.35 × 10−1 7.44 × 101 1.49 × 100 1.11 × 10−3 2.86 × 10−6

Std 6.30 × 10−2 1.40 × 101 6.23 × 100 1.06 × 100 4.69 × 100 9.37 × 10−1 1.62 × 10−3 1.94 × 10−6

p-value - 9.23 × 10−1 = 5.65 × 10−20 + 3.70 × 10−5 + 4.32 × 10−63 + 2.10 × 10−11 + 3.90 × 10−7 − 2.69 × 10−7 −

F7

Median 1.10 × 102 1.18 × 102 1.66 × 102 2.37 × 102 5.73 × 102 1.02 × 102 9.32 × 101 7.11 × 101

Mean 1.10 × 102 1.24 × 102 1.91 × 102 2.33 × 102 5.75 × 102 1.00 × 102 9.38 × 101 9.05 × 101

Std 1.63 × 101 2.07 × 101 9.51 × 101 1.92 × 101 6.30 × 101 2.11 × 101 1.95 × 101 8.02 × 100

p-value - 4.83 × 10−3 + 2.41 × 10−5 + 2.28 × 10−34 + 2.09 × 10−43 + 5.37 × 10−2 = 1.20 × 10−3 − 3.21 × 10−7 −

F8

Median 5.97 × 101 7.32 × 101 1.37 × 102 2.25 × 102 3.39 × 102 6.17 × 101 6.47 × 101 1.99 × 101

Mean 4.91 × 101 7.25 × 101 1.36 × 102 2.22 × 102 3.32 × 102 6.39 × 101 6.49 × 101 8.17 × 101

Std 2.72 × 101 1.91 × 101 3.38 × 101 1.17 × 101 2.27 × 101 1.93 × 101 1.87 × 101 1.00 × 101

p-value - 2.85 × 10−4 + 8.32 × 10−16 + 1.40 × 10−38 + 4.40 × 10−46 + 1.83 × 10−2 + 1.14 × 10−2 + 7.28 × 10−8 +

F9

Median 5.99 × 100 2.86 × 102 2.19 × 103 1.90 × 101 1.17 × 104 4.57 × 101 5.00 × 101 9.31 × 100

Mean 6.10 × 100 3.87 × 102 2.59 × 103 2.29 × 101 1.13 × 104 8.06 × 101 8.07 × 101 6.76 × 102

Std 4.09 × 100 4.05 × 102 1.70 × 103 2.78 × 101 1.30 × 103 1.15 × 102 1.43 × 102 2.85 × 102

p-value - 3.28 × 10−6 + 1.78 × 10−11 + 1.83 × 10−3 + 3.86 × 10−48 + 7.85 × 10−4 + 6.02 × 10−3 + 1.12 × 10−18 +

F10

Median 5.79 × 103 2.97 × 103 3.91 × 103 6.42 × 103 7.27 × 103 5.81 × 103 2.83 × 103 5.68 × 103

Mean 5.83 × 103 3.04 × 103 3.88 × 103 6.26 × 103 7.21 × 103 5.58 × 103 2.88 × 103 2.94 × 103

Std 3.68 × 102 7.37 × 102 7.23 × 102 6.47 × 102 2.65 × 102 1.26 × 103 5.25 × 102 2.82 × 102

p-value - 4.55 × 10−26 − 4.12 × 10−19 − 2.55 × 10−3 + 9.14 × 10−24 + 2.91 × 10−1 = 5.37 × 10−33 − 4.10 × 10−40 −

F4-10 +/=/− - 4/1/2 6/0/1 6/0/1 7/0/0 5/2/0 3/0/4 3/0/4



Mathematics 2022, 10, 1620 17 of 35

Table 3. Cont.

F Category Quality PCLPSO TCSPSO AWPSO CLPSO-LS PSO-DLP GL-PSO HCLPSO CLPSO

F11

Hybrid Functions

Median 5.04 × 101 8.89 × 101 4.20 × 102 1.82 × 102 2.67 × 103 1.34 × 102 6.80 × 101 7.91 × 101

Mean 6.04 × 101 9.24 × 101 4.84 × 102 1.81 × 102 2.64 × 103 1.55 × 102 8.31 × 101 1.16 × 102

Std 3.43 × 101 4.40 × 101 2.44 × 102 4.10 × 101 6.51 × 102 8.82 × 101 4.40 × 101 1.75 × 101

p-value - 2.62 × 10−3 + 2.66 × 10−13 + 6.84 × 10−18 + 1.73 × 10−29 + 9.07 × 10−7 + 2.96 × 10−2 + 8.89 × 10−11 +

F12

Median 8.65 × 104 3.68 × 105 2.11 × 108 4.69 × 105 6.18 × 108 4.02 × 106 1.86 × 105 1.59 × 105

Mean 2.26 × 105 5.85 × 105 3.11 × 108 9.27 × 105 6.23 × 108 1.08 × 107 2.81 × 105 2.01 × 106

Std 4.63 × 105 7.80 × 105 3.57 × 108 8.92 × 105 3.20 × 108 2.90 × 107 2.64 × 105 1.12 × 106

p-value - 3.47 × 10−2 + 1.29 × 10−5 + 3.29 × 10−4 + 2.77 × 10−15 + 5.04 × 10−2 = 5.80 × 10−1 = 5.05 × 10−11 +

F13

Median 1.35 × 103 1.34 × 104 4.57 × 106 6.55 × 103 9.07 × 107 1.07 × 104 4.02 × 104 1.08 × 103

Mean 2.01 × 103 1.73 × 104 1.83 × 107 1.74 × 104 8.54 × 107 6.13 × 104 3.36 × 104 3.40 × 103

Std 1.71 × 103 1.67 × 104 3.01 × 107 2.22 × 104 5.47 × 107 1.52 × 105 2.53 × 104 1.45 × 103

p-value - 6.12 × 10−6 + 1.52 × 10−3 + 3.51 × 10−4 + 7.28 × 10−12 + 3.63 × 10−2 + 5.76 × 10−9 + 1.22 × 10−3 +

F14

Median 6.18 × 102 8.61 × 103 3.66 × 104 1.11 × 105 3.49 × 105 1.43 × 104 1.78 × 104 1.70 × 103

Mean 1.06 × 103 3.31 × 104 6.71 × 104 1.06 × 105 3.56 × 105 2.92 × 104 2.11 × 104 4.93 × 104

Std 9.76 × 102 7.29 × 104 6.16 × 104 5.41 × 104 1.88 × 105 4.70 × 104 2.04 × 104 3.46 × 104

p-value - 1.92 × 10−2 + 2.22 × 10−7 + 2.66 × 10−15 + 8.66 × 10−15 + 1.76 × 10−3 + 1.54 × 10−6 + 2.66 × 10−10 +

F15

Median 1.17 × 103 9.37 × 103 6.85 × 104 4.13 × 104 8.31 × 106 3.86 × 103 1.13 × 104 5.20 × 102

Mean 1.63 × 103 1.30 × 104 1.18 × 105 3.60 × 104 1.00 × 107 6.31 × 103 1.51 × 104 4.59 × 102

Std 1.56 × 103 1.21 × 104 1.30 × 105 8.78 × 103 8.20 × 106 7.20 × 103 1.28 × 104 2.49 × 102

p-value - 3.84 × 10−6 + 7.74 × 10−6 + 7.12 × 10−29 + 9.52 × 10−9 + 9.53 × 10−4 + 4.57 × 10−7 + 1.47 × 10−4 −

F16

Median 5.61 × 102 8.54 × 102 1.04 × 103 1.29 × 103 2.52 × 103 1.16 × 103 6.92 × 102 5.07 × 102

Mean 5.22 × 102 8.26 × 102 1.08 × 103 1.14 × 103 2.50 × 103 1.11 × 103 6.74 × 102 6.24 × 102

Std 2.47 × 102 3.71 × 102 3.43 × 102 4.17 × 102 2.25 × 102 4.17 × 102 2.68 × 102 1.67 × 102

p-value - 4.28 × 10−4 + 1.17 × 10−9 + 2.96 × 10−9 + 7.86 × 10−39 + 9.41 × 10−9 + 2.65 × 10−2 + 6.66 × 10−2 =

F17

Median 6.94 × 101 2.90 × 102 5.78 × 102 6.85 × 102 1.02 × 103 3.35 × 102 2.98 × 102 8.12 × 101

Mean 8.91 × 101 2.96 × 102 5.58 × 102 9.36 × 102 9.90 × 102 3.25 × 102 2.97 × 102 1.88 × 102

Std 4.72 × 101 1.63 × 102 1.84 × 102 6.50 × 102 1.57 × 102 1.73 × 102 1.56 × 102 6.70 × 101

p-value - 1.07 × 10−8 + 1.40 × 10−19 + 1.90 × 10−9 + 4.13 × 10−37 + 1.23 × 10−9 + 3.22 × 10−9 + 1.42 × 10−8 +

F18

Median 7.21 × 104 2.75 × 105 6.51 × 105 6.81 × 105 4.18 × 106 1.44 × 105 1.58 × 105 7.96 × 104

Mean 8.30 × 104 4.08 × 105 1.23 × 106 2.44 × 106 4.66 × 106 2.10 × 105 2.01 × 105 2.46 × 105

Std 4.04 × 104 3.70 × 105 2.05 × 106 4.19 × 106 2.40 × 106 2.01 × 105 1.26 × 105 1.58 × 105

p-value - 1.23 × 10−5 + 3.33 × 10−3 + 3.20 × 10−3 + 5.88 × 10−15 + 1.24 × 10−3 + 9.00 × 10−6 + 1.02 × 10−6 +

F19

Median 3.71 × 103 5.01 × 103 3.81 × 105 3.51 × 104 2.58 × 107 5.94 × 103 1.07 × 104 4.35 × 103

Mean 4.24 × 103 1.19 × 104 7.01 × 106 3.51 × 104 2.31 × 107 9.63 × 103 1.77 × 104 1.35 × 102

Std 3.20 × 103 1.39 × 104 1.81 × 107 1.98 × 104 1.28 × 107 9.84 × 103 2.03 × 104 8.51 × 101

p-value - 4.76 × 10−3 + 3.86 × 10−2 + 1.08 × 10−11 + 4.67 × 10−14 + 6.01 × 10−3 + 6.74 × 10−4 + 2.74 × 10−9 −
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Table 3. Cont.

