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Abstract: Due to the constantly increasing demand for automatic tracking and recognition systems,
there is a need for more proficient, intelligent and sustainable human activity tracking. The main
purpose of this study is to develop an accurate and sustainable human action tracking system that is
capable of error-free identification of human movements irrespective of the environment in which
those actions are performed. Therefore, in this paper we propose a stereoscopic Human Action
Recognition (HAR) system based on the fusion of RGB (red, green, blue) and depth sensors. These
sensors give an extra depth of information which enables the three-dimensional (3D) tracking of each
and every movement performed by humans. Human actions are tracked according to four features,
namely, (1) geodesic distance; (2) 3D Cartesian-plane features; (3) joints Motion Capture (MOCAP)
features and (4) way-points trajectory generation. In order to represent these features in an optimized
form, Particle Swarm Optimization (PSO) is applied. After optimization, a neuro-fuzzy classifier is
used for classification and recognition. Extensive experimentation is performed on three challenging
datasets: A Nanyang Technological University (NTU) RGB+D dataset; a UoL (University of Lincoln)
3D social activity dataset and a Collective Activity Dataset (CAD). Evaluation experiments on the
proposed system proved that a fusion of vision sensors along with our unique features is an efficient
approach towards developing a robust HAR system, having achieved a mean accuracy of 93.5% with
the NTU RGB+D dataset, 92.2% with the UoL dataset and 89.6% with the Collective Activity dataset.
The developed system can play a significant role in many computer vision-based applications, such
as intelligent homes, offices and hospitals, and surveillance systems.

Keywords: geodesic distance; human action recognition; human locomotion; neuro-fuzzy classifier;
particle swarm optimization; RGB-D sensors; trajectory features

1. Introduction

Vision-based Human–Computer Interaction (HCI) is a broad field covering many
areas of computer vision, such as human action tracking, face recognition, gesture recog-
nition, human–robot interaction and many more [1]. In our proposed methodology we
focused on vision-based human motion analysis and representation for Human Action
Recognition (HAR). HAR can be precisely defined as tracking the motion of each and
every observable body part involved in performing human actions and identifying the
activities performed by humans [2]. HAR further subdivides into atomic actions, two
person interactions, multiperson interactions, human–object interactions and human–robot
interactions, etc. [3,4]. However, in the proposed system, we focused on two-person inter-
actions, i.e., human–human interaction. Extensive research has been carried out in the field
of vision-based HAR systems but there remains a need for an adaptive and sustainable
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HAR system that is effective regardless of the environment [5–11]. The main aim of this
research work is to develop a novel, reliable and sustainable vision-based HAR system
based on our unique set of features. To this end, we propose a HAR system that is highly
adaptive to changing environments and variations in available light.

Activity recognition by digital monitoring systems is useful in many daily life ap-
plications such as video indexing and retrieval, virtual worlds and surveillance systems
installed in houses, hospitals and public areas [12–14]. An automatic, efficient and ro-
bust surveillance system is imperative because of the elevated crime rates all over the
world [15,16]. Our system is capable of detecting and identifying anomalous actions in
its field of vision such as fighting, punching, pushing and kicking, etc. Moreover, the
proposed system can also be used in healthcare work in hospitals, in homes for the care of
the elderly and in general patient monitoring [17,18]. It can also be used in rehabilitation
centers and children’s care centers [19]. Due to the wide variety of applications for human
motion tracking in daily life [20], we are motivated to develop a versatile, adaptive and
reliable HAR system.

