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Abstract: Nowadays, wearable technology can enhance physical human life-log routines by shifting
goals from merely counting steps to tackling significant healthcare challenges. Such wearable technology
modules have presented opportunities to acquire important information about human activities
in real-life environments. The purpose of this paper is to report on recent developments and to
project future advances regarding wearable sensor systems for the sustainable monitoring and
recording of human life-logs. On the basis of this survey, we propose a model that is designed
to retrieve better information during physical activities in indoor and outdoor environments in
order to improve the quality of life and to reduce risks. This model uses a fusion of both statistical
and non-statistical features for the recognition of different activity patterns using wearable inertial
sensors, i.e., triaxial accelerometers, gyroscopes and magnetometers. These features include signal
magnitude, positive/negative peaks and position direction to explore signal orientation changes,
position differentiation, temporal variation and optimal changes among coordinates. These features
are processed by a genetic algorithm for the selection and classification of inertial signals to learn and
recognize abnormal human movement. Our model was experimentally evaluated on four benchmark
datasets: Intelligent Media Wearable Smart Home Activities (IM-WSHA), a self-annotated physical
activities dataset, Wireless Sensor Data Mining (WISDM) with different sporting patterns from an
IM-SB dataset and an SMotion dataset with different physical activities. Experimental results show
that the proposed feature extraction strategy outperformed others, achieving an improved recognition
accuracy of 81.92%, 95.37%, 90.17%, 94.58%, respectively, when IM-WSHA, WISDM, IM-SB and
SMotion datasets were applied.

Keywords: accelerometer; activity detection system; healthcare; inertial sensors; reweighted
genetic algorithm

1. Introduction

Recent developments in the healthcare industry help patients, especially the elderly, to avoid
illness, accidents and disease [1]. Such strategies have introduced monitoring devices such as
wearable, vision and marker-based sensors that secure, examine and improve human life in uncertain
situations [2,3] while patients remain mobile. Wearable technology has replaced traditional diagnostics
by delivering ubiquitous access to vital patient data via smartphones and wearable sensory clothing [4,5].
Wearable devices provide real-time feedback from sensor fusion and they allow for the deployment,
analysis and exploitation of the acquired data. Patients, carers and health practitioners can use data
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gleaned from wearable inertial sensors to keep up-to-date with the health and wellbeing status of their
clients. Such data are functional for healthcare industries, where they can be used to improve the living
standards of humans through remote monitoring [6–9] and by providing data for further research and
development. Rapid growth in the number of healthcare applications has had a profound impact on the
assessment and the evaluation of the fitness models proposed so far [10,11]. This growth has been driven
by the development of the Internet and wearable technologies. However, wearable technologies face
challenges for life-log monitoring because they lack contextual information. In addition, some limitations,
such as unstable human body movements, hardware limitations and ergonomic measurements,
adversely affect the precision of devices made for human life-log monitoring and recording [12].

Technological advances in wearable sensors have resulted in increased demand in research for
security, healthcare and wellbeing applications such as security and surveillance systems, mental
wellness apps, personal trainer assistants, smart homes and assistive robots [13–19]. In security and
surveillance systems, applications that detect uncertain or abnormal events use physical activity
monitoring systems that prompt precautionary measures against violent acts [20,21]. In mental
wellness, apps help those concerned to make choices towards healthy, comfortable and safe lifestyles
and behaviors by being sensitive to emotional and physical indicators. With regard to fitness training,
wearable sensor technologies provide motion tracking in order to make training efficacious and
efficient [22]. Truly smart home environments provide real-time physical monitoring of children and
elderly people who need support due to developing, underdeveloped or deteriorating cognitive skills,
respectively. The support offered by such devices enhances the wearer’s functional independence and
quality of life. Furthermore, physical activity recognition systems deployed in homes help carers and
family members to supervise and respond to elderly patients in a pervasive manner [23,24].

Recently, there has been a great demand for various applications for body-worn sensors.
These revolutionary developments have impacted multiple aspects of human life, especially in
healthcare and daily life monitoring. Among these wearable sensors, our work mainly focuses on
inertial measurement unit (IMU) sensors such as accelerometers, gyroscopes and magnetometers,
which enable us to examine human life in different routines and postures in order to detect changes
in location, body movement and rotational changes in three-dimensional space [25–27]. In addition,
healthcare industries make use of these sensors to monitor physiological and physical activities [28,29].
However, these sensors can also be used to sense sudden changes in the wearer’s posture or position,
like falling, and this information can be used to help prevent falling and/or to dispatch prompt assistance,
especially to the elderly [30,31]. Despite the feasibility of such wearable sensors, some challenges
remain, such as the continuous monitoring of the data acquired from the sensors and the volume of
data on the system. Such data are difficult to handle in real-time.