F Category Quality PCLPSO TCSPSO AWPSO CLPSO-LS PSO-DLP GL-PSO HCLPSO CLPSO

F20 Hybrid Functions

Median 1.79 × 102 2.67 × 102 3.76 × 102 5.99 × 102 7.86 × 102 2.07 × 102 1.78 × 102 1.39 × 102

Mean 1.95 × 102 2.94 × 102 3.83 × 102 5.87 × 102 7.79 × 102 2.56 × 102 1.89 × 102 1.88 × 102

Std 8.82 × 101 1.67 × 102 1.30 × 102 1.57 × 102 9.66 × 101 1.32 × 102 1.20 × 102 6.68 × 101

p-value - 5.36 × 10−3 + 1.37 × 10−8 + 3.19 × 10−17 + 2.83 × 10−32 + 3.92 × 10−2 + 8.32 × 10−1 = 7.64 × 10−1 =

F11-20 +/=/− - 10/0/0 10/0/0 10/0/0 10/0/0 9/1/0 8/2/0 6/2/2

F21

Composition Functions

Median 2.21 × 102 2.78 × 102 3.26 × 102 4.00 × 102 5.36 × 102 2.83 × 102 2.73 × 102 2.25 × 102

Mean 2.36 × 102 2.78 × 102 3.35 × 102 4.02 × 102 5.38 × 102 3.02 × 102 2.72 × 102 2.83 × 102

Std 2.43 × 101 1.98 × 101 3.09 × 101 7.91 × 100 2.07 × 101 5.42 × 101 1.56 × 101 2.58 × 101

p-value - 8.89 × 10−10 + 6.25 × 10−20 + 4.39 × 10−41 + 3.11 × 10−50 + 1.02 × 10−7 + 4.30 × 10−9 + 7.62 × 10−10 +

F22

Median 1.00 × 102 1.03 × 102 4.07 × 103 6.99 × 103 4.16 × 103 1.00 × 102 1.00 × 102 1.00 × 102

Mean 1.02 × 102 1.20 × 103 3.61 × 103 6.95 × 103 4.08 × 103 1.02 × 102 1.88 × 102 8.25 × 102

Std 1.94 × 100 1.63 × 103 1.47 × 103 3.16 × 102 5.78 × 102 3.77 × 100 4.81 × 102 1.20 × 103

p-value - 4.92 × 10−4 + 6.07 × 10−19 + 5.53 × 10−71 + 1.74 × 10−42 + 3.24 × 10−1 = 3.27 × 10−1 = 1.68 × 10−3 +

F23

Median 3.85 × 102 4.36 × 102 5.46 × 102 5.61 × 102 9.41 × 102 5.75 × 102 4.49 × 102 3.91 × 102

Mean 3.88 × 102 4.34 × 102 5.50 × 102 5.57 × 102 9.33 × 102 5.56 × 102 4.51 × 102 4.45 × 102

Std 1.67 × 101 2.71 × 101 4.98 × 101 1.42 × 101 3.80 × 101 4.79 × 101 2.01 × 101 1.10 × 101

p-value - 8.35 × 10−11 + 4.33 × 10−24 + 2.13 × 10−45 + 2.13 × 10−58 + 1.30 × 10−25 + 3.45 × 10−19 + 1.11 × 1−22 +

F24

Median 4.50 × 102 5.02 × 102 6.29 × 102 6.26 × 102 9.61 × 102 6.44 × 102 5.38 × 102 4.61 × 102

Mean 4.53 × 102 5.19 × 102 6.37 × 102 6.20 × 102 9.64 × 102 6.36 × 102 5.41 × 102 5.60 × 102

Std 1.80 × 101 4.20 × 101 3.88 × 101 1.04 × 101 6.49 × 101 3.39 × 101 2.50 × 101 1.69 × 101

p-value - 1.04 × 10−10 + 2.66 × 10−31 + 2.95 × 10−46 + 7.59 × 10−45 + 9.03 × 10−34 + 2.16 × 10−22 + 1.96 × 10−31 +

F25

Median 4.09 × 102 4.03 × 102 6.22 × 102 3.88 × 102 7.79 × 102 4.31 × 102 3.89 × 102 4.03 × 102

Mean 4.10 × 102 4.12 × 102 6.56 × 102 3.88 × 102 8.21 × 102 4.31 × 102 3.89 × 102 3.88 × 102

Std 1.42 × 101 2.08 × 101 1.89 × 102 4.34 × 10−1 1.74 × 102 2.41 × 101 6.70 × 100 6.07 × 10−1

p-value - 7.26 × 10−1 = 1.97 × 10−9 + 3.87 × 10−12 − 1.14 × 10−18 + 1.32 × 10−4 + 7.48 × 10−10 − 9.15 × 10−12 −

F26

Median 1.27 × 103 2.08 × 103 2.98 × 103 3.16 × 103 5.79 × 103 2.85 × 103 1.93 × 103 1.44 × 103

Mean 1.27 × 103 1.86 × 103 3.06 × 103 3.14 × 103 5.69 × 103 2.67 × 103 1.77 × 103 1.58 × 103

Std 6.53 × 101 6.08 × 102 6.43 × 102 1.10 × 102 7.96 × 102 9.70 × 102 6.17 × 102 4.77 × 102

p-value - 2.16 × 10−6 + 8.97 × 10−22 + 4.08 × 10−61 + 3.06 × 10−37 + 1.09 × 10−10 + 4.98 × 10−5 + 7.88 × 10−4 +

F27

Median 5.45 × 102 5.74 × 102 5.68 × 102 5.19 × 102 1.04 × 103 5.77 × 102 5.13 × 102 5.52 × 102

Mean 5.50 × 102 5.76 × 102 5.81 × 102 5.22 × 102 1.04 × 103 5.80 × 102 5.15 × 102 5.10 × 102

Std 1.45 × 101 2.61 × 101 4.60 × 101 1.55 × 101 7.32 × 101 1.96 × 101 1.43 × 101 4.60 × 100

p-value - 1.05 × 10−5 + 8.04 × 10−4 + 7.41 × 10−10 − 3.18 × 10−41 + 1.35 × 10−8 + 2.71 × 10−13 − 5.03 × 10−21 −

F28

Median 4.45 × 102 4.49 × 102 7.85 × 102 3.51 × 103 1.15 × 103 5.06 × 102 4.45 × 102 4.73 × 102

Mean 4.50 × 102 4.61 × 102 9.64 × 102 3.07 × 103 1.24 × 103 5.20 × 102 4.49 × 102 4.83 × 102

Std 3.61 × 101 4.81 × 101 4.10 × 102 9.21 × 102 3.87 × 102 6.10 × 101 3.83 × 101 2.94 × 101

p-value - 3.32 × 10−1 = 5.56 × 10−9 + 2.33 × 10−22 + 5.37 × 10−16 + 1.29 × 10−6 + 8.75 × 10−1 = 2.97 × 10−4 +
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Table 3. Cont.

F Category Quality PCLPSO TCSPSO AWPSO CLPSO-LS PSO-DLP GL-PSO HCLPSO CLPSO

F29

Composition Functions

Median 5.12 × 102 7.99 × 102 9.78 × 102 9.33 × 102 2.41 × 103 7.81 × 102 6.50 × 102 5.30 × 102

Mean 5.16 × 102 8.33 × 102 1.02 × 103 1.11 × 103 2.35 × 103 8.29 × 102 7.08 × 102 6.46 × 102

Std 3.50 × 101 2.17 × 102 2.75 × 102 6.12 × 102 2.17 × 102 1.73 × 102 2.04 × 102 7.33 × 101

p-value - 9.37 × 10−11 + 3.97 × 10−14 + 1.67 × 10−6 + 4.36 × 10−47 + 9.05 × 10−14 + 4.40 × 10−6 + 3.26 × 10−12 +

F30

Median 9.18 × 103 1.21 × 104 2.19 × 106 1.43 × 104 4.35 × 107 3.78 × 104 6.27 × 103 1.30 × 104

Mean 1.11 × 104 2.26 × 104 7.75 × 106 1.38 × 104 4.69 × 107 6.87 × 104 8.22 × 103 1.37 × 104

Std 1.02 × 104 3.46 × 104 1.52 × 107 1.54 × 103 2.39 × 107 8.22 × 104 5.11 × 103 4.06 × 103

p-value - 8.61 × 10−2 = 7.23 × 10−3 + 1.54 × 10−1 = 1.86 × 10−15 + 3.42 × 10−4 + 1.72 × 10−1 = 1.96 × 10−1 =

F21-30 +/=/− - 7/3/0 10/0/0 7/1/2 10/0/0 9/1/0 5/3/2 7/1/2

+/=/− - 23/4/2 28/0/1 24/2/3 29/0/0 24/5/0 17/5/7 17/3/9

Rank 1.97 3.93 6.31 5.62 7.90 4.62 2.66 3.00

Table 4. Global fitness comparisons between PCLPSO and the seven selected PSO methods on the CEC 2017 benchmark set with the dimensionality set as 50.

F Category Quality PCLPSO TCSPSO AWPSO CLPSO-LS PSO-DLP GL-PSO HCLPSO CLPSO

F1

Unimodal Functions

Median 4.39 × 103 1.69 × 103 7.16 × 109 4.59 × 107 5.96 × 109 3.12 × 103 3.72 × 103 2.06 × 103

Mean 4.19 × 103 4.35 × 103 3.92 × 100 1.29 × 108 8.04 × 109 1.67 × 107 4.06 × 103 2.59 × 103

Std 2.12 × 103 5.68 × 103 1.16 × 100 3.39 × 108 6.22 × 109 6.58 × 107 1.86 × 103 1.91 × 103

p-value - 8.85 × 10−1 = 3.92 × 10−26 + 4.08 × 10−2 + 2.11 × 10−9 + 2.96 × 10−2 + 3.38 × 10−6 − 3.80 × 10−3 −

F3

Median 1.63 × 104 7.75 × 104 1.39 × 104 5.20 × 10−10 1.85 × 105 1.97 × 104 1.76 × 102 1.31 × 105

Mean 1.64 × 104 7.86 × 104 9.74 × 104 2.37 × 104 1.82 × 105 2.25 × 104 1.62 × 102 1.31 × 105

Std 4.17 × 103 1.15 × 104 3.70 × 104 6.17 × 104 2.03 × 104 1.49 × 104 4.43 × 101 2.25 × 104

p-value - 8.24 × 10−36 + 2.69 × 10−17 + 5.17 × 10−1 = 2.32 × 10−46 + 4.54 × 10−3 + 2.61 × 10−26 − 5.35 × 10−35 +

F1-3 +/=/− - 1/1/0 2/0/0 1/1/0 2/0/0 2/0/0 0/0/2 1/0/1

F4

Simple
Multimodal Functions

Median 3.53 × 102 2.95 × 102 6.71 × 102 2.38 × 102 2.72 × 103 4.38 × 102 1.77 × 102 1.89 × 102

Mean 3.53 × 102 3.13 × 102 5.15 × 103 2.40 × 102 3.40 × 103 4.49 × 102 1.78 × 102 1.87 × 102

Std 4.89 × 101 1.05 × 102 2.19 × 103 3.19 × 101 2.48 × 103 1.63 × 102 3.69 × 101 2.04 × 101

p-value - 5.87 × 10−2 = 2.32 × 10−17 + 3.46 × 10−15 − 8.39 × 10−9 + 1.64 × 10−3 + 1.01 × 10−22 − 1.82 × 10−24 −

F5

Median 3.80 × 101 1.68 × 102 1.47 × 102 4.40 × 102 6.95 × 102 1.45 × 102 2.79 × 10−3 2.02 × 102

Mean 5.17 × 101 1.76 × 102 3.32 × 102 4.41 × 102 6.99 × 102 1.52 × 102 4.32 × 10−3 1.98 × 102

Std 6.70 × 101 4.28 × 101 5.14 × 101 2.13 × 101 3.26 × 101 4.76 × 101 6.43 × 10−3 1.57 × 101

p-value - 7.82 × 10−17 + 1.82 × 10−31 + 4.28 × 10−48 + 1.83 × 10−57 + 4.06 × 10−14 + 1.48 × 10−18 − 2.14 × 10−26 +

F6

Median 8.72 × 10−1 1.94 × 100 1.39 × 101 5.71 × 100 9.56 × 101 9.40 × 10−1 2.00 × 102 1.23 × 10−8

Mean 8.50 × 10−1 2.22 × 100 3.78 × 101 6.01 × 100 9.50 × 101 1.07 × 100 2.05 × 102 2.45 × 10−3

Std 2.23 × 10−1 1.56 × 100 1.05 × 101 1.24 × 100 4.62 × 100 1.41 × 100 3.08 × 101 1.34 × 10−2

p-value - 2.34 × 10−5 + 7.24 × 10−27 + 4.41 × 10−29 + 2.69 × 10−69 + 9.56 × 10−2 = 6.41 × 10−14 + 5.98 × 10−14 −
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Table 4. Cont.