In order to develop an effective HAR system, the first step is to design a sound method
of pertinent data acquisition [21]. The performance of the system is wholly dependent on
the quality of the data acquired by the system’s devices. If these data are compromised by
inadequate processing, the reliability and efficiency of the whole system and its outcomes
will be compromised. [22]. Many methods are used to acquire data. These include RGB
(red, green, blue) cameras, stereoscopic RGB-D (RGB-depth) sensors, wearable marker
sensors [23–25]. Many HAR systems have been proposed that consist only of RGB in-
formation [26]. These systems cannot perform efficiently in environments with crowded
backgrounds or brightness variations [27,28]. So, in recent years, three-dimensional (3D)
RGB-D sensors which cost-effectively tackle the limitations of RGB cameras have been
developed [29–31]. These RGB-D sensors include extra stereoscopic vision which helps
eradicate the confusion between foreground actors and background objects [32–34].

Inspired by various applications of vision sensors in surveillance, we propose an effi-
cient, adaptive and sustainable system based on the fusion of RGB and depth information.
We use four unique features for recording each and every motion performed by humans.
We propose two full-body features, namely, geodesic distance and 3D Cartesian-plane
features plus two skeletal joints-based features, namely, way-point trajectory generation
and joints MOCAP (motion capture) features. Full body- and skeletal joint-based feature
descriptors are combined and optimized via Particle Swarm Optimization (PSO). Opti-
mized feature descriptors are then used to recognize human activities with a Neuro-Fuzzy
Classifier (NFC). Techniques used for each phase of this research work are listed in Table 1.

Table 1. Phases of the proposed Human Action Recognition (HAR) system.

Phase Techniques Description

Silhouette
Segmentation

Background subtraction and
Morphological operations

Efficient silhouette segmentation is executed on both RGB and depth
frames via frame differencing and morphological operations, respectively.

Feature
Extraction

Geodesic distance Geodesic maps are generated based on the shortest distance from the
center points of two human silhouettes towards the outer boundary.

3D Cartesian plane RGB and depth silhouettes are projected in an altered Cartesian plane to
represent features from different views.

Joints MOCAP The geometrical properties of each human joint are taken to record human
locomotion.

Way-point trajectory generation
The shape and motion information of each way-point trajectory generated

from subsets of skeletal joints are recorded with each changing frame.
Inter-silhouette and intra-silhouette trajectory generation is implemented.
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Table 1. Cont.

Phase Techniques Description

Optimization Particle Swarm Optimization
(PSO)

The tracked motion descriptors of each action class are represented in an
optimized form via a PSO algorithm. PSO is used as a feature selection
algorithm to remove redundant features and to increase classification

performance. For an efficient time and space computation, PSO is applied
for feature selection and size reduction.

Classification Neuro-Fuzzy Classifier(NFC)
An extensive experimental evaluation with challenging RGB-D datasets is
performed with NFC. System validation is proved with an altered number

of membership functions.

The main contribution of each phase of this research work is as follows:

1. Segmentation of both RGB and depth silhouettes is achieved via background subtrac-
tion and a series of morphological operations.

2. Feature extraction from full human silhouettes is performed via geodesic maps and
3D Cartesian planes. Whereas, feature extraction from skeletal joints is performed via
way-points trajectories and orientation angles. These features record each movement
performed by two interacting human silhouettes.

3. Feature selection is performed on the combined feature descriptors of four proposed
features via PSO.

4. Extensive experimentation is performed to prove systems’ validity via classification
with a neuro-fuzzy inference system, effects of different numbers of membership
functions, sensitivity specificity and error measures.

In the rest of the paper, Section 2 presents related work in the field of HAR. Section 3
provides the details of each phase of proposed methodology. Section 4 explains the
experiments performed and their generated results. At the end, the proposed research
work is concluded in Section 5.

2. Literature Review

This section describes different methodologies that have been adopted in recent years
for human action tracking and recognition [35]. Vision-based human activity tracking can
be subdivided at different stages: (1) first, on the basis of the source of input; (2) second,
at the features extraction and recognition stage. An extensive review of related work and
preceding methodologies is given in this section.

2.1. Devices for HAR Data Acquision

On the basis of data acquisition, vision-based HAR systems are divided into two
categories: (1) RGB-based HAR and (2) RGB-D-based HAR.