This paper mainly focuses on the optimization of healthcare physical activity recognition systems
that are intended to reduce difficulties in monitoring human physical routines via IMU-based wearable
sensors, which measure the movements, postures and orientations of those wearing the sensors.
The proposed physical activity recognition system comprises four main steps: the placement of sensors,
a signal denoising process, feature selection and data classification. Initially, we placed three inertial
sensors (i.e., accelerometers, gyroscopes and magnetometers) at different body locations (i.e., chest,
thigh and wrist). Acquired data were filtered with a third-order median filter to eliminate impulsive
types of noise; this restored the signal to close to normal motion. Then, we adapted several approaches
of statistical and non-statistical features. For sustained signal data, relevant descriptive features that
contribute more to the recognition of human physical activities in unlike conditions were selected.
Finally, a reweighted genetic algorithm model was embodied in the model to recognize and set
parameters to classify human activities from feature vectors to attain significant accuracy. To evaluate
performance, we applied our proposed model to the IM-WSHA dataset, which is based on diverse
patterns of physical activities. Simultaneously, we employed the proposed model for two public
benchmark datasets: the WISDM and IM-SB datasets. The major contributions of our paper are
highlighted as follows:
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• The fusion of multiple features from different domains makes the proposed physical healthcare
detection system robust even with noisy data and holds the local dependent properties over the
reweighted genetic algorithm acting as a novel methodology in order to improve the recognition
rate over all three human activity datasets.

• For complex human physical activity patterns, we designed a novel genetic algorithm-based
pattern matching method that provides contextual data coupled with classifying behaviors.

• Moreover, a comprehensive analysis was carried out on two public benchmark datasets
(WISDM and IM-SB) along with a self-annotated dataset (IM-WSHA) for human physical
healthcare activities; this achieved notable results compared with other state-of-the-art methods
and deep learning algorithms.

The rest of the paper is organized as follows. Section 2 offers a brief overview of related work in
the area of human healthcare activity analysis. Section 3 presents the proposed architecture of our
human healthcare activity model. Section 4 comprises the details of one self-annotated dataset and two
public benchmark datasets along with the experimental setup and results. Finally, Section 5 presents
the conclusions and describes research perspectives.

2. Related Work

2.1. Features-Based Healthcare Activity Recognition Systems Using 2D/3D Cameras

Image processing techniques have been used prolifically to recognize human movement patterns
from 2D/3D video and still images. Advances in multimedia tools and sensing devices have made it
easier for researchers to track and analyze human positions and postures by employing techniques
like foreground segmentation, silhouette extraction, etc. For instance, Liu et al. [32] analyzed human
activity recognition (HAR) for healthcare using RGB-Depth cameras. They extracted both 2D and 3D
movements, still postures and transition actions. Nonlinear Support Vector Machine (SVM) is applied
to classify different human activities. In [33], Crispim et al. proposed a multi-sensor surveillance system
for older patients based on video cameras in order to automatically detect life events. The proposed
system was tested with nine participants. Their multi-sensors approach shows an improvement over
vision-based systems. Zouba et al. [34] utilized a cognitive vision approach to detect and identify
daily living activities based on 3D representations of key human postures. They modeled multiple
video events in real-time scenarios. However, this approach was only evaluated experimentally on
small datasets.

In [35], Wu et al. presented a hierarchical approach to recognize multi-view activities in home
environments with different visual features and learning methods. Their proposed method focused
on different fusion techniques such as spatio-temporal features, decision methods and feature fusion
methods for multi-view activity recognition. Kim et al. [36] analyzed a depth vision-based human
activity recognition system for older people’s healthcare in home environments. Their model processed
convolving features such as joint distance, magnitude and centroid features, which are used for feature
extraction. Furthermore, for classification, they used a Hidden Markov Model (HMM) to recognize
various human activities.

2.2. Features-Based Healthcare Activity Recognition System Exploiting Wearable Sensors

Human motion analyses have been strengthened by recent advances in electronics, especially due
to the introduction of Micro Electro-Mechanical Systems (MEMS). Micro versions of electronic sensors
have added to comfort and adaptability to daily routine motion detection. In their efforts to design
human motion instruments, researchers have employed a combination of sensors to find better
solutions for analyzing skeletal movements and the quantization of human motion. MEMS sensors
(accelerometers, gyroscopes and magnetometers) in particular have been playing a significant role in
the recording and analysis of motion data [37]. In [38], Leonardis et al. focused on a multi-featured
technique to recognize eight human activities with magnetic and inertial measurement unit (MIMU)
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sensors. They processed all signals from a tri-axial set of sensors: accelerometer, gyroscope and
magnetometer. In addition to feature extraction, appropriate features were selected to maximize
performance. Finally, state-of-the-art classifiers were applied to evaluate the benchmark performance.
Zebin et al. [39] presented deep learning techniques for a human activity recognition system using
body-worn inertial sensors. They presented feature learning methods for their activity recognition
system. In addition, convolutional neural network (CNN) architecture is applied to automate feature
learning for the recognition of different activities. In [40], Margarito et al. assessed the dynamics of
human motion by placing an accelerometer sensor on the user’s wrist. They captured motion data
representing eight healthcare patterns which were compared against existing pattern templates using
Euclidean distance and dynamic time warping (DTW). In addition, statistical learning approaches
were applied for the segregation of quantized motion data.

Xu et al. [41] proposed a novel method of activity recognition using wearable sensors by combining
three IMUs and one heart rate sensor. These sensor streams were subjected to multi-feature extraction
from Hilbert–Huang transform to enhance human activity recognition. In [42], Jalal et al. dealt with
accelerometer signals statistically and applied a linear support machine to classify quantized human
motion data produced from accelerometer sensors. Nweke et al. [43] conducted research to analyze
human activity recognition and health monitoring using multi-sensor fusion, namely accelerometers
and gyroscopes on two public benchmark datasets. The authors critically analyzed multiple techniques
for data fusion, feature selection and classification techniques for human physical activity recognition
via inertial-based sensors.