F Category Quality PCLPSO TCSPSO AWPSO CLPSO-LS PSO-DLP GL-PSO HCLPSO CLPSO

F7

Simple
Multimodal Functions

Median 2.27 × 102 2.84 × 102 1.66 × 102 5.15 × 102 1.25 × 103 2.49 × 102 1.65 × 102 2.10 × 102

Mean 2.11 × 102 2.86 × 102 6.93 × 102 5.15 × 102 1.26 × 103 2.54 × 102 1.70 × 102 2.10 × 102

Std 2.07 × 101 5.16 × 101 2.42 × 102 3.55 × 101 1.24 × 102 4.58 × 101 3.26 × 101 1.47 × 101

p-value - 2.24 × 10−6 + 3.76 × 10−15 + 5.94 × 10−32 + 4.78 × 10−45 + 1.74 × 10−3 + 6.00 × 10−1 = 9.10 × 10−1 =

F8

Median 3.34 × 101 1.83 × 102 1.37 × 102 4.44 × 102 6.93 × 102 1.54 × 102 1.28 × 103 1.96 × 102

Mean 5.39 × 101 1.79 × 102 3.43 × 102 4.45 × 102 6.87 × 102 1.54 × 102 1.52 × 103 1.97 × 102

Std 6.63 × 101 3.90 × 101 5.32 × 101 1.36 × 101 4.15 × 101 6.49 × 101 7.16 × 102 1.64 × 101

p-value - 6.30 × 10−16 + 6.20 × 10−30 + 1.23 × 10−45 + 1.45 × 10−51 + 5.41 × 10−13 + 8.58 × 10−16 + 3.50 × 10−22 +

F9

Median 4.82 × 101 2.15 × 103 2.19 × 103 1.10 × 103 4.02 × 104 1.37 × 103 5.26 × 103 3.95 × 103

Mean 5.26 × 101 2.57 × 103 1.01 × 104 1.13 × 103 4.01 × 104 1.92 × 103 5.34 × 103 4.22 × 103

Std 1.80 × 101 1.71 × 103 4.58 × 103 3.05 × 102 4.04 × 103 8.15 × 102 6.76 × 102 1.22 × 103

p-value - 4.85 × 10−11 + 2.00 × 10−17 + 7.63 × 10−27 + 2.20 × 10−51 + 9.63 × 10−8 + 3.95 × 10−16 + 3.36 × 10−26 +

F10

Median 1.09 × 104 5.22 × 103 3.91 × 103 1.31 × 104 1.35 × 104 7.54 × 103 2.34 × 102 6.65 × 103

Mean 1.09 × 104 5.44 × 103 7.54 × 103 1.31 × 104 1.34 × 104 8.22 × 103 2.44 × 102 6.59 × 103

Std 3.87 × 102 8.75 × 102 9.13 × 102 4.42 × 102 3.19 × 102 2.20 × 103 9.16 × 101 4.51 × 102

p-value - 3.87 × 10−37 − 1.91 × 10−25 − 1.80 × 10−25 + 6.54 × 10−31 + 4.41 × 10−8 − 5.81 × 10−42 − 2.08 × 10−41 −

F4-10 +/=/− - 5/1/1 6/0/1 6/0/1 7/0/0 5/1/1 3/1/3 3/1/3

F11

Hybrid Functions

Median 1.99 × 102 2.02 × 102 4.20 × 102 2.75 × 102 1.35 × 104 1.26 × 103 2.94 × 106 1.93 × 102

Mean 1.97 × 102 2.41 × 102 2.19 × 103 1.24 × 103 1.27 × 104 1.73 × 103 4.77 × 106 1.92 × 102

Std 6.72 × 101 1.11 × 102 1.84 × 103 5.30 × 103 2.66 × 103 7.59 × 102 5.30 × 106 4.16 × 101

p-value - 5.36 × 10−2 = 1.74 × 10−7 + 2.84 × 10−1 = 1.78 × 10−33 + 4.49 × 10−7 + 1.58 × 10−2 + 6.56 × 10−1 =

F12

Median 1.89 × 106 2.62 × 106 2.11 × 108 2.56 × 107 7.50 × 108 5.68 × 106 3.13 × 104 1.86 × 107

Mean 2.66 × 106 1.28 × 107 7.55 × 109 2.70 × 107 1.55 × 109 5.23 × 107 2.80 × 104 1.96 × 107

Std 1.81 × 106 3.91 × 107 4.61 × 109 1.15 × 107 3.13 × 109 3.63 × 108 1.12 × 104 9.65 × 106

p-value - 1.63 × 10−1 = 1.44 × 10−12 + 2.19 × 10−16 + 8.95 × 10−3 + 3.73 × 10−2 + 5.02 × 10−2 = 3.29 × 10−13 +

F13

Median 3.20 × 103 6.21 × 103 4.57 × 106 3.78 × 104 4.84 × 107 3.45 × 103 9.69 × 104 1.11 × 104

Mean 3.90 × 103 7.87 × 103 1.77 × 109 1.03 × 106 1.29 × 108 8.10 × 105 9.77 × 104 1.13 × 104

Std 1.75 × 103 7.86 × 103 1.55 × 109 5.43 × 106 2.07 × 108 9.74 × 106 7.55 × 104 3.09 × 103

p-value - 9.17 × 10−3 + 5.29 × 10−8 + 3.06 × 10−1 = 1.14 × 10−3 + 3.14 × 10−1 = 7.97 × 10−17 + 3.96 × 10−16 +

F14

Median 5.42 × 104 7.69 × 104 3.66 × 104 3.32 × 105 4.62 × 106 1.24 × 105 1.81 × 104 4.64 × 105

Mean 5.50 × 104 1.19 × 105 6.82 × 105 3.92 × 105 4.56 × 106 1.21 × 106 1.62 × 104 5.29 × 105

Std 2.34 × 104 1.94 × 105 7.16 × 105 3.49 × 105 2.31 × 106 1.82 × 106 1.08 × 104 2.69 × 105

p-value - 7.84 × 10−2 = 1.18 × 10−5 + 2.10 × 10−6 + 2.65 × 10−15 + 3.83 × 10−3 + 4.65 × 10−3 − 1.23 × 10−13 +

F15

Median 1.09 × 103 4.76 × 103 6.85 × 104 3.16 × 104 2.96 × 107 2.99 × 103 1.70 × 103 8.15 × 102

Mean 1.43 × 103 6.94 × 103 3.75 × 107 2.35 × 107 6.54 × 107 4.18 × 103 1.66 × 103 9.31 × 102

Std 1.82 × 103 6.93 × 103 1.06 × 108 7.85 × 107 8.03 × 107 9.37 × 103 4.24 × 102 4.56 × 102

p-value - 7.08 × 10−5 + 5.79 × 10−2 = 1.07 × 10−1 = 3.82 × 10−5 + 1.58 × 10−3 + 5.23 × 10−10 + 4.69 × 10−2 −
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Table 4. Cont.

F Category Quality PCLPSO TCSPSO AWPSO CLPSO-LS PSO-DLP GL-PSO HCLPSO CLPSO

F16

Hybrid Functions

Median 9.05 × 102 1.59 × 103 1.04 × 103 3.20 × 103 4.92 × 103 1.70 × 103 1.24 × 103 1.45 × 103

Mean 8.76 × 102 1.55 × 103 2.40 × 103 3.21 × 103 4.89 × 103 1.67 × 103 1.21 × 103 1.41 × 103

Std 3.89 × 102 4.01 × 102 5.44 × 102 2.00 × 102 3.07 × 102 7.06 × 102 2.71 × 102 2.03 × 102

p-value - 3.44 × 10−9 + 7.98 × 10−19 + 1.23 × 10−38 + 3.54 × 10−48 + 7.80 × 10−10 + 9.36 × 10−11 + 8.25 × 10−10 +

F17

Median 8.27 × 102 1.17 × 103 5.78 × 102 2.07 × 103 3.09 × 103 1.33 × 103 2.68 × 105 1.05 × 103

Mean 8.16 × 102 1.16 × 103 2.06 × 103 2.20 × 103 3.05 × 103 1.30 × 103 3.69 × 105 1.04 × 103

Std 1.80 × 102 2.41 × 102 4.49 × 102 7.21 × 102 3.20 × 102 3.35 × 102 3.10 × 105 1.98 × 102

p-value - 4.68 × 10−7 + 9.63 × 10−20 + 2.63 × 10−14 + 3.84 × 10−38 + 2.90 × 10−9 + 5.80 × 10−8 + 1.28 × 10−4 +

F18

Median 2.04 × 105 2.45 × 106 6.51 × 105 5.68 × 106 2.59 × 107 5.67 × 106 2.02 × 104 1.14 × 106

Mean 2.20 × 105 4.08 × 106 5.74 × 106 8.35 × 106 2.64 × 107 7.66 × 106 2.12 × 104 1.31 × 106

Std 1.42 × 105 4.41 × 106 9.83 × 106 6.47 × 106 1.17 × 107 8.33 × 106 1.69 × 104 7.76 × 105

p-value - 1.22 × 10−5 + 3.20 × 10−3 + 4.49 × 10−9 + 1.19 × 10−17 + 1.98 × 10−5 + 1.37 × 10−2 − 2.73 × 10−10 +

F19

Median 1.59 × 104 6.45 × 103 3.81 × 105 2.52 × 103 2.03 × 107 7.66 × 103 7.72 × 102 3.36 × 102

Mean 1.52 × 104 1.05 × 104 2.02 × 107 2.51 × 103 2.46 × 107 1.52 × 104 7.36 × 102 5.26 × 102

Std 4.55 × 103 1.04 × 104 4.65 × 107 1.75 × 101 1.71 × 107 1.14 × 104 2.19 × 102 5.12 × 102

p-value - 2.36 × 10−2 − 2.08 × 10−2 + 7.69 × 10−26 − 9.26 × 10−11 + 9.88 × 10−1 = 6.36 × 10−2 = 7.82 × 10−29 −

F20

Median 6.56 × 102 8.66 × 102 3.76 × 102 1.73 × 103 1.92 × 103 8.65 × 102 3.91 × 102 5.92 × 102

Mean 6.50 × 102 8.43 × 102 1.10 × 103 1.70 × 103 1.93 × 103 9.08 × 102 3.89 × 102 6.14 × 102

Std 1.34 × 102 2.78 × 102 3.20 × 102 1.37 × 102 1.39 × 102 4.28 × 102 3.19 × 101 1.32 × 102

p-value - 2.97 × 10−3 + 1.93 × 10−8 + 7.31 × 10−32 + 2.87 × 10−36 + 3.22 × 10−3 + 1.16 × 10−1 = 4.01 × 10−1 =

F11-20 +/=/− - 6/3/1 9/1/0 6/3/1 10/0/0 8/2/0 5/3/2 6/1/3

F21

Composition Functions

Median 2.40 × 102 3.71 × 102 3.26 × 102 6.34 × 102 9.26 × 102 3.67 × 102 6.17 × 103 4.21 × 102

Mean 2.53 × 102 3.67 × 102 5.58 × 102 6.36 × 102 9.27 × 102 3.68 × 102 5.80 × 103 4.21 × 102

Std 6.37 × 101 3.71 × 101 5.12 × 101 1.67 × 101 4.03 × 101 5.91 × 101 1.74 × 103 1.53 × 101

p-value - 5.12 × 10−17 + 8.32 × 10−34 + 1.08 × 10−49 + 1.57 × 10−56 + 3.82 × 10−16 + 1.06 × 10−21 + 2.50 × 10−30 +