2.1.1. RGB-Based HAR Systems

Many HAR systems that only work on RGB datasets for experimentation and vali-
dation have been proposed in recent years [36–38]. Table 2 presents summary details of
authors, datasets and the research work relevant to these systems.
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Table 2. RGB-based HAR methods.

Authors RGB Datasets Methodology Classification Results

Xiaobin
et al. [39]

CAD Choi’s
Dataset

A learning-based methodology was
proposed in which the interaction matrix of
each activity was represented. A multitask

interaction response (MIR) was computed for
each class separately.

Support Vector Machine (SVM) as baseline
and MIR was used for classification.

Experiments proved the validation of the
system. The mean accuracy achieved was
83.3% with CAD and 80.3% with Choi’s

dataset.

Qing et al.
[40]

UT-Interaction
dataset

A global feature-based approach was
presented where a combination of Gaussian
time-phase features was used. Multifeature

fusion was performed with ResNet (Residual
Network) and parallel inception.

Experiments were performed via SVM with
Kalman tracking. An overall recognition rate
of 91.7% was achieved with UT-Interaction

dataset.

Amir et al.
[41]

UCF YouTube
action dataset and

an IM-
DailyRGBEvents

Spatiotemporal multidimensional features
were used for both body part detection and

action recognition.

Better system performance was achieved
with Maximum entropy Markov model and
activity recognition rates of 89.09% with the
UCF dataset and 88.26% with the IM Event

dataset were achieved.

Kishore
et al. [42]

UCF 50 Scene context approach was applied. Motion
features were applied along with the fusion

of descriptors at early and late stages.

They achieved a performance rate of 87.19%
with UCF11, 76.90% with UCF50, 27.20%

with HMDB51 and 89.79% with KTH dataset
via SVM.

UCF 11
HMDB51

KTH

Mahmood
et al. [43]

UT-Interaction
dataset

After identifying the starting and ending
frame, spatiotemporal features were

extracted from human key body points and
from full body silhouettes, as well.

With Artificial Neural Network (ANN) and
one-third training validation test, better

recognition was achieved in six classes with
an average accuracy of 83.5% with Set 1 and

72.5% with Set 2.

2.1.2. RGB-D-Based HAR Systems

Many HAR systems are based on datasets that combine both RGB color and depth
information [44]. RGB-D sensors also provide skeletal information [45]. Table 3 shows
the details of authors, datasets and research work based on RGB-D sensors, using the
combination of both RGB and depth images.

Table 3. HAR systems based on RGB-D sensors.

Authors RGB-D Datasets Methodology Classification Results

Rawya et al.
[46]

MSR-Daily Activity 3D
dataset and Online RGBD

action dataset

Spatio-temporal features were extracted
using a Bag-of-Features (BoF) approach.

Points of interest were detected, and
motion history images were created to

perform this research work.

By using K-means clustering and
multiclass SVM, experimental results on
these publicly available datasets proved
the efficacy of the system with average

recognition rates of 91.1% with the MSR
dataset and 92.8% with the Online RGBD

dataset.

Jalal et al.
[47] MSRAction3D

The two types of features that were
extracted from human silhouettes were

shape and motion features using
temporal continuity constraints.

As a result of experimentation on two
challenging datasets with Hidden

Markov Model (HMM), this approach
proved to be effective in HAR with a

mean recognition rate of 82.10%.

Xiaofei et al.
[48]

SBU Kinect interaction
dataset UT-Interaction

dataset

In this research work, interaction was
divided into three stages, namely, start,

middle and end. Probability fusion-based
features were extracted.

Extensive experiments via HMM proved
the efficacy of the system with 91.7%

accuracy with the SBU and 80% with the
UT-Interaction dataset.
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Table 3. Cont.

Authors RGB-D Datasets Methodology Classification Results

Meng et al.
[49]

NTU RGB+D, SBU Kinect
interaction dataset and

M2I dataset

With the help of skeletal and depth data,
pairwise feature learning was introduced.
Relative movement between body parts

was extracted.