3. Materials and Methods

3.1. Overview of the Solution Framework

The proposed system recognizes the physical healthcare activities of humans via three
inertial measurement units: accelerometer, gyroscope and magnetometer sensors. The proposed
model’s architecture is elicited in Figure 1. The process is divided into four phases: signal
preprocessing, feature extraction, feature selection evaluation and a genetic algorithm-based classifier.
Initially, the sensor data are rectified by applying a filtering scheme to deal with the noisy peaks
resulting from abrupt movements. These signals are further processed to compensate for delays
introduced as a result of signal filtering. Secondly, the smoothened signal values are arranged into
time-blocks of consistent duration for the extraction of signal features. In feature extraction, a set of
descriptive statistical and non-statistical feature vectors are extracted such that the signal data are
represented by minimal possible information. Moreover, the extracted features are normalized with the
help of extremes to hinder any complex value from occurring in the later stages of feature evaluation and
selection. The feature extraction phase is then followed by feature selection. Thirdly, feature selection
is a compression technique applied to feature vectors such that the contributing features are maintained
for the later stages of data evaluation. The contributive nature of a feature is defined by the threshold
that is calculated as a mean of the previous evaluations. Lastly, the processed signal data and selected
features are supplied to the classifier algorithm, which assesses the signal stream and applies only the
compressed feature set for training and testing the model.
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Figure 1. Flow architecture of the proposed physical healthcare detection system. Figure 1. Flow architecture of the proposed physical healthcare detection system.

3.2. Signal Pre-Processing

For any system involving signal analysis, pre-processing is the key to maintaining the shape of
the data. In the proposed model, accelerometer signals are processed by a moving filter to enhance
the signal and smoothen extreme points. Moreover, these smoothened signal streams are normalized
for the abduction of negative values from the system to avoid the occurrence of non-real values in
the feature extraction phases. The processed and noisy signal components of the median and moving
average filters of the accelerometer can be seen in Figure 2.
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Figure 2. Signal preprocessing for wearable accelerometers in the proposed healthcare model.

3.3. Feature Extraction

Feature extraction is a prominent phase in all machine learning systems, where the emphasis
lies on representing information with a meaningful set of attributes that covers the whole scenario.
In our proposed model, statistical features have been used to facilitate the analysis of accelerometer
signals. The denoised signals are taken as a stream and subjected to feature extraction for the sensor
data stream. Initially, the definitive parameters are considered, namely window selection and signal
overlap region [44]. Furthermore, signal attributes are extracted from within the bounding region
with sufficient contextual information. Algorithm 1 explains the multi-fused feature extraction model.
Figure 3 shows the vectorization of features with statistical features.
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In the first algorithm, we explained how the inertial raw signal (accelerometer, gyroscope and
magnetometer) data are acquired. Then, we applied the third-order median filter technique to remove
noise and restore the shape of the signal to near normal motions. Then, we adapted the sliding window
approach, which consists of splitting the inertial-based sensor data into batches of equal size for the
analysis of human motion patterns. Finally, we acquired the framed data to extract statistical, frequency
and acoustic features. Then, we combined all the features into a vector/matrix for further processing.

Algorithm 1: Multi-fused inertial signal (acc, gyro, mag) feature extraction

Input: acc = acceleration data (x,y,z), gyro = gyroscope data (x,y,z), mag = magnetometer data (x,y,z),
WS = window size and SR= sampling rate (100 Hz).
Output: feature vector for physical healthcare activities (PHA).
feature_vector← []
window_dimension← AcquireWindow_dimension ()/* acquire window size of inertial signal */
over_lap← Acquirelap_time() /* Get overlapping time */

Method PHA(IMU(acc,gyro,mag))
Multi-FusedVector <- [] /* Combine inertial signal data for preprocessing*/
Filtered_Data <- MovingAverageFilter(acc, gyro, mag)
/*acquire frame data from filtered data(sampled and windowed) */
Frame_Data(Filtered_Data, SR, WS)
While exit condition not true do
/* Extracting statistical, frequency, and acoustic features */
statistical_features <- ExtractStatisticalFeatures(Frame_Data)/* extract statistical features */
frequency_features <- ExtractFrequencyFeatures(Frame_Data)/*extract frequency-based features */
Acoustic_features <- ExtractAcousticFeatures(Frame_Data)/* extract acoustic features */
/* appending all above calculated features into one vector */
Multi-FusedVector <- [statistical_features, frequency_features, acoustic_features]
end while
return Multi-FusedVector
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3.3.1. The Signal Magnitude Feature

Regarding the signal magnitude feature Sig(mag), we measure the distance between actual points
i of the coordinate signal points within the period to perceived different activities as

Sig(mag) =
√

x2
i + y2

i + z2
i (1)

where x(i) is the actual point value of signal x, for y(i) and z(i) of each windowing signal.