F22

Median 1.04 × 102 5.83 × 103 4.07 × 103 1.33 × 104 1.39 × 104 8.24 × 103 6.53 × 102 7.13 × 103

Mean 2.59 × 103 5.78 × 103 8.32 × 103 1.32 × 104 1.38 × 104 7.49 × 103 6.56 × 102 7.14 × 103

Std 4.19 × 103 1.47 × 103 1.02 × 103 3.72 × 102 4.19 × 102 2.89 × 103 3.49 × 101 2.79 × 102

p-value - 5.67 × 10−4 + 9.05 × 10−9 + 1.91 × 10−18 + 2.13 × 10−19 + 3.77 × 10−5 + 6.51 × 10−4 − 1.07 × 10−6 +

F23

Median 4.98 × 102 6.28 × 102 5.46 × 102 8.58 × 102 1.69 × 103 8.10 × 102 7.30 × 102 6.66 × 102

Mean 4.98 × 102 6.45 × 102 9.60 × 102 8.56 × 102 1.69 × 103 8.06 × 102 7.24 × 102 6.66 × 102

Std 1.81 × 101 6.32 × 101 9.13 × 101 1.40 × 101 6.44 × 101 9.20 × 101 3.78 × 101 1.93 × 101

p-value - 1.17 × 10−17 + 1.17 × 10−34 + 4.21 × 10−62 + 5.77 × 10−66 + 5.96 × 10−31 + 1.24 × 10−29 + 4.80 × 10−40 +

F24

Median 5.81 × 102 7.29 × 102 6.29 × 102 9.06 × 102 1.79 × 103 9.00 × 102 4.92 × 102 8.04 × 102

Mean 5.83 × 102 7.42 × 102 1.03 × 103 9.06 × 102 1.78 × 103 8.67 × 102 5.13 × 102 8.05 × 102

Std 1.59 × 101 9.22 × 101 7.75 × 101 1.24 × 101 1.53 × 102 3.68 × 101 3.99 × 101 2.69 × 101

p-value - 4.50 × 10−13 + 1.69 × 10−37 + 8.12 × 10−63 + 2.04 × 10−45 + 7.03 × 10−25 + 2.85 × 10−26 − 5.04 × 10−43 +
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Table 4. Cont.

F Category Quality PCLPSO TCSPSO AWPSO CLPSO-LS PSO-DLP GL-PSO HCLPSO CLPSO

F25

Composition Functions

Median 6.47 × 102 6.66 × 102 6.22 × 102 5.58 × 102 1.52 × 103 7.68 × 102 3.58 × 103 5.31 × 102

Mean 6.49 × 102 6.76 × 102 3.42 × 103 5.59 × 102 1.77 × 103 7.87 × 102 3.53 × 103 5.30 × 102

Std 2.77 × 101 6.94 × 101 1.61 × 103 9.54 × 100 8.20 × 102 8.76 × 101 3.33 × 102 6.36 × 100

p-value - 4.31 × 10−2 + 2.70 × 10−13 + 1.54 × 10−30 − 3.98 × 10−10 + 8.64 × 10−14 − 6.06 × 10−24 + 2.14 × 10−38 −

F26

Median 1.75 × 103 3.28 × 103 2.98 × 103 5.62 × 103 1.22 × 104 3.72 × 103 6.49 × 102 3.59 × 103

Mean 1.77 × 103 3.22 × 103 7.17 × 103 5.60 × 103 1.19 × 104 3.95 × 103 6.55 × 102 3.52 × 103

Std 1.57 × 102 8.61 × 102 1.22 × 103 1.89 × 102 1.30 × 103 1.17 × 103 6.21 × 101 3.43 × 102

p-value - 8.61 × 10−13 + 5.87 × 10−32 + 1.09 × 10−65 + 1.44 × 10−45 + 1.70 × 10−11 + 6.03 × 10−35 − 2.93 × 10−34 +

F27

Median 8.64 × 102 9.28 × 102 5.68 × 102 7.18 × 102 2.71 × 103 9.41 × 102 4.86 × 102 6.35 × 102

Mean 8.74 × 102 9.24 × 102 1.10 × 103 7.32 × 102 2.72 × 103 9.65 × 102 4.86 × 102 6.33 × 102

Std 6.67 × 101 8.92 × 101 1.57 × 102 7.97 × 101 2.69 × 102 9.99 × 101 2.67 × 101 2.81 × 101

p-value - 2.37 × 10−2 + 1.88 × 10−9 + 4.61 × 10−9 − 2.05 × 10−41 + 7.54 × 10−4 + 4.44 × 10−17 − 2.64 × 10−22 −

F28

Median 6.94 × 102 6.53 × 102 7.85 × 102 5.45 × 103 2.46 × 103 8.42 × 102 1.18 × 103 1.70 × 103

Mean 6.96 × 102 6.61 × 102 4.86 × 103 5.34 × 103 2.50 × 103 8.65 × 102 1.18 × 103 1.79 × 103

Std 5.33 × 101 6.70 × 101 1.72 × 103 4.56 × 102 8.15 × 102 1.59 × 102 2.98 × 102 4.52 × 102

p-value - 1.54 × 10−2 − 3.55 × 10−19 + 4.77 × 10−52 + 1.65 × 10−17 + 2.70 × 10−9 + 3.66 × 10−33 + 3.82 × 10−19 +

F29

Median 6.25 × 102 1.23 × 103 9.78 × 102 2.10 × 103 5.19 × 103 1.27 × 103 1.13 × 106 1.01 × 103

Mean 6.39 × 102 1.25 × 103 2.85 × 103 2.24 × 103 5.32 × 103 1.36 × 103 1.26 × 106 1.02 × 103

Std 9.20 × 101 2.82 × 102 6.90 × 102 5.96 × 102 7.66 × 102 5.30 × 102 5.20 × 105 1.51 × 102

p-value - 3.25 × 10−16 + 1.13 × 10−24 + 5.67 × 10−21 + 2.02 × 10−39 + 3.99 × 10−13 + 1.81 × 10−13 + 1.26 × 10−16 +

F30

Median 2.15 × 106 2.32 × 106 2.19 × 106 1.46 × 106 2.70 × 108 3.01 × 106 3.14 × 106 7.30 × 105

Mean 2.19 × 106 2.36 × 106 8.22 × 107 1.16 × 107 2.98 × 108 3.08 × 106 9.14 × 103 7.40 × 105

Std 4.13 × 105 6.23 × 105 1.07 × 108 5.47 × 107 1.24 × 108 2.84 × 106 4.83 × 106 7.63 × 104

p-value - 1.97 × 10−1 = 1.28 × 10−4 + 3.52 × 10−1 = 5.91 × 10−19 + 4.37 × 10−4 + 1.34 × 10−10 − 7.81 × 10−28 −

F21–30 +/=/− - 8/1/1 10/0/0 7/1/2 10/0/0 9/0/1 5/0/5 7/0/3

+/=/− - 20/6/3 27/1/1 20/5/4 29/0/0 24/3/2 13/4/12 17/2/10

Rank 2.34 3.45 6.45 5.38 4.55 3.34 2.97 3.34

Table 5. Global fitness comparisons between PCLPSO and the seven selected PSO methods on the CEC 2017 benchmark set with the dimensionality set as 100.

F Category Quality PCLPSO TCSPSO AWPSO CLPSO-LS PSO-DLP GL-PSO HCLPSO CLPSO

F1 Unimodal Functions

Median 3.23 × 103 8.51 × 103 1.64 × 1011 1.21 × 1010 5.11 × 1010 1.47 × 104 1.37 × 104 1.63 × 109

Mean 4.23 × 103 8.15 × 103 1.63 × 1011 1.22 × 1010 5.39 × 1010 3.49 × 104 2.79 × 104 1.78 × 109

Std 3.99 × 103 1.15 × 104 2.13 × 1010 1.22 × 109 1.15 × 1010 5.48 × 104 2.56 × 104 1.51 × 109

p-value - 8.84 × 10−4 + 4.98 × 10−45 + 1.18 × 10−51 + 2.16 × 10−33 + 3.37 × 10−3 + 5.59 × 10−6 + 2.26 × 10−8 +
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Table 5. Cont.

F Category Quality PCLPSO TCSPSO AWPSO CLPSO-LS PSO-DLP GL-PSO HCLPSO CLPSO

F3 Unimodal Functions

Median 1.68 × 105 2.66 × 105 4.62 × 105 2.68 × 10−8 4.83 × 105 1.93 × 105 7.13 × 104 5.10 × 105

Mean 1.71 × 105 2.57 × 105 4.65 × 105 3.61 × 104 4.66 × 105 1.98 × 105 7.37 × 104 5.11 × 105

Std 1.22 × 104 2.73 × 104 7.87 × 104 1.38 × 105 5.37 × 104 2.75 × 104 2.21 × 104 3.89 × 104

p-value - 3.12 × 10−26 + 5.99 × 10−28 + 1.71 × 10−6 − 1.67 × 10−36 + 5.44 × 10−6 + 8.33 × 10−29 − 3.28 × 10−47 +

F1-3 +/=/− - 2/0/0 2/0/0 1/0/1 2/0/0 2/0/0 1/0/1 2/0/0

F4

Simple
Multimodal Functions

Median 6.46 × 102 6.33 × 102 3.03 × 104 1.01 × 103 9.72 × 103 1.62 × 103 2.36 × 102 3.17 × 102

Mean 6.43 × 102 6.36 × 102 3.09 × 104 1.01 × 103 1.12 × 104 1.58 × 103 2.47 × 102 3.26 × 102

Std 8.68 × 101 2.68 × 102 9.08 × 103 1.31 × 102 4.20 × 103 4.10 × 102 2.61 × 101 4.38 × 101

p-value - 1.49 × 10−1 = 1.08 × 10−25 + 1.08 × 10−18 + 7.60 × 10−20 + 1.19 × 10−17 + 1.02 × 10−31 − 3.03 × 10−25 −

F5

Median 8.81 × 101 4.37 × 102 9.87 × 102 1.06 × 103 1.63 × 103 4.45 × 102 4.81 × 102 7.46 × 102

Mean 8.83 × 101 5.27 × 102 1.01 × 103 1.06 × 103 1.63 × 103 4.51 × 102 4.89 × 102 7.46 × 102

Std 1.38 × 101 6.06 × 101 1.21 × 102 2.62 × 101 6.02 × 101 8.76 × 101 7.94 × 101 4.21 × 101

p-value - 2.04 × 10−38 + 8.26 × 10−45 + 2.50 × 10−81 + 1.61 × 10−74 + 3.18 × 10−30 + 9.75 × 10−35 + 1.79 × 10−61 +

F6

Median 2.70 × 100 1.49 × 101 5.97 × 101 3.28 × 101 1.17 × 102 2.42 × 100 9.16 × 10−3 1.07 × 10−2

Mean 2.57 × 100 1.64 × 101 5.98 × 101 3.28 × 101 1.17 × 102 3.03 × 100 1.25 × 10−2 2.64 × 10−2

Std 6.18 × 10−1 6.35 × 100 7.97 × 100 1.94 × 100 3.82 × 100 2.00 × 100 1.04 × 10−2 3.26 × 10−2

p-value - 5.02 × 10−17 + 1.86 × 10−43 + 2.09 × 10−61 + 1.14 × 10−78 + 2.39 × 10−1 = 1.58 × 10−30 − 2.25 × 10−30 −

F7

Median 2.89 × 102 9.67 × 102 3.45 × 103 1.45 × 103 3.43 × 103 7.43 × 102 6.66 × 102 7.07 × 102