Linear SVM was used as a classifier. All
activity classes were recognized with

higher accuracy rates than many
state-of-the-art systems.

Claudio
et al. [50]

UoL 3D social activity
dataset

Determining social activity via statistical
and geometrical features such as skeletal

positions and motion features was
proposed in this research work.

The proposed novel features with HMM
proved to be very effective in social
interaction recognition with a mean

accuracy of 85.5%.

2.2. Division on the Basis of Feature Extraction and Recogition

Some researchers have applied hand-crafted features and machine learning methods
for feature extraction and recognition, respectively, in vision-based systems. On the other
hand, some researchers have applied deep learning approaches for both feature learning
and activity recognition [51]. So, on the basis of feature extraction methods, HAR can be
divided into two methodologies: (1) machine learning-based HAR systems and (2) deep
learning-based HAR systems.

2.2.1. Machine Learning-Based HAR Systems

In this section, HAR systems based on machine learning approaches (supervised, un-
supervised and semi-supervised) are presented. Table 4 shows details of authors, datasets
and research work based on hand-crafted features and machine learning-based approaches.

Table 4. Machine learning-based HAR systems.

Authors Datasets Methodology Results via Machine Learning

Yu et al.
[52]

BIT-Interaction Dataset
UT-Interaction dataset

In order to recognize interdependencies
between two-person interaction, local

body parts and global large-scale features
were presented. Adaboost algorithm was

adopted to find 3D body parts.

Linear SVM was used for classification.
After testing on two benchmark datasets,
the average accuracy with the BIT dataset

was 82.03% and with the UT dataset it
was 85%.

Yanli et al.
[53]

Self-annotated CR-UESTC
dataset and SBU Kinect

interaction dataset

For interaction recognition a Contrastive
Feature Description Model (CFDM) was
proposed. Intr-a and inter-skeleton were

represented.

The CFDM approach proved to be very
effective with an action recognition rate
of 87.6% with the CR-UESTC and 89.4%
with the SBU dataset via Binary SVM.

T Subetha
et al. [54]

SBU Kinect interaction
dataset

Features were extracted via a Histogram
of Oriented Gradients (HOG) and
pyramidal approach. Constrained
Weighted Dynamic Time Warping
(CWDTW) was used in this work.

K-means clustering with CWDTW was
used for classification. A very high

recognition rate of 90.8% was achieved
with this new approach towards action

recognition.

Jalal et al.
[55]

IM-DailyDepthActivity
dataset MSRAction3D

Spatiotemporal features of human joints
and frame differentiation features were

extracted.

Classification was performed with HMM.
Results of the proposed system were

validated via experimentation with an
accuracy rate of 88.9% and 66.70% over

two datasets.

Thien et al.
[56]

SBU Kinect interaction
dataset

Joint features were extracted via
Pachinko Allocation Model. Both joint

motion and distance feature were
extracted.

This method outperformed many
state-of-the-art methods via Binary Tree

as a classifier. A mean recognition rate of
90.3% was achieved.
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2.2.2. Deep Learning-Based HAR Systems

In some HAR systems, features are learned and actions are recognized automatically
through deep learning models. Table 5 shows details of authors, datasets and research work
based on feature learning and activity recognition via deep learning-based approaches.

Table 5. Deep learning-based HAR systems.

Authors Datasets Methodology Results via Deep Learning

Amir et al.
[57]

NTU RGB+D, 3D Action
Pair, MSR Daily activity

and Online RGBD

A new deep learning model for shared
specific factorization features was
introduced in this research work.

Sparsity learning was introduced for
classification. Two experimental settings
were adopted to show the effectiveness of

the proposed methodology.

The recognition rate of actions involving
a single person is as high as 100% with

the 3D action pair dataset, while the
recognition rate with datasets that

involve two-person interactions, i.e.,
NTU RGB+D, is 74.9%. Overall good

performance is achieved with each of five
datasets.