3.3.2. The Zero Crossing Rate Feature

The zero crossing rate (ZCR) is the measure of a signal interchange having an amplitude from the
negative to the positive region and vice versa. A count of zero crossing rate gives a good insight into
the signal variation with respect to changing time. Significantly, ZCR is used to measure the measuring
pitch of our inertial signal analysis, as shown in Figure 4.Sensors 2020, 20, x FOR PEER REVIEW 7 of 22 
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3.3.3. Peak Features

The peak signal feature Sig(mine) is extracted from triaxial components by measuring the actual
acceleration component in order to find the minimum and maximum values in the respective sequences
of signals:

Sig (min e) = min (e (p < Q s) ) (2)

Sig (max e) = max (e (p < Q s) ) (3)

where e represents the signal types, i.e., x, y, z of the acceleration signal, p is the current value, and Qs

provides quartile values having negative peak.

3.3.4. Standard Deviation Feature

In the standard deviation feature, we measure the possible deviation of acceleration signals and
the mean value from respective sequences of signals. Thus, the sequence obtained as a result of possible
deviation is given as

Sig(std) =

√√ n∑
i=1

(
Xi −X

)2
/n− 1 (4)

where Xi is the value of the processed signal. In Figure 5, the varying acceleration is presented against
the mean having dispersion around the total mean. Thus, the closer the data around the mean, the more
likely the chance of obtaining the standard deviation as a good predictor.
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Figure 5. The instantaneous vector magnitude for the walking signal pattern from accelerometer sensor.

3.3.5. Magnitude Area Feature

The signal magnitude area, which is calculated according to Equation (5), is used to derive a
measure of the subject’s level of activity. It can distinguish between periods of acceleration and
non-acceleration (static periods) thus:

Area(mag) =
n∑

i=1

Xi +
n∑

i=1

Yi +
n∑

i=1

Zi (5)

where Xi, Yi, and Zi indicate the acceleration signal along with the x-axis, y-axis, and z-axis, respectively.

3.3.6. Mean Feature

The mean is a statistical feature and an important ingredient in many other features, providing an
intuition into the signal’s overall energy over the course of time. Features like standard deviation,
variance and zero crossing are totally reliant on the mean for the calculation of these features.
Figure 6 represents a 1D plot with a fusion of different statistical features of the ascending motion
pattern using the WISDM dataset.
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3.3.7. Spectral Entropy

Spectral entropy is used as a feature to describe the complexity of a system. This complexity of the
system provides vital information which helps to determine the spectrum of inertial signals [45]. It also
helps to determine the Power Spectral Density of inertial signals. In addition, spectral entropy handles
the normalized power distribution of that signal in the frequency domain and determines its Shannon
entropy. This feature is useful in finding any uncertain peaks, e.g., sudden falls that occur during
normal motion. Spectral entropy of the inertial signal for the frequency band f1 − f2 is represented thus:

SN(f1, f2) =
−

∑f2
fi=f1

P(fi) log (P(fi))

log (N[f1, f2])
(6)

where P (fi) shows the value of frequency fi, in Power Spectral Density. Furthermore, N[f1-f2] is the
number of frequency components in the denoting band during Power Spectral Density determination.
Figure 7 visualizes the spectral entropy for the hair brushing motion pattern using the IM-WSHA dataset.Sensors 2020, 20, x FOR PEER REVIEW 9 of 22 
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3.3.8. Hilbert–Huang Transform (HHT)

Hilbert–Huang transform (HHT) is useful for dealing with varied signal data [46]. In this paper,
we employ HHT to analyze inertial signals to deal with variable patterns. Hilbert–Huang transform
involves the Hilbert transform and Empirical Mode Decomposition (EMD). EMD plays a vital role in
our inertial data. It decomposes the inertial data into a fixed and small number of IMFs called intrinsic
mode functions [47]. These IMFs are used to extract features and they are pooled with time-domain
values to analyze some statistical patterns. Finally, all these features are used to create a combined
feature vector. Figure 8 represents the intrinsic mode function from the inertial data.
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3.4. Feature Selection

Due to the high computational cost associated with signal processing, especially when it
includes contextual information, the importance of feature selection cannot be underestimated.
Genetic algorithm (GA) is an evolutionary strategy that follows the principles of natural selection
for the evolution of the next generation. The proposed algorithm uses GA to find a set of features
that embrace all the significant information nodes from the inertial signals (see Figure 9). In the
assimilation of inter-signal variation(s), the process is led by biological crossover and mutations to
bring stochasticity to the process. In addition, features are assigned random weights to help model
non-linear behavior in understanding complex signal patterns. Crossover operation is governed by the
principle of producing offspring from a set of selected parents. Furthermore, randomization is applied
to feature vectors for the fulfillment of mutation operations. Mutation plays a significant role in fast
convergence of the algorithm but often leads to a reduced computational cost. Feature selection is an
important phenomenon that keeps the population pool filled with a mix of the fittest average feature
sets. Algorithm 2 represents the genetic algorithm based on a reweighted feature selection method.

σ(X, Y, Z) =
n∑

i=1

w∑
j=1

(Xtime, Xfreq, Xacoustic · · ·Ytime, Yfreq, Yacoustic · · ·Ztime, Zfreq, Zacoustic) (7)
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Equation (7) comprises the feature extraction stage for the inertial signal data,
where X(time, freq, acoustic), Y(time, freq, acoustic) and Z(time, freq, acoustic) embody signal streams. Each signal
segment is employed to extract the time, frequency and acoustic features.

In the second algorithm, we explained how we acquired the multi-fused feature from a vector.
The feature vector is then converted into corresponding chromosomes. Then, these multi-fused features
are further processed and reweighted to extract an optimal weight. After extracting optimal weights,
we need to calculate crossover chromosomes and global maxima. Finally, we obtain relevant features
based on Linear Support Vector Machine (LSVM) and the random forest-based fitness function.