Mean 3.91 × 102 1.11 × 103 3.46 × 103 1.53 × 103 3.50 × 103 7.62 × 102 6.57 × 102 7.02 × 102

Std 1.81 × 102 1.35 × 102 6.74 × 102 1.75 × 102 3.46 × 102 1.21 × 102 1.06 × 102 6.45 × 101

p-value - 2.01 × 10−20 + 6.86 × 10−32 + 1.96 × 10−32 + 4.89 × 10−46 + 3.93 × 10−13 + 3.76 × 10−9 + 2.11 × 10−12 +

F8

Median 9.19 × 101 4.90 × 102 1.07 × 103 1.07 × 103 1.74 × 103 4.68 × 102 5.69 × 102 7.41 × 102

Mean 9.49 × 101 5.26 × 102 1.07 × 103 1.07 × 103 1.74 × 103 5.10 × 102 5.71 × 12 7.48 × 102

Std 1.76 × 101 1.04 × 102 9.22 × 101 2.22 × 101 5.03 × 101 1.55 × 102 7.23 × 101 3.27 × 101

p-value - 1.35 × 10−28 + 1.50 × 10−52 + 1.34 × 10−82 + 9.45 × 10−80 + 5.21 × 10−21 + 1.01 × 10−40 + 1.07 × 10−65 +

F9

Median 2.44 × 102 1.11 × 104 3.37 × 104 1.57 × 104 1.17 × 105 1.28 × 104 8.66 × 103 2.24 × 104

Mean 2.62 × 102 1.31 × 104 3.56 × 104 1.56 × 104 1.16 × 105 1.41 × 104 8.77 × 103 2.32 × 104

Std 8.93 × 101 4.36 × 103 7.71 × 103 1.83 × 103 5.75 × 103 7.21 × 103 2.87 × 103 4.55 × 103

p-value - 2.77 × 10−20 + 8.13 × 10−33 + 3.59 × 10−47 + 3.50 × 10−69 + 4.18 × 10−15 + 3.40 × 10−23 + 4.80 × 10−35 +

F10

Median 2.63 × 104 1.33 × 104 1.84 × 104 3.02 × 104 3.01 × 104 1.98 × 104 1.28 × 104 2.17 × 104

Mean 2.64 × 104 1.33 × 104 1.83 × 104 3.01 × 104 3.00 × 104 2.07 × 104 1.31 × 104 2.18 × 104

Std 5.97 × 102 3.56 × 103 1.69 × 103 3.82 × 102 6.27 × 102 3.75 × 103 1.20 × 103 5.11 × 102

p-value - 2.56 × 10−26 − 2.43 × 10−32 − 4.10 × 10−36 + 4.68 × 10−31 + 3.18 × 10−11 − 1.74 × 10−51 − 2.12 × 10−38 −

F4
−10 +/=/− - 2005/1/1 6/0/1 7/0/0 7/0/0 2005/1/1 4/0/3 4/0/3

F11 Hybrid Functions

Median 2.32 × 103 1.28 × 104 3.22 × 104 1.56 × 103 1.66 × 105 2.51 × 104 8.47 × 102 1.34 × 103

Mean 2.65 × 103 4.95 × 103 4.29 × 104 6.42 × 103 1.67 × 105 2.38 × 104 8.43 × 102 1.34 × 103

Std 1.74 × 103 3.75 × 103 3.51 × 104 9.25 × 103 2.35 × 104 8.97 × 103 2.49 × 102 1.62 × 102

p-value - 2.37 × 10−18 + 4.75 × 10−8 + 3.20 × 10−2 + 9.37 × 10−43 + 2.16 × 10−18 + 5.55 × 10−7 − 1.31 × 10−4 −



Mathematics 2022, 10, 1620 24 of 35

Table 5. Cont.

F Category Quality PCLPSO TCSPSO AWPSO CLPSO-LS PSO-DLP GL-PSO HCLPSO CLPSO

F12

Hybrid Functions

Median 4.16 × 107 2.57 × 107 4.54 × 1010 8.74 × 108 1.72 × 1010 2.31 × 108 1.32 × 107 7.81 × 107

Mean 4.57 × 107 8.39 × 107 4.69 × 1010 9.29 × 108 1.94 × 1010 3.13 × 108 2.77 × 107 8.97 × 107

Std 3.51 × 107 5.12 × 107 1.70 × 1010 3.17 × 108 1.17 × 1010 2.69 × 108 7.32 × 107 4.15 × 107

p-value - 7.98 × 10−1 = 9.90 × 10−22 + 8.13 × 10−22 + 9.09 × 10−13 + 1.31 × 10−6 + 2.29 × 10−1 = 4.26 × 10−5 +

F13

Median 3.50 × 103 4.12 × 103 5.19 × 109 1.23 × 104 1.94 × 108 1.18 × 104 2.20 × 104 3.82 × 104

Mean 3.74 × 103 5.47 × 103 5.72 × 109 5.54 × 106 2.64 × 108 2.56 × 107 2.24 × 104 4.13 × 104

Std 1.80 × 103 6.69 × 103 2.99 × 109 2.10 × 107 2.39 × 108 1.38 × 108 1.29 × 104 1.61 × 104

p-value - 4.73 × 10−2 + 5.27 × 10−15 + 1.54 × 10−1 = 1.12 × 10−7 + 3.15 × 10−1 = 1.18 × 10−10 + 2.47 × 10−18 +

F14

Median 3.68 × 105 1.05 × 106 1.52 × 107 4.31 × 106 1.84 × 107 5.15 × 105 6.31 × 105 4.85 × 106

Mean 4.87 × 105 1.61 × 106 1.84 × 107 5.24 × 106 1.94 × 107 2.70 × 106 9.83 × 105 5.01 × 106

Std 3.47 × 105 1.44 × 106 1.53 × 107 3.40 × 106 9.98 × 106 4.02 × 106 9.35 × 105 1.22 × 106

p-value - 6.93 × 10−5 + 2.67 × 10−8 + 2.68 × 10−10 + 8.31 × 10−15 + 3.92 × 10−3 + 8.47 × 10−3 + 3.23 × 10−27 +

F15

Median 9.50 × 102 2.53 × 103 1.96 × 109 2.77 × 104 9.67 × 105 2.72 × 103 7.93 × 103 4.82 × 103

Mean 1.08 × 103 1.57 × 105 1.86 × 109 4.53 × 107 6.15 × 106 1.17 × 105 1.16 × 104 5.32 × 103

Std 6.51 × 102 3.13 × 106 1.13 × 109 2.45 × 108 1.67 × 107 6.08 × 105 1.04 × 104 2.74 × 103

p-value - 2.42 × 10−1 = 1.22 × 10−12 + 3.15 × 10−1 = 4.88 × 10−2 + 2.99 × 10−1 = 8.77 × 10−7 + 2.42 × 10−11 +

F16

Median 2.03 × 103 3.98 × 103 7.73 × 103 8.44 × 103 1.31 × 104 4.64 × 103 4.15 × 103 4.02 × 103

Mean 2.17 × 103 3.96 × 103 7.73 × 103 8.43 × 103 1.29 × 104 4.96 × 103 4.08 × 103 4.07 × 103

Std 9.82 × 102 8.18 × 102 1.32 × 103 3.39 × 102 8.74 × 102 1.69 × 103 8.40 × 102 3.43 × 102

p-value - 1.30 × 10−10 + 5.52 × 10−26 + 2.65 × 10−39 + 9.60 × 10−47 + 1.20 × 10−10 + 4.43 × 10−11 + 2.98 × 10−14 +

F17

Median 2.43 × 103 2.90 × 103 8.10 × 103 5.65 × 103 6.80 × 103 3.42 × 103 3.76 × 103 3.23 × 103

Mean 2.13 × 103 2.91 × 103 9.09 × 103 5.78 × 103 7.15 × 103 3.35 × 103 3.86 × 103 3.21 × 103

Std 7.24 × 102 4.93 × 102 3.14 × 103 8.25 × 102 2.42 × 103 1.03 × 103 7.27 × 102 2.86 × 102

p-value - 4.27 × 10−5 + 4.30 × 10−17 + 1.08 × 10−25 + 1.15 × 10−15 + 1.71 × 10−6 + 5.38 × 10−13 + 2.70 × 10−10 +

F18

Median 4.35 × 105 3.46 × 106 1.76 × 107 2.66 × 107 1.59 × 107 6.31 × 105 1.10 × 106 7.77 × 106

Mean 4.30 × 105 4.36 × 106 2.51 × 107 3.23 × 107 1.89 × 107 1.32 × 106 1.97 × 106 7.50 × 106

Std 8.99 × 104 2.32 × 106 2.29 × 107 2.52 × 107 9.71 × 106 1.72 × 106 1.65 × 106 2.45 × 106

p-value - 3.35 × 10−11 + 2.09 × 10−7 + 4.22 × 10−9 + 7.29 × 10−15 + 6.39 × 10−3 + 3.81 × 10−6 + 1.25 × 10−22 +

F19

Median 7.87 × 102 4.74 × 103 9.56 × 108 1.26 × 104 1.02 × 17 1.37 × 103 1.28 × 104 1.78 × 103

Mean 9.54 × 102 3.51 × 103 1.28 × 109 3.76 × 105 2.00 × 107 9.64 × 105 3.40 × 105 1.97 × 103

Std 7.68 × 102 7.98 × 105 9.44 × 108 1.23 × 106 3.72 × 107 5.17 × 106 1.76 × 106 7.25 × 102

F11–20 +/=/− - 6/3/1 10/0/0 7/3/0 10/0/0 7/3/0 6/2/2 8/0/2

F21

Composition Functions

Median 3.38 × 102 7.14 × 102 1.39 × 103 1.31 × 103 2.28 × 103 7.46 × 102 8.27 × 102 9.66 × 102

Mean 3.40 × 102 7.54 × 102 1.39 × 103 1.31 × 103 2.27 × 103 7.89 × 102 8.36 × 102 9.62 × 102

Std 1.80 × 101 8.75 × 101 1.41 × 102 2.82 × 101 1.01 × 102 1.84 × 102 7.27 × 101 3.09 × 101

p-value - 6.33 × 10−31 + 4.09 × 10−44 + 3.08 × 10−78 + 2.30 × 10−67 + 2.61 × 10−19 + 1.48 × 10−41 + 1.87 × 10−65 +

F22

Median 2.73 × 104 1.50 × 104 1.96 × 104 3.04 × 104 3.19 × 104 2.30 × 104 1.43 × 104 2.25 × 104

Mean 2.62 × 104 1.53 × 104 1.99 × 104 3.03 × 104 3.17 × 104 2.35 × 104 1.41 × 104 2.23 × 104

Std 5.01 × 103 1.51 × 103 2.08 × 103 6.31 × 102 4.70 × 102 4.30 × 103 9.64 × 102 6.65 × 102

p-value - 5.37 × 10−17 − 3.37 × 10−8 − 3.01 × 10−5 + 1.18 × 10−7 + 3.08 × 10−2 − 8.06 × 10−19 − 9.34 × 10−5 −
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Table 5. Cont.