Xiangbo
et al. [58]

BIT-Interaction Dataset
UT-Interaction dataset

In order to capture changes in
interactions between two persons over

time, Concurrent Long Short-Term
Memory (Co-LSTM) was proposed.

Information about human action was
stored in sub-memory units.

Co-LSTM produced a superior
performance with both RGB datasets. A
recognition rate of 92.8% was achieved

with the UT-Interaction dataset and 95%
with the BIT dataset was achieved.

Wentao
et al. [59]

SBU Kinect interaction
dataset, HDM05, Berkeley

MHAD

Skeletal temporal features were extracted
automatically via a Long Short-Term

Memory (LSTM) network. Co-occurrence
features were extracted. A novel dropout

methodology was proposed.

Deep LSTM results in an average
accuracy rate of 90.4% with SBU, 97.25%
with HDM05 and 81.05% with the CMU

dataset.

Yong et al.
[60]

MSR action 3D Dataset,
Berkeley MHAD and

Motion Capture Dataset
hdm05

Temporal long-term contextual
information was learned via Hierarchical

RNN (HRNN). In this approach, the
human skeleton is divided into five

subparts. Each subpart is separately fed
into five different subnetworks.

Five different experimental settings were
used with HRNN. Through

experimentation, high recognition
performance rate was achieved with a

number of datasets with each
experimental setting.

Xiangbo
shu et al.

[61]

CAD
BIT
UT

In order to overcome the limitation of
LSTM in capturing changes in human

interactions over time, Hierarchical
LSTM (HLSTM) was used in this research
work. Groups of people were observed to

monitor human interactions.

Comparisons with four baselines and
state-of the-art methods were performed.

The validity of the novel approach
presented in this method was proved by

the high accuracy achieved with three
datasets.

3. Materials and Methods

A comprehensive description of each phase is given in this section. It is represented in
the following phases:

• In the preprocessing phase, human silhouettes of each RGB and depth image are
segmented from their backgrounds.

• In the feature descriptor generation stage, four features (geodesic distance, 3D Carte-
sian plane, way-point trajectory and joints MOCAP) are mined from each RGB and
depth image and thus, feature descriptors are generated.

• The optimization phase results in an optimized representation of feature descriptors
via PSO.

• In the final stage, each human action is classified via a neuro-fuzzy inference system.

Figure 1 shows the flow diagram of the proposed human action surveillance system.
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Figure 1. Proposed surveillance system architecture.

3.1. Foreground Extraction

Prior to any processing, all RGB and depth image sequences are subjected to image
normalization technique to improve the quality of image [62,63]. Image contrast is adjusted,
and intensity values are uniformly distributed through the entire image via histogram
equalization [64,65]. After that, in order to remove noise from the image, a median filter is
applied in which pixels are replaced by a median of neighboring pixels [66,67]. The most
important step in any HAR system is to define and mine Regions of Interest (ROI) [68].
In our work, an ROI consists of two persons involved in an interaction in RGB-D images.
These ROIs are first segmented from their background. Methods adopted to segment
human silhouettes are separately given in the following subsection.

3.1.1. Background Subtraction

RGB silhouette extraction of all three datasets is achieved through a background
subtraction method [69]. A frame difference technique is used in which current frames of
each interaction class are subtracted from a background frame [70]. Pixels of the current
frame I(t) at time t, denoted by P[I(t)], are subtracted from pixels of a background frame
denoted by P[B], as given in Equation (1):

P[F(t)] = P[I(t)]− P[B] (1)

where P[F(t)] is the frame obtained after subtraction. The subtracted image, i.e., the image
containing human silhouettes is further processed for better foreground detection through
specifying a threshold value T as given through Equation (2):
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|P[F(t)]− P[F(t + 1)]| > T (2)