In Equation (8), the symbol χ represents the process of applying a crossover between two-parent
chromosomes C, C in the feature vector. In Equation (9), the χ illustrates the addition of mutations in
crossed children to deal with the same chromosomes. All chromosomes are fixed versions of features
to represent each bit as a trait.

χ
(
C, C

)
= Xc1..Xcn, Yc1..Ycn, Zc1..Zcn

×

Xc1.Xcn, Yc1.Ycn, Zc1.Zcn (8)

C′ = χ
(
C, C

)
= X′c1..X′cn, Y′c1..Y′cn, Z′c1..Z′cn (9)
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Algorithm 2: Genetic algorithm-based reweighted feature selection

Input: FV: Multi-fused feature vectors (u1, u2, u3, . . . un) /* acquire feature vector */
Output: FL: Multi-fused feature list (l1, l2, lm) /* obtain vector of optimal features*/
/* feature vectors are converted into corresponding chromosomes */
for vector in populationlab do
/* multi-fused-feature vectors are further processed and reweighted to extract an optimal weight
RewightedFeatures <- []
while fitness not achieved or fitness not changing do
for feature in vector do
ReweightedFeatures (feature)
end for
Rechoose ()
offspring1, offspring2 <- CrossOver (vector) /* calculate crossover chromosomes*/
mutated <- Mutation (vector) /* calculate global maxima */
/*obtain relevant features on the basis of Linear Support Vector Machine (LSVM) and random forest-based
fitness function*/
Evaluationfunction <- GetFitness (vector)
end while
return ReweightedFeatures
end for

In order to avoid replication of uniform chromosomes in the population, mutation is introduced
to the crossed children also shown in Equation (9). At the start, the mutation rate is set to 0.05 to avoid
primitive randomization. In this way, mutation maintains the divergence by adapting another level of
randomization with the new generations. In Equation (10), mutations are represented by µ(F′).

µ(F′) =

 X′C1 . . .X
′

Cn
, Y′C1 . . .Y

′

Cn, Z′C1 . . .Z
′

Cn

Y′C1 . . . ŶCn, Z′C1 . . .Z
′

Cn, X′C1 . . .
.

XCn
(10)

Finally, we introduce the reweighted genetic algorithm [48], which consists in giving weights to
specific features while avoiding others. In this way, we did not need to try all possible combinations
of weights, which would increase computation with the conventional genetic algorithm. The weight
assignment in GA strengthens the selection and classification process as an output. In Equation (11),
Wa1 are defined as weights and a1 is the feature depicted in the chromosomal structure.

RGA (C′) = Wa1.Y′c1 . . .Wan.Ŷcn, Wb1 ·Z′c1 . . .Wbn · Ẑcn, Wc1 ·X′c1 . . .Wcn ·X′cn (11)

where ϑ(
.
C)lsvm accounts for the classification result of the support vector machine and ϑ(

.
C)r f are

utilized for the random forest accuracy results.

Fitness(C′) =
ϑ(C′)svm + ϑ(C′)r f

2
(12)

3.5. Genetic-Based Classifier

Classification refers to the taxonomic grouping of data into respective groups based on similarity.
Categorization is achieved by drawing clear-cut boundaries between the classification groups.
The genetic algorithm’s evolutionary nature has been used to evolve discriminating separators
between different classes by exploiting the differences in feature vectors. In the proposed model,
GA has been used to solve complex pattern-matching problems. Motion data require closely related
signal patterns that can cope with inter-class similarity. Following the same steps involved in feature
selection, the genetic algorithm uses the biological operations of crossover and mutation to shuffle
feature vectors until the maximum possible boundary is marked between the classes. Figure 10 shows
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the reweighted pattern-matching algorithm for human physical healthcare pattern understanding.
In Equation (13), we classified the labeled behaviors in inertial signal patterns with high similarity
ratio comprising its context as

Fitness(p′) = .(p′1p′2p′3p′4p′5p′6p′7p′8p′9)%



p11p12p13p14p15p16p17p18p19

p21p22p23p24p25p26p27p28p29

p31p32p33p34p35p36p37p38p39

p41p42p43p44p45p46p47p48p49

p51p52p53p54p55p56p57p58p59

p61p62p63p64p65p66p67p68p69

p71p72p73p74p75p76p77p78p79

p81p82p83p84p85p86p87p88p89

p91p92p93p94p95p96p97p98p99


(13)
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4. Experimental Results

The proposed system is evaluated by a genetic algorithm-based classifier. It includes one
self-annotated Intelligent Media Wearable Smart Home Activities (IM-WSHA) dataset and two public
benchmark datasets named WISDM and IM-SB, respectively. These datasets include multiple physical
healthcare activities in different indoor/outdoor environments, i.e., smart home, sports ground and
public places.