F Category Quality PCLPSO TCSPSO AWPSO CLPSO-LS PSO-DLP GL-PSO HCLPSO CLPSO

F23

Composition Functions

Median 7.76 × 102 9.75 × 102 2.04 × 103 1.52 × 103 3.62 × 103 1.39 × 103 8.91 × 102 9.00 × 102

Mean 7.71 × 102 1.02 × 103 2.03 × 103 1.52 × 103 3.62 × 103 1.39 × 103 8.80 × 102 9.01 × 102

Std 3.46 × 101 1.22 × 102 1.64 × 102 3.13 × 101 1.57 × 102 1.96 × 102 3.82 × 101 2.70 × 101

p-value - 1.04 × 10−13 + 1.31 × 10−44 + 2.84 × 10−63 + 6.65 × 10−66 + 2.33 × 10−24 + 1.05 × 10−16 + 3.86 × 10−23 +

F24

Median 1.23 × 103 1.51 × 103 2.80 × 103 1.87 × 103 6.05 × 103 2.05 × 103 1.52 × 103 1.49 × 103

Mean 1.23 × 103 1.61 × 103 2.87 × 103 1.88 × 103 5.91 × 103 2.03 × 103 1.53 × 103 1.49 × 103

Std 5.27 × 101 1.33 × 102 2.06 × 102 7.30 × 101 6.40 × 102 1.34 × 102 6.56 × 101 2.54 × 101

p-value - 3.61 × 10−16 + 3.29 × 10−45 + 1.85 × 10−43 + 7.83 × 10−44 + 3.84 × 10−37 + 1.62 × 10−26 + 1.64 × 10−31 +

F25

Median 1.52 × 103 1.31 × 103 1.43 × 104 3.37 × 103 5.16 × 103 1.79 × 103 7.87 × 102 9.02 × 102

Mean 1.52 × 103 1.31 × 103 1.48 × 104 3.43 × 103 5.08 × 103 1.77 × 103 7.82 × 102 9.07 × 102

Std 1.58 × 102 2.86 × 102 4.22 × 103 2.65 × 102 1.05 × 103 2.80 × 102 7.70 × 101 4.86 × 101

p-value - 1.15 × 10−2 − 1.63 × 10−24 + 5.68 × 10−40 + 6.55 × 10−26 + 6.36 × 10−5 + 8.41 × 10−31 − 5.54 × 10−28 −

F26

Median 5.61 × 103 1.00 × 104 2.57 × 104 1.41 × 104 3.15 × 104 1.04 × 104 1.11 × 104 1.09 × 104

Mean 5.60 × 103 9.97 × 103 2.58 × 104 1.40 × 104 3.15 × 104 1.10 × 104 1.10 × 104 1.10 × 104

Std 4.01 × 102 1.23 × 103 2.67 × 103 3.41 × 102 2.73 × 103 2.32 × 103 8.60 × 102 3.14 × 102

p-value - 8.98 × 10−26 + 1.53 × 10−44 + 2.43 × 10−63 + 3.75 × 10−50 + 2.74 × 10−18 + 4.68 × 10−38 + 7.82 × 10−53 +

F27

Median 1.12 × 103 1.17 × 103 2.09 × 103 7.13 × 102 6.21 × 103 1.23 × 103 7.96 × 102 7.58 × 100

Mean 1.11 × 103 1.13 × 103 2.09 × 103 7.22 × 102 6.03 × 103 1.26 × 103 7.95 × 102 7.59 × 102

Std 5.83 × 101 1.23 × 102 3.93 × 102 3.75 × 101 8.23 × 102 9.93 × 101 6.38 × 101 2.25 × 101

p-value - 3.00 × 10−3 + 1.72 × 10−19 + 1.46 × 10−37 − 5.07 × 10−39 + 4.61 × 10−9 + 1.11 × 10−27 − 1.20 × 10−37 −

F28

Median 1.60 × 103 1.27 × 103 2.06 × 104 1.30 × 104 9.66 × 103 2.20 × 103 5.84 × 102 1.28 × 104

Mean 1.61 × 103 1.27 × 103 2.10 × 104 1.30 × 104 1.02 × 104 2.29 × 103 3.14 × 103 1.28 × 104

Std 1.61 × 102 4.02 × 102 2.02 × 103 1.88 × 102 2.24 × 103 5.73 × 102 4.58 × 103 4.87 × 101

p-value - 3.48 × 10−3 − 1.28 × 10−50 + 6.31 × 10−90 + 1.13 × 10−28 + 3.87 × 10−8 + 7.28 × 10−2 = 4.65 × 10−99 +

F29

Median 2.21 × 103 3.63 × 103 8.50 × 103 6.16 × 103 1.13 × 104 4.38 × 103 3.95 × 103 3.30 × 103

Mean 2.20 × 103 3.80 × 103 8.91 × 103 6.16 × 103 1.16 × 104 4.43 × 103 3.93 × 103 3.30 × 103

Std 3.15 × 102 5.72 × 102 1.90 × 103 1.19 × 103 2.46 × 103 6.94 × 102 5.24 × 102 2.75 × 102

p-value - 2.80 × 10−18 + 1.19 × 10−26 + 6.60 × 10−25 + 1.32 × 10−28 + 5.01 × 10−23 + 2.41 × 10−22 + 7.36 × 10−21 +

F30
Composition Functions

Median 7.15 × 105 8.13 × 104 3.86 × 109 2.17 × 104 7.41 × 108 1.83 × 106 5.58 × 103 5.76 × 104

Mean 9.64 × 105 1.64 × 105 4.41 × 109 3.42 × 107 1.15 × 109 3.54 × 106 1.85 × 104 7.32 × 104

Std 6.34 × 105 1.22 × 105 2.16 × 109 1.19 × 108 1.12 × 109 3.91 × 106 2.63 × 104 5.28 × 104

p-value - 3.58 × 10−9 − 3.81 × 10−16 + 1.31 × 10−1 = 5.74 × 10−7 + 7.21 × 10−4 + 3.26 × 10−11 − 2.18 × 10−10 −

F21-30 +/=/− - 6/0/4 9/0/1 8/1/1 10/0/0 9/0/1 5/1/4 6/0/4

+/=/− - 19/4/6 27/0/2 23/4/2 29/0/0 23/4/2 16/3/10 20/0/9

Rank 2.14 3.17 6.9 5.83 7.41 4.41 2.59 3.55
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Table 6. Statistical comparison results between PCLPSO and the seven compared PSO methods on
the CEC 2017 benchmark problem set with the three dimension sizes in terms of “+/=/−”.

Category D TCSPSO AWPSO CLPSO-LS PSO-DLP GL-PSO HCLPSO CLPSO

Unimodal Functions
30 2/0/0 2/0/0 1/1/0 2/0/0 1/1/0 1/0/1 1/0/1
50 1/1/0 2/0/0 1/1/0 2/0/0 2/0/0 0/0/2 1/0/1

100 2/0/0 2/0/0 1/0/1 2/0/0 2/0/0 1/0/1 2/0/0

Simple Multimodal Functions
30 4/1/2 6/0/1 6/0/1 7/0/0 5/2/0 3/0/4 3/0/4
50 5/1/1 6/0/1 6/0/1 7/0/0 5/1/1 3/1/3 3/1/3

100 5/1/1 6/0/1 7/0/0 7/0/0 5/1/1 4/0/3 4/0/3

Hybrid Functions
30 10/0/0 10/0/0 10/0/0 10/0/0 9/1/0 8/2/0 6/2/2
50 6/3/1 9/1/0 6/3/1 10/0/0 7/2/1 5/3/2 6/1/3

100 6/3/1 10/0/0 7/3/0 10/0/0 8/2/0 6/2/2 8/0/2

Composition Functions
30 7/3/0 10/0/0 7/1/2 10/0/0 9/1/0 5/3/2 7/1/2
50 8/1/1 10/0/0 7/1/2 10/0/0 9/0/1 5/0/5 7/0/3

100 6/0/4 9/0/1 8/1/1 10/0/0 9/0/1 5/1/4 6/0/4

Whole Set
30 23/4/2 28/0/1 24/2/3 29/0/0 24/5/0 17/5/7 17/3/9
50 20/6/3 27/1/1 20/5/4 29/0/0 24/3/2 13/4/12 17/2/10

100 19/4/6 27/0/2 23/4/2 29/0/0 23/4/2 16/3/10 20/0/9

Taking a look at Table 4, we obtain the following findings from the comparison results
between PCLPSO and the seven compared PSOs on the 50-D CEC 2017 functions:

(1) In regard to the Friedman test results, PCLPSO still gains the lowest rank (2.34) among
all algorithms. Moreover, such a rank value is still much lower than those of the
seven PSO algorithms (at least 2.97). This substantiates that PCLPSO still performs
the best on the whole 50-D CEC 2017 benchmark set, and its overall performance is
significantly better than those of the seven compared PSO variants.

(2) According to the Wilcoxon rank sum test results, PCLPSO presents significant dom-
inance to AWPSO, PSO-DLP, and GL-PSO on 27, 29, and 24 problems, respectively.
Compared with TCSPSO and CLPSO-LS, PCLPSO obtains significantly better perfor-
mance on 20 problems. In competition with HCLPSO, PCLPSO achieves significant
superiority on 13 problems and shows inferiority on 12 problems. This demonstrates
that PCLPSO obtains highly competitive performance with HCLPSO on the 50-D CEC
2017 benchmark set.

(3) Regarding the comparison results on different kinds of benchmark problems, on the
two unimodal problems, PCLPSO performs much better than AWPSO, PSO-DLP,
and GL-PSO all on these two problems, and performs competitively with TCSPSO,
CLPSO-LS, and CLPSO. On the seven simple multimodal problems, PCLPSO performs
significantly better than TCSPSO, AWPSO, CLPSO-LS, and PSO-DLP on at least five
problems, and obtains highly competitive performance with HCLPSO and CLPSO.
In face of the 10 hybrid problems, PCLPSO exhibits much better performance than
the compared PSO variants on at least five problems, while it performs worse than
them on at most three functions. In particular, in comparison with AWPSO, PSO-
DLP, and GL-PSO, PCLPSO displays significant superiority to them on 9, 10, and 8
problems, respectively. When tackling the 10 composition problems, PCLPSO is better
than TCSPSO, AWPSO, CLPSO-LS, PSO-DLP, GL-PSO, and CLPSO on at least seven
problems, and performs similarly with HCLPSO.

Lastly, observing of Table 5, we achieve the following observations from the com-
parison results between PCLPSO and the seven selected PSO methods on the 100-D CEC
2017 problems:

(1) In terms of the Friedman test results, PCLPSO still obtains the lowest rank value (2.14)
among all algorithms. This demonstrates that PCLPSO consistently obtains the best
overall performance on the whole 100-D CEC 2017 benchmark set.

(2) Regarding the Wilcoxon rank sum test presented in the second to last row, PCLPSO
outperforms TCSPSO, AWPSO, CLPSO-LS, PSO-DLP, and GL-PSO on 20, 27, 20,
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29, and 24 problems respectively. Competing with HCLPSO and CLPSO, PCLPSO
performs significantly better than them on 13 and 17 problems, respectively.

(3) Regarding the optimization performance on different kinds of problems, on the two
unimodal problems, PCLPSO beats AWPSO, PSO-DLP, and GL-PSO all on the two
problems, and performs competitively with TCSPSO, CLPSO-LS, and CLPSO. On
the seven simple multimodal problems, PCLPSO significantly outperforms TCSPSO,
AWPSO, CLPSO-LS, PSO-DLP, and GLPSO on at least five problems, and performs
worse than them on at most one problem. In comparison with HCLPSO and CLPSO,
PCLPSO achieves very competitive performance with them. On the 10 hybrid prob-
lems, PCLPSO obtains significantly better performance than the seven PSO variants
on at least five problems and obtains worse performance than them on at most three
problems. On the 10 composition problems, except for HCLPSO, PCLPSO presents its
dominance over the other six compared methods on at least seven problems.

In summary, from Table 6, we can see that PCLPSO consistently performs the best
and exhibits significant superiority to the seven compared PSO methods on the CEC 2017
problem set with the three settings of dimensionality. This substantiates that PCLPSO is
promising for dealing with optimization problems and has a good scalability in solving
various optimization problems. In particular, PCLPSO performs much better than the
compared methods on complex problems, such as the hybrid problems and the composition
problems. This verifies that PCLPSO has a good optimization ability in dealing with
complicated optimization problems.