The T value is automatically selected for each subtracted image via Otsu’s thresholding
method [71]. In this method the subtracted frame is first converted to a grayscale image
and then the best T value (a best value which differentiates the black background pixels
and the white foreground pixels) is obtained through an iterative process. This T value is
then used to convert the subtracted grayscale image to binary image, and then a binary
silhouette is obtained as a result. Examples of RGB silhouette extraction of NTU RGB+D
and UoL datasets are shown in Figure 2.
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Figure 2. Background subtraction over RGB image sequences of UoL and NTU RGB+D dataset: (a)
original image; (b) subtracted frame at T = 1.5; (c) binary silhouette obtained after adjusting T; (d)
RGB silhouette.

3.1.2. Morphological Operations

In order to extract depth silhouettes, first, threshold-based segmentation [72] is used
to obtain a binary image from the original image. These segmented images are closed
morphologically using binary dilation followed by a binary erosion operation [73]. Thus,
binary dilation works through adding pixels to human edges while erosion works by
removing boundary pixels. Binary dilation and erosion are shown through Equations (3)
and (4), respectively:

A⊕ B =

{
z|(
∧
B)z ∩ A 6= φ

}
(3)

A− B = { z|(B)z ⊆ A} (4)

where z is a set of pixel locations where structuring element B and its reflection
∧
B joins

with pixels of foreground element A during translation to z. In this way, only the shape
of the main objects in an image is maintained. Finally, Canny edge detection is applied
to separate foreground pixels from the background. After the detection of the edges,
smaller area objects are removed from the binary image which results in human silhouette
detection. The silhouette segmentation of the depth images forms the UoL dataset is shown
in Figure 3.
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Figure 3. Morphological operations on depth images. (a) Original image; (b) image after erosion and dilation; (c) edge
detection; (d) binary silhouette and (e) depth silhouette.

3.2. Feature Descriptors Mining

Segmented RGB-D silhouettes are then used for feature mining. Unique features are
extracted from full silhouettes and from the skeleton joints. Two features, namely, geodesic
and 3D Cartesian-plane, are applied over full human silhouettes. Two features, namely,
way-point trajectory generation and joints MOCAP are applied to the skeleton joints. Each
feature is explained in detail in the following subsections.

3.2.1. Geodesic Distance

In this feature, actions between two interacting humans are represented via geodesic
wave maps. These maps are generated by calculating the geodesic distance (the smallest
distance) which is found by a Fast Marching Algorithm (FMA) [74]. Firstly, the center
point s of the two human silhouettes is located and given a distance value d (s) = 0. Point
s is the starting point and it is marked as a visited point. All the other pixel points p on
human silhouettes are given a distance value d (p) = ∞ and are marked as unvisited. Each
unvisited point p is taken from the neighbors of s and its distance from s is measured. In
this way, each neighboring pixel is taken in each iteration until all the pixel points are
marked as visited. The distance calculated at each iteration is compared with the distance
of each previous iteration. A priority queue is generated where the shortest distances are
given priority [75]. An update in distance is defined as:

d =

{
dx+dy+

√
∆

2 when ∆ ≥ 0
min(dx, dy) + w otherwise

(5)

∆ = 2w2 − (dx − dy)
2 (6)

where dx = min (Dk+1, `, Dk−1, `) and dy = min (Dk, `+1, Dk, `−1). Figure 4 demonstrates the
wave propagation of the geodesic distance via FMA.
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3.2.2. 3D Cartesian-Plane Features

In this feature, shape as well as motion information from the two human silhouettes
are taken [76]. 3D shapes of the segmented RGB-D silhouettes are created by projecting
them onto a 3D Cartesian plane. Motion information from the two interacting persons is
retained via a frame differencing technique that is used to take the differences in 3D shapes
created between two consecutive frames. After creating 3D shapes, Histogram of Oriented
Gradients (HOG) is applied to extract unique features. In order to apply HOG [77], all
images are first preprocessed to make their dimensions 64 × 128 pixels. Bounding boxes
are drawn around each human in the image and the gradient of each human in the image
is calculated separately. These features measure both position and the direction of changes
along each pixel. Magnitude is given as:

g =
√

g2
x + g2

y (7)

where g is the gradient, i.e., the change in x and y directions for each pixel and the directional
angle. Pseudo code for full body feature extraction techniques (Geodesic and 3D Cartesian
plane) is given in Algorithm 1. The direction of change is shown through red marks on 3D
shapes in Figure 5.