4.1. Intelligent Media Wearable Smart Home Activities Dataset (IM-WSHA)

The Intelligent Media Wearable Smart Home Activities [49] is our self-annotated dataset,
which comprises three wearable IMU sensors (MPU-9250). This dataset contains 220 sequences
of accelerometer, gyroscope and magnetometer data. These sensors were positioned at the wrist,
chest and thigh regions to capture different aspects of human body motion. Ten participants (five males
and five females) performed 11 different physical healthcare activities in smart home environments,
namely phone conversation, vacuum cleaning, watching TV, using computers, reading books, ironing,
walking, exercise, cooking, drinking and brushing hair. The participants involved included both young
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and old people whose ages ranged between 19 and 60 and whose weight ranged between 55 and 85 kg.
The usage of multisensory devices adds challenges when dealing with rigorous motion data [49].

The reweighted genetic algorithm was tested on an IM-WSHA dataset to analyze physical
healthcare activity data from different dimensions and was compared with a conventional linear
support vector machine (LSVM). Table 1 illustrates the performance matrix of human activity recognition
for 11 different activities with a mean accuracy of 81.92%.

Table 1. IM-WSHA dataset applied over the proposed classifier and over well-known statistical
classifiers.

Symbols Activities LSVM (%) Random Forest (%) Proposed (%)

P1 Phone conversation 68.34 70.03 73.67
P2 Vacuum cleaning 74.36 78.37 84.78
P3 Watching TV 66.08 69.84 72.43
P4 Using computers 69.34 72.64 74.57
P5 Reading books 70.13 73.89 77.18
P6 Ironing 84.43 88.43 91.24
P7 Walking 86.71 89.41 93.16
P8 Exercise 83.76 87.65 89.78
P9 Cooking 67.48 69.36 75.83

P10 Drinking 75.57 80.14 86.23
P11 Brushing hair 73.87 78.2 82.29

Mean Recognition Accuracy 74.55 77.99 81.92

Bold letters for Mean Recognition Accuracy of IM-WSHA dataset.

To determine the optimal parameters for a reweighted genetic algorithm to function properly,
different sliding ratios were accommodated to find the perfect balance between the sliding ratio
and the accuracy of the proposed system. It is worth noting that the sliding ratio accounts for
the contextual information needed for the later part of the signals. The application of contextual
information is a prominent factor which holds the sequence of events as a single chain and allows
a better understanding of motion patterns in context. Thus, Table 2 depicts the impact of different
sliding ratios for the IM-WSHA dataset. It is clearly observed that the proposed approach resulted
in average results, especially for non-repetitive activities like phone conversations, watching TV,
using computers, reading books and cooking. These five physical activities are movements without
repetition, which causes lower accuracy compared to other activities. On the other hand, activities such
as walking, exercise, vacuum cleaning, ironing, brushing hair and drinking movements, with repetition
in terms of the subject’s body movements, produce high accuracy rates.

In Table 3, we tested different state-of-the-art methods using our IM_WSHA dataset. In [50],
we extracted statistical features from our dataset and then classified the physical activities with
multilayer feedforward neural networks and achieved 73.27% accuracy. In [51], we applied decision
trees to our dataset and achieved 78.19% recognition accuracy. In Attal et al. [52], we extracted both
time and frequency domain features fused with the Hidden Markov Model (HMM) on our IM-WSHA
dataset and we achieved 80.37% recognition accuracy. Finally, we applied the proposed model to our
self-annotated dataset and achieved significant recognition accuracy of 81.92%.
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Table 2. IM-WSHA dataset results for different sliding windows.

Symbols 10% Slide 30% Slide 60% Slide

P1 52.18 63.58 73.67
P2 65.28 77.36 84.78
P3 56.38 66.08 72.43
P4 58.25 67.34 74.57
P5 63.76 71.13 77.18
P6 68.92 79.80 91.24
P7 72.58 84.71 93.16
P8 70.49 81.67 89.78
P9 59.29 69.41 75.83

P10 69.77 80.12 86.23
P11 63.86 75.42 82.29

Mean Recognition Accuracy 63.70% 74.23% 81.92%

Table 3. Physical activity recognition accuracy comparison of the proposed method with other
state-of-the-art methods over IM-WSHA inertial data.

Methods Algorithm Details Recognition Accuracy of IM-WSHA

Yang et al. [51] Statistical features fused with multilayer
feedforward neural networks 73.27%

Bonomi et al. [52] Classification with decision trees 78.19%

Attal et al. [53]
Time and frequency domain features

wrapped with Hidden Markov Model
(HMM) classifier

80.37%

Proposed Work
Statistical, transform, acoustic and

frequency features fused with
reweighted genetic algorithm

81.92%

Bold letters for Proposed Recognition Accuracy.

4.2. WISDM Dataset

The Wireless Sensor Data Mining (WISDM) [54] dataset is a large repository of smartphone-based
motion data which involves transient motion data. The dataset accommodates routine motion patterns
with a significant number of processable motion samples. The daily life routines possessed by the
dataset could possibly be used to analyze the movement of the different body components of the elderly.
In the analysis of body positioning for the very elderly, the postural positioning and coherence between
body parts can be achieved by recording the quantized motion. With the usage of built-in smartphone
sensors, the subject’s movements are translated into acceleration signals. These signals can be used for
the identification of a subject’s movements in daily life routines. The WISDM dataset involves six main
motion patterns, i.e., walking, jogging, ascending, descending, sitting and standing. For a balanced
ratio of sensor data, a sampling frequency of 50ms was used to stream acceleration signals.

The proposed reweighted genetic algorithm was applied to the WISDM dataset to analyze the
performance of the proposed dataset. Moreover, a linear support vector machine (LSVM) and random
forest were used as second and third classifiers to check physical activity performance, as shown
in Table 4.
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Table 4. WISDM dataset results over the proposed classifier and other well-known statistical classifiers.