The superiority of PCLPSO mainly profits from the devised predominant learning
strategy, which could construct promising and effective guiding exemplars to update
particles. In addition, the proposed dynamic parameter strategies also contribute to the
good performance of PCLPSO in improving the swarm diversity. With the cohesive
cooperation among the above techniques, PCLPSO could compromise the search diver-
sity and the search effectiveness of particles well to search the solution space to obtain
satisfactory performance.

4.3. Deep Investigations on PCLPSO

This section presents experiments for deep observations on PCLPSO to investigate the
usefulness of each component, so that it can be determined what contributes to the good
performance of PCLPSO.

4.3.1. Effectiveness of the Predominant Cognitive Learning Strategy

First, we carried out experiments to validate the usefulness of the devised predominant
cognitive learning strategy. To achieve this goal, we first developed three additional
versions of PCLPSO to make comparisons with the proposed PCLPSO. The first is to
remove the predominant cognitive learning strategy and directly use the personal best
position of the updated particle to guide its update. We name this variant of PCLPSO as
“PCLPSO-WPCL”. The second variant is to randomly pick a pbest from those of the other
particles to generate an exemplar to update each particle in Equation (11) instead of using a
random definitely better one. We name this variant as “PCLPSO-Rand”. The third method
is to use gbest to construct the guiding exemplar in Equation (11). We name this PCLPSO
variant as “PCLPSO-Gbest”.

After the above preparation, we executed experiments on the 50-D CEC 2017 problem
set to compare PCLPSO with the three variants. Table 7 presents the comparison results
among these four versions of PCLPSO, which are all the mean fitness values of the global
best solutions found at the end of the algorithms over 30 independent runs.

From Table 7, it is found that with respect to both the Friedman test results and the
number of problems where the associated algorithm performs the best, PCLPSO obtains the
best overall performance. In particular, PCLPSO-WPCL achieves the worst performance.
This demonstrates that the proposed PCL strategy is effective. Compared with PCLPSO-
Gbest, the proposed PCLPSO and PCLPSO-Rand perform much better. This is because in
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PCLPSO-Gbest, there is only one predominant position, namely the gbest, used to construct
the guiding exemplar. This leads to the diversity of the constructed exemplars being very
limited, and thus the learning diversity of particles is not high enough, leading to the swarm
diversity being improved limitedly and thus easily falls into local regions. In competition
with PCLPSO-Rand, the proposed PCLPSO achieves the best results on more problems
(14 problems) and obtains smaller rank (1.52). This demonstrates the superiority of using
a predominant cognitive best position over using a random one to construct the learning
exemplar to update each particle.

Table 7. Comparison results between PCLPSO with different learning strategies on 50-D CEC 2017
benchmark problems.

F PCLPSO PCLPSO-WPCL PCLPSO-Rand PCLPSO-Gbest

F1 4.19 × 103 2.25 × 101 4.76 × 103 1.51 × 104

F3 1.64 × 104 5.66 × 107 3.85 × 104 9.12 × 103

F4 3.53 × 102 8.98 × 104 2.94 × 102 5.42 × 102

F5 5.17 × 101 1.12 × 103 1.22 × 102 1.49 × 102

F6 8.50 × 10−1 1.42 × 102 8.20 × 10−3 9.57 × 100

F7 2.11 × 102 4.81 × 103 2.17 × 102 3.01 × 102

F8 5.39 × 101 1.12 × 103 1.27 × 102 1.40 × 102

F9 5.26 × 101 8.61 × 104 6.88 × 100 1.66 × 103

F10 1.09 × 104 1.60 × 104 1.13 × 104 5.66 × 103

F11 1.97 × 102 8.71 × 104 1.36 × 102 4.71 × 102

F12 2.66 × 106 1.13 × 101 2.11 × 106 3.77 × 107

F13 3.90 × 103 5.84 × 100 6.21 × 103 9.59 × 103

F14 5.50 × 104 1.99 × 108 1.90 × 105 1.35 × 105

F15 1.43 × 103 2.21 × 100 6.84 × 102 3.58 × 103

F16 8.76 × 102 1.05 × 104 1.29 × 103 1.70 × 103

F17 8.16 × 102 3.26 × 105 8.47 × 102 1.10 × 103

F18 2.20 × 105 7.66 × 108 5.17 × 105 2.42 × 106

F19 1.52 × 104 1.03 × 100 1.60 × 104 1.17 × 104

F20 6.50 × 102 3.22 × 103 7.89 × 102 7.69 × 102

F21 2.53 × 102 1.35 × 103 3.25 × 102 3.38 × 102

F22 2.59 × 103 1.67 × 104 3.16 × 103 3.50 × 103

F23 4.98 × 102 2.52 × 103 4.82 × 102 6.76 × 102

F24 5.83 × 102 2.88 × 103 5.74 × 102 7.63 × 102

F25 6.49 × 102 4.62 × 104 6.18 × 102 8.24 × 102

F26 1.77 × 103 2.53 × 104 1.56 × 103 3.17 × 103

F27 8.74 × 102 5.24 × 103 8.85 × 102 1.05 × 103

F28 6.96 × 102 1.94 × 104 6.14 × 102 8.91 × 102

F29 6.39 × 102 4.54 × 105 6.43 × 102 1.44 × 103

F30 2.19 × 106 1.31 × 1010 2.05 × 106 9.10 × 106

Rank 1.52 4.00 1.76 2.72

On the whole, based on the above comparison experiments, the effectiveness of the
PCL strategy is demonstrated, which could construct effective exemplars to direct the
updating of particles.

4.3.2. Effectiveness of the Adaptive Strategy for F

Subsequently, we carried out experiments to validate the usefulness of the devised
adaptive strategy (Equation (15)) for the learning step F. To this end, we set F with different
fixed values ranging from 0.1 to 0.9. Table 8 shows the comparison results in view of the
mean fitness values of the global best solutions found at the end of the associated algorithm
over 30 independent runs between PCLPSO with the adaptive F and those with different
fixed settings of F on the 50-D CEC 2017 benchmark set. The bolded values in this table
mean that the associated algorithms achieve the best performance on the corresponding
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problems. In addition, the average rank of each configuration of F attained from the
Friedman test is also presented in this table.

Table 8. Comparison results between PCLPSO with and without the adaptive strategy for F on the
50-D CEC 2017 benchmark set.

F Adaptive-F F = 0.1 F = 0.2 F = 0.3 F = 0.4 F = 0.5 F = 0.6 F = 0.7 F = 0.8 F = 0.9

F1 4.19 × 103 4.07 × 106 1.95 × 104 3.43 × 103 4.97 × 103 4.24 × 103 5.48 × 103 6.85 × 103 6.08 × 103 5.90 × 103

F3 1.64 × 104 6.45 × 104 4.51 × 104 3.19 × 104 3.44 × 104 2.73 × 104 9.85 × 103 1.68 × 104 1.67 × 104 3.07 × 104

F4 3.53 × 102 2.42 × 102 2.82 × 102 3.34 × 102 3.34 × 102 3.77 × 102 3.97 × 102 3.23 × 102 3.64 × 102 3.14 × 102

F5 5.17 × 101 2.86 × 102 1.39 × 102 6.18 × 101 6.66 × 101 6.54 × 101 6.94 × 101 1.87 × 102 1.70 × 102 1.30 × 102

F6 8.50 × 10−1 1.25 × 101 2.23 × 100 2.64 × 100 2.09 × 100 2.01 × 100 3.25 × 100 9.57× 10−1 8.87× 10−1 1.12 × 10−1

F7 2.11 × 102 3.67 × 102 2.84 × 102 2.35 × 102 2.69 × 102 3.11 × 102 2.31 × 102 3.01 × 102 2.94 × 102 3.01 × 102

F8 5.39 × 101 2.64 × 102 1.33 × 102 5.58 × 101 3.24 × 101 4.78 × 101 3.48 × 101 1.48 × 102 1.44 × 102 1.27 × 102

F9 5.26 × 101 2.45 × 103 2.81 × 102 9.37 × 101 6.08 × 101 5.87 × 101 7.73 × 101 3.26 × 101 4.25 × 101 2.40 × 101

F10 1.09 × 104 1.17 × 104 1.22 × 104 1.23 × 104 1.23 × 104 1.25 × 104 1.23 × 104 1.27 × 104 1.24 × 104 1.27 × 104

F11 1.97 × 102 2.61 × 102 2.52 × 102 2.55 × 102 2.20 × 102 2.50 × 102 2.28 × 102 2.08 × 102 2.28 × 102 2.08 × 102

F12 2.66 × 106 4.01 × 106 2.59 × 106 2.83 × 106 2.19 × 106 2.01 × 106 3.32 × 106 4.49 × 106 2.88 × 106 2.57 × 106

F13 3.90 × 103 4.72 × 103 3.60 × 103 3.48 × 103 4.28 × 103 4.91 × 103 4.74 × 103 4.52 × 103 6.36 × 103 7.24 × 103

F14 5.50 × 104 4.09 × 104 3.37 × 104 4.34 × 104 5.29 × 104 5.22 × 104 1.98 × 105 9.20 × 104 2.31 × 105 1.22 × 105

F15 1.43 × 103 5.07 × 103 3.78 × 103 2.05 × 103 3.22 × 103 1.40 × 103 1.30 × 103 2.03 × 103 1.50 × 103 2.33 × 103

F16 8.76 × 102 2.08 × 103 1.88 × 103 1.33 × 103 1.13 × 103 1.12 × 103 9.82 × 102 9.45 × 102 1.79 × 103 2.17 × 103

F17 8.16 × 102 1.34 × 103 1.29 × 103 1.23 × 103 1.20 × 103 1.24 × 103 1.08 × 103 1.18 × 103 1.26 × 103 1.43 × 103

F18 2.20 × 105 7.02 × 105 6.30 × 105 4.40 × 105 4.15 × 105 2.30 × 105 2.65 × 105 3.95 × 105 5.76 × 105 1.03 × 106

F19 1.52 × 104 1.59 × 104 1.25 × 104 1.22 × 104 1.42 × 104 1.31 × 104 1.56 × 104 1.67 × 104 1.71 × 104 1.66 × 104

F20 6.50 × 102 1.15 × 103 1.22 × 103 1.24 × 103 1.21 × 103 1.13 × 103 8.33 × 102 1.30 × 103 1.25 × 103 1.37 × 103

F21 2.53 × 102 4.23 × 102 3.10 × 102 2.51 × 102 2.46 × 102 2.53 × 102 2.42 × 102 3.17 × 102 3.37 × 102 3.19 × 102

F22 2.59 × 103 9.76 × 102 1.20 × 102 9.66 × 102 9.41 × 102 3.21 × 103 5.13 × 103 5.53 × 103 6.74 × 103 4.72 × 103

F23 4.98 × 102 6.51 × 102 5.24 × 102 5.16 × 102 5.00 × 102 4.89 × 102 4.93 × 102 4.85 × 102 5.09 × 102 5.49 × 102

F24 5.83 × 102 6.76 × 102 5.92 × 102 5.92 × 102 5.73 × 102 5.71 × 102 5.69 × 102 5.54 × 102 5.90 × 102 6.34 × 102

F25 6.49 × 102 7.65 × 102 7.33 × 102 6.74 × 102 6.61 × 102 6.50 × 102 6.83 × 102 6.55 × 102 6.57 × 102 6.55 × 102

F26 1.77 × 103 2.58 × 103 1.78 × 103 1.80 × 103 1.70 × 103 1.64 × 103 1.86 × 103 1.73 × 103 2.17 × 103 2.71 × 103

F27 8.74 × 102 8.95 × 102 8.32 × 102 8.62 × 102 8.36 × 102 8.43 × 102 9.06 × 102 8.64 × 102 8.63 × 102 8.61 × 102

F28 6.96 × 102 9.06 × 102 8.25 × 102 7.40 × 102 7.15 × 102 6.77 × 102 6.63 × 102 6.57 × 102 6.62 × 102 6.41 × 102

F29 6.39 × 102 1.62 × 103 1.09 × 103 8.34 × 102 7.60 × 102 6.07 × 102 7.08 × 102 6.65 × 102 8.25 × 102 1.01 × 103

F30 2.19 × 106 7.24 × 106 4.40 × 106 3.67 × 106 3.07 × 106 2.39 × 106 2.89 × 106 2.53 × 106 2.37 × 106 2.35 × 106

Rank 3.17 8.28 6.17 5.34 4.55 4.17 5.03 5.28 6.52 6.48

Taking a careful look at Table 8, we attain the following observations:

(1) In view of the Friedman test results, the PCLPSO with the adaptive F achieves the
lowest rank and its rank value is much lower than those of the others. This demon-
strates that the PCLPSO with adaptive strategy obtains the best overall performance,
which demonstrates the great superiority of the adaptive strategy to the fixed ones.