Algorithm 1 Pseudo code of feature extraction from full silhouette

1: Input: Segmented RGB and depth silhouettes frames (f 1, f 2, . . . fn)
2: Output: Full body feature descriptors (V1, V2, . . . Vn) //where n is total number of frames
//Geodesic distance features//
3: for i = 1: n
4: mark center pixel of both human silhouettes as visited and initialize a distance equal to
zero
5: as d(x0) = 0
6: for all the other points on human silhouette that are unvisited initialize d(x) = ∞
7: initialize a queue Q = X for unvisited points
8: while Q 6= ø
9: Step 1: Locate a vertex with a smallest distance d as x = argmin

xεQ
d(x)

10: Step 2: For each neighboring unvisited vertex x′∈ N(x)∩Q
11: d(x′) = min{d(x′), d(x) + L(x, x′)}
12: Step 3: Remove x from Q
13: end while
14: Return distance vector d(xi) = dL (x0, xi)
//3D Cartesian-plane features//
15: project each frame f in F on 3D Cartesian plane yz
16: for each projected 3D frame subtract current frame fyz from successor frame (f + 1)yz to get
differential frame as diff← (f + 1)yz − fyz
17: end for
18: for each differencial frame diff calculate HOG vector from gradient, magnitude, orientation
and histogram as:
19: Gradient (diff, grad_x, grad_y)
20: Magnitude (grad_x, grad_y, mag)
21: Orientation (grad_x, grad_y, orient)
22: Histogram (orient, mag, hist)
23: Normalization (hist, normhist)
24: HOG vector← normhist
25: end for
26: compute full body feature descriptor V for each frame f as V← concatenate (distance vector,
HOG vector)
27: end for
28: return Full body feature descriptors (V1, V2, . . . Vn)
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3.2.3. Joints MOCAP

Joints MOCAP features are used to track the movements of human joints because
joints are the most significant parts involved in human movements [78]. We represent
the skeleton as S = {Jk|k = 1, 2, . . . n} where n consists of sixteen major human joints,
namely, head, neck, right shoulder, left shoulder, right elbow, left elbow, right hand, left
hand, spine-mid, spine-base, left hip, right hip, right knee, left knee, right foot and left
foot. A joint is represented as Jk = (xj, yj) which specifies the coordinates location in RGB-D
silhouettes. After locating all the joint positions in both human silhouettes, geometrical
properties are measured between joint Ji and the rest of the joints Jk where k 6= i. A total
of thirty-two joints (sixteen per person in an interaction) are tracked with each changing
frame with time t. Two types of angular measurements that are taken to track skeletal joint
movements with each changing frame are:

• Upper body Angles: In this type, human motion caused by the rotation of the spine’s
mid joint with respect to (w.r.t) all the upper body joints, namely, head, neck, left
shoulder, right shoulder, left elbow, right elbow, left hand and right hand, are tracked.
Four upper body angles per person, i.e., eight per frame, are tracked. The angle of the
tangent between the spine’s mid joint and two other joints taken from a joints set S is
calculated. The inverse tangent is found by taking a dot product of two lines v1 and
v2, as represented by Equation (8):

θ = tan−1 v1.v2

|v1||v2|
(8)

• Lower body Angles: In this type, the angle of tangent from the spine-base joint to all
the lower body joints, left hip, right hip, left knee, right knee, left foot and