Symbols Activities LSVM (%) Random Forest (%) Proposed (%)

W1 Walking 91.42 93.64 98.81
W2 Jogging 92.27 94.12 98.47
W3 Ascending 89.14 90.83 91.23
W4 Descending 90.32 91.64 92.07
W5 Sitting 92.18 92.27 93.18
W6 Standing 93.06 94.18 98.47

Mean Recognition Accuracy 91.39 92.78 95.37

Bold letters for Mean Recognition Accuracy of WISDM dataset.

As Table 5 shows, 10%, 30% and 60% sliding windows were applied to the signal streams and
corresponding results were produced. The 10% sliding window produced only average results in terms
of accuracy because less consideration was given to the context, but the 30% and 60% sliding windows
produced significantly higher results. Therefore, our proposed strategy adopted a 60% overlapping
sliding window.

Table 5. WISDM dataset results for different sliding windows.

Symbols 10% Slide 30% Slide 60% Slide

W1 71.41 83.31 98.81
W2 73.68 93.45 98.47
W3 81.23 95.56 91.23
W4 56.43 73.28 92.07
W5 59.55 87.65 93.18
W6 75.23 82.94 98.47

Mean Recognition Accuracy 69.58% 86.03% 95.37%

Similarly, the classification results not only reveal the non-contributive features, but they also
assign weights to the prominent contributive features. With the usage of weights, non-linearity is
introduced into the model, bringing more flexibility to our understanding of motion patterns that
involve a high level of variability in terms of axial signals. In the assessment of weights assigned to
different features, the results of some trials are presented in Table 6; these show the weighted values
for each feature according to the trials performed. Here, Table 6 shows the correlation feature that
contributes far less than any other feature.

Table 6. Feature weights for different trails in the WISDM dataset.

Feature Type Trail 1 Trail 2 Trail 3 Trail 4 Trail 5

Zero Crossing Rate 0.81 0.75 0.69 0.90 0.85
Fundamental

Frequency 0.78 0.95 0.88 0.74 0.39

Signal Magnitude Area 0.58 0.52 0.71 0.61 0.57
Signal Energy 0.66 0.68 0.63 0.61 0.68

Mean 0.78 0.69 0.75 0.74 0.76
Median 0.66 0.54 0.69 0.68 0.71
Mode 0.23 0.18 0.40 0.16 0.18

Standard Deviation 0.10 0.08 0.94 0.01 0.29
Variance 0.89 0.92 0.01 0.85 0.79

Phase Angle 0.48 0.40 0.39 0.38 0.41
Correlation 0.10 0 0.05 0 0.06

Min 0.76 0.69 0.69 0.57 0.60
Max 0.61 0.62 0.60 0.69 0.60
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The performance results of the proposed work are compared in Table 7, where the reweighted
genetic algorithm excels beyond other state-of-the-art models. These algorithm models involved
learning systems as well as convolutional neural networks. However, in terms of dealing with
variability, our proposed system results are slightly better than those of state-of-the-art models.

Table 7. Comparison results of the proposed method over other state-of-the-art methods using the
WISDM dataset.

Methods Accuracy (%)

Star with learning [55] 71.20
Impersonal Smartphone-based Activity Recognition (ISAR) [56] 75.21

Ignatov’s Convolutional Neural Network (CNN) [57] 93.32

Proposed Work 95.37

Bold letters for Proposed Method Recognition Accuracy of WISDM dataset.

4.3. IM-SB Dataset

The Intelligent Media Sporting [58] dataset is a multisensory accelerometer-based dataset.
The IM-SB dataset involves quantized motion data for physical sporting activities, i.e., badminton,
basketball, cycling, football, skipping and table tennis. The dataset involves accelerometer sensors
attached to the wrist, thigh and back of the subject to analyze movement from different dimensions.
In Table 7, the reweighted genetic algorithm was tested on an IM-SB dataset to analyze sporting motion
data from different dimensions and was compared with conventional LSVM.

The controlling parameters for the reweighted genetic algorithm were also modified for the IM-SB
dataset in order to check its performance. Again, the proposed accuracy applying the 60% sliding
ratio suggested the adoption of a slightly bigger sliding window. Moreover, 10% and 30% contextual
information failed to identify the movement from the later part of the signals. Table 8 shows the impact
of varying sliding ratios for the IM-SB dataset.

Table 8. The Intelligent Media-Sporting Behavior (IM-SB) dataset results over the proposed classifier
and other well-known statistical classifiers.

Symbols Activities LSVM (%) Random Forest (%) Proposed (%)

S1 Badminton 68.16 77.83 84.21
S2 Basketball 70.11 80.78 87.19
S3 Cycling 95.13 84.45 93.26
S4 Football 78.35 81.87 86.69
S5 Skipping 87.16 86.14 94.43
S6 Table Tennis 91.11 89.48 95.24

Mean Recognition Accuracy 81.67 83.42 90.17

Bold letters for Mean Recognition Accuracy of IM-SB dataset.

In the pursuit of better parameters, the algorithm was run on several occasions to find the optimum
measure of weights assigned to each attribute. Table 9 shows the reweighted values of the features in
different trials.