(2) In-depth observations demonstrate that the PCLPSO with the adaptive strategy per-
forms the best on 10 problems, while those with the fixed values obtain the best results
on at most 3 problems. Moreover, the results obtained by the adaptive PCLPSO on
the other 19 problems are very close to the best results obtained by PCLPSO with the
associated optimal F. In particular, we find that the optimal F for PCLPSO is different
on different optimization problems.

In conclusion, the adaptive strategy for F not only helps PCLPSO achieve more
promising performance, but also helps PCLPSO get out of being sensitive to the parameter
F. The great effectiveness of the adaptive strategy mainly benefits from the fact that it takes
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the difference among pbests into consideration to set the learning step F. In this way, not
only the search effectiveness, but also the search diversity of particles could be improved to
a large extent, and thus PCLPSO with this strategy could achieve good performance.

4.3.3. Effectiveness of the Dynamic Strategy for c

At last, we executed experiments to validate the usefulness of the dynamic acceleration
coefficient strategy (Equation (16)). To achieve this goal, we set c with different fixed values
ranging from 0.8 to 2.0 with a step size of 0.2. Table 9 displays the comparison results
in terms of the mean fitness values of the global best solutions found at the end of the
associated algorithm over 30 independent runs between PCLPSO with the dynamic strategy
for c and those with different fixed c on the 50-D CEC 2017 benchmark set.

Table 9. Comparison results between PCLPSO with and without the dynamic strategy for c on the
50-D CEC 2017 benchmark problems.

F Dynamic-c c = 0.8 c = 1.0 c = 1.2 c = 1.4 c = 1.6 c = 1.8 c = 2.0

F1 4.19 × 103 1.50 × 108 2.13 × 108 3.67 × 106 1.86 × 107 1.06 × 103 2.50 × 103 5.93 × 103

F3 1.64 × 104 9.44 × 104 6.68 × 104 7.91 × 104 4.96 × 104 3.96 × 104 3.02 × 104 1.35 × 104

F4 3.53 × 102 4.75 × 102 5.85 × 102 4.38 × 102 4.16 × 102 3.69 × 102 3.92 × 102 4.02 × 102

F5 5.17 × 101 1.09 × 102 9.86 × 101 9.60 × 101 8.23 × 101 6.69 × 101 8.42 × 101 9.64 × 101

F6 8.50 × 101 7.12 × 100 4.87 × 100 3.37 × 100 2.92 × 100 2.02 × 100 1.58 × 100 1.96 × 100

F7 2.11 × 102 1.96 × 102 1.82 × 102 1.74 × 102 1.55 × 102 1.72 × 102 2.07 × 102 2.19 × 102

F8 5.39 × 101 1.08 × 102 9.07 × 101 8.67 × 101 7.04 × 101 7.45 × 101 8.66 × 101 1.17 × 10+02

F9 5.26 × 101 5.73 × 102 2.67 × 102 1.41 × 102 8.89 × 101 6.04 × 101 6.05 × 101 6.21 × 101

F10 1.09 × 104 8.61 × 103 8.42 × 103 1.01 × 104 9.94 × 103 1.01 × 104 1.03 × 104 1.04 × 104

F11 1.97 × 102 4.60 × 102 7.06 × 102 4.59 × 102 4.39 × 102 4.38 × 102 2.98 × 102 2.83 × 102

F12 2.66 × 106 1.43 × 108 6.40 × 107 1.06 × 107 3.71 × 106 4.32 × 106 5.01 × 106 7.61 × 106

F13 3.90 × 103 1.41 × 105 2.98 × 104 1.53 × 104 8.39 × 103 8.84 × 103 4.74 × 103 3.66 × 103

F14 5.50 × 104 1.10 × 105 8.56 × 104 3.92 × 104 4.18 × 104 4.85 × 104 8.55 × 104 7.89 × 104

F15 1.43 × 103 7.49 × 103 5.26 × 103 3.34 × 103 4.30 × 103 4.05 × 103 3.83 × 103 2.62 × 103

F16 8.76 × 102 8.37 × 102 7.80 × 102 7.92 × 102 7.63 × 102 8.26 × 102 9.53 × 102 1.15 × 103

F17 8.16 × 102 7.62 × 102 6.27 × 102 6.45 × 102 6.16 × 102 7.06 × 102 7.69 × 102 8.65 × 102

F18 2.20 × 105 1.53 × 106 1.40 × 106 9.63 × 105 5.95 × 105 3.35 × 105 2.72 × 105 1.41 × 105

F19 1.52 × 104 1.57 × 104 1.49 × 104 1.52 × 104 1.35 × 104 1.46 × 104 1.47 × 104 1.43 × 104

F20 6.50 × 102 4.16 × 102 3.49 × 102 3.61 × 102 3.04 × 102 4.59 × 102 5.88 × 102 6.80 × 102

F21 2.53 × 102 2.87 × 102 2.82 × 102 2.66 × 102 2.69 × 102 2.67 × 102 2.77 × 102 2.94 × 102

F22 2.59 × 103 3.44 × 103 4.56 × 103 2.95 × 103 3.97 × 103 3.83 × 103 4.49 × 103 3.30 × 103

F23 4.98 × 102 5.87 × 102 5.49 × 102 5.32 × 102 5.38 × 102 5.33 × 102 5.33 × 102 5.43 × 102

F24 5.83 × 102 6.19 × 102 6.31 × 102 6.05 × 102 6.11 × 102 6.14 × 102 6.13 × 102 6.09 × 102

F25 6.49 × 102 7.81 × 102 8.92 × 102 8.17 × 102 8.04 × 102 7.26 × 102 6.77 × 102 6.61 × 102

F26 1.77 × 103 3.34 × 103 2.07 × 103 1.70 × 103 1.88 × 103 1.91 × 103 1.95 × 103 2.02 × 103

F27 8.74 × 102 8.61 × 102 8.69 × 102 8.22 × 102 8.69 × 102 8.50 × 102 8.92 × 102 8.70 × 102

F28 6.96 × 102 1.08 × 103 1.21 × 103 1.14 × 103 9.82 × 102 8.50 × 102 7.85 × 102 7.21 × 102

F29 6.39 × 102 1.22 × 103 9.32 × 102 8.78 × 102 7.42 × 102 7.15 × 102 7.11 × 102 7.08 × 102

F30 2.19 × 106 5.18 × 107 1.83 × 107 1.22 × 107 2.57 × 106 2.25 × 106 2.29 × 106 2.93 × 106

Rank 2.72 6.66 6.14 4.38 3.79 3.52 4.31 4.48
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From Table 9, the following observations can be attained:

(1) In view of the Friedman test results, the PCLPSO with the proposed dynamic strategy
achieves the lowest rank (2.72) and such a rank is much smaller than those of the
PCLPSO (at least 3.52) with the fixed values. This verifies that the PCLPSO with the
proposed dynamic strategy obtains the best overall performance and presents its great
dominance to the PCLPSO with the fixed c. This verifies the great superiority of the
proposed dynamic strategy to the fixed one.

(2) Taking further observations, we find that the PCLPSO with the dynamic strategy
obtains the best optimization results on 16 problems, while those with the fixed values
obtain the best performance on at most 4 problems. Moreover, the results obtained by
PCLPSO with the dynamic strategy on the other 13 problems are very similar to the
best results obtained by PCLPSO with the associated optimal c.

Based on the above experiments, the effectiveness of the proposed dynamic strategy is
demonstrated. Such a strategy helps PCLPSO achieve promising performance because it
can generate diversified values of c, which is beneficial for further improving the search
diversity of particles.

To summarize, the abovementioned experiments have comprehensively demonstrated
the effectiveness of the proposed PCLPSO in solving optimization problems. In particular,
PCLPSO performs much better than the compared peer methods in tackling complex
problems, such as the multimodal problems, the hybrid problems, and the composition
problems. The superiority of PCLPSO mainly profits from the proposed PCL strategy and
the devised dynamic strategies for the learning step F and the acceleration coefficient c,
whose effectiveness was also verified by the experiments.

5. Conclusions

This paper devised a predominant cognitive learning particle swarm optimization
(PCLPSO) to tackle optimization problems. Instead of letting particles learn from their own
cognitive experience and the social experience of the entire swarm, the proposed PCLPSO
constructs an effective guiding exemplar by the devised predominant cognitive learning
(PCL) strategy to update each particle. Specifically, the guiding exemplar for each particle
is constructed by letting its pbest learn from a predominant pbest randomly selected from
those which are better than pbest of the updated particle. In this way, the constructed
exemplar for each particle is expectedly more promising than its pbest, and thus the search
effectiveness of particles is expectedly improved. Moreover, due to the random selection of
the predominant positions, the constructed guiding exemplars to update different particles
are likely different, and thus the search diversity of particles is expectedly promoted as
well. To further promote the search diversity and get rid of the sensitivity of PCLPSO to the
related parameters, two dynamic strategies are particularly designed for the learning step
in the exemplar construction and the acceleration coefficient in the velocity update. The
proposed PCL and the devised dynamic strategies collaborate cohesively to help PCLPSO
compromise the search effectiveness and the search diversity of particles well to search the
solution space to obtain satisfactory performance.

Comparative experiments were carried out on the commonly adopted CEC 2017
benchmark set with three settings of dimensionality (30-D, 50-D, and 100-D) to compare
the proposed PCLPSO with seven representative and state-of-the-art PSOs. Experimental
results substantiated the great effectiveness of the devised PCLPSO and demonstrated that
PCLPSO preserves a good scalability to solve different kinds of optimization problems. In
particular, it was verified that the proposed PCLPSO preserves a good ability in tackling
complex optimization problems, such as the multimodal problems, the hybrid problems,
and the composition problems. To determine what contributes to the good performance of
PCLPSO, deep investigations on PCLPSO were also carried out. The experimental results
demonstrated that the proposed techniques contribute a lot to assisting PCLPSO to obtain
good performance.
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In the future, we aim to employ the proposed PCLPSO to tackle real-world opti-
mization problems. Since PCLPSO is mainly designed for low-dimensional continuous
optimization problems and it is independent of the mathematical properties of optimization
problems, we mainly intend to use PCLPSO to solve continuous optimization problems in
academic research and real-world engineering.
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