Table 10 shows results for tests on different state-of-the-art methods against the IM-SB dataset.
In [59], we classified six sporting behaviors with multiclass AdaBoost and achieved 73.67% accuracy.
In Politi et al. [60], we extracted statistical and physical features from the IM-SB dataset and classified it
using support vector machine (SVM), which achieved 78.41% recognition accuracy. In [61], we extracted
statistical features fused with Multilayer Perceptron (MLP) from an IM-SB dataset and we achieved
87.38% recognition accuracy. Finally, we applied the proposed model to the IM-SB dataset and achieved
a significant recognition accuracy rate of 90.17%. The performance results of the proposed work are
compared in Table 11.
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Table 9. IM-SB dataset results for different sliding windows ratios.

Symbol 10% Slide 30% Slide 60% Slide

S1 30.29 34.23 84.21
S2 34.26 68.19 87.19
S3 44.18 78.24 93.26
S4 36.10 70.92 86.69
S5 78.26 80.13 94.43
S6 70.22 81.11 95.24

Mean Recognition Accuracy 48.88% 68.80% 90.17%

Table 10. Feature weights for different trials with the IM-SB dataset.

Feature Type Trail 1 Trail 2 Trail 3 Trail 4 Trail 5

Zero Crossing Rate 0.64 0.72 0.81 0.90 0.85
Fundamental Frequency 0.71 0.79 0.76 0.74 0.46
Signal Magnitude Area 0.81 0.76 0.56 0.61 0.58

Signal Energy 0.34 0.54 0.90 0.61 0.68
Mean 0.76 0.86 0.81 0.74 0.24

Median 0.55 0.49 0.67 0.68 0.87
Mode 0.36 0.13 0.45 0.16 0.18

Standard Deviation 0.22 0.05 0.94 0.01 0.39
Variance 0.78 0.23 0.08 0.85 0.68

Phase Angle 0.50 0.51 0.39 0.38 0.41
Correlation 0.05 0.02 0.05 0.02 0.06

Min 0.67 0.71 0.69 0.53 0.55
Max 0.58 0.24 0.60 0.54 0.72

Table 11. Comparison of the proposed method with other methods using the IM-SB dataset.

Methods Algorithm Details Recognition Accuracy
of IM-SB Dataset (%)

Reiss et al. [59] Classification with multiclass AdaBoost 73.67
Politi et al. [60] Statistical and physical features fused with SVM 78.41
Yin et al. [61] Statistical features wrapped with Multilayer Perceptron (MLP) 87.38

Proposed Work Statistical, transform and frequency features fused with
reweighted genetic algorithm 90.17

Bold letters for Proposed Method Recognition Accuracy of IM-SB dataset.

4.4. The Wearable Inertial Measurement (SMotion) Dataset

The Wearable Inertial Measurement Sensors (SMotion) [62] dataset is an inertial (SHIMMER3)
based dataset. The dataset involves a SHIMMER device attached to the waist of the subject to capture
devised motion patterns from different aspects of the body. These sensors are positioned at the wrist
to capture different dynamics of human body motion. In total, 114 healthy subjects performed three
different daily physical activities, i.e., walking, standing still and sitting down and getting up (out of
a chair). The performance results of the SMotion dataset are compared in Table 12.

The reweighted genetic algorithm was tested on our four datasets to analyze physical healthcare
activities from different dimensions and was compared with a conventional linear support vector
machine (LSVM) and random forest, which achieved 94.58%, 91.45% and 94.58% accuracy, respectively.

Table 13 shows that 10%, 30% and 60% sliding windows were applied to the inertial signal streams
and presents the corresponding results.
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Table 12. The SMotion dataset applied over the proposed classifier and other well-known
statistical classifiers.

Symbols Activities LSVM (%) Random Forest (%) Proposed (%)

L1 Standing 91.83 93.65 94.84

L2 Sitting down and
getting up from chair 90.34 92.18 93.77

L3 Walking 92.18 94.63 95.13

Mean Recognition Accuracy 91.45% 93.48% 94.58

Bold letters for Mean Recognition Accuracy of SMotion dataset.

Table 13. SMotion dataset results for different sliding windows.

Symbols 10% Slide 30% Slide 60% Slide

L1 78.42 84.79 94.84
L2 81.36 86.67 93.77
L4 83.47 88.92 95.13

Mean Recognition Accuracy 63.70% 74.23% 94.58%

5. Conclusions

In this paper, we have reported the development of a robust approach that can precisely report
the physical health and wellbeing status in four challenging benchmark datasets in both indoor and
outdoor environments. In addition, we developed a novel framework which is comprised of statistical
features, frequency features, transform and acoustic features to extract optimal features to detect and
recognize human physical health and wellbeing via a triaxial set of inertial signals: accelerometer,
gyroscope and magnetometer.

Furthermore, we presented a robust reweighted genetic algorithm that gives the variation of
genetic information and fusion of windowed signal patterns, which helps us to understand random
human physical activities that may relate to the subject’s health and wellbeing status. Our system
includes data analysis, monitoring and signal inertial measurements as well as efficient feature
extraction algorithms which can potentially outperform the recognition accuracy rates of other systems.
The proposed system provides remarkable results compared to state-of-the-art systems.

In future work, we will further enhance the efficiency of our features by adding angular and
displacement information in order to classify more complex daily physical healthcare activities,
especially for older and impaired people.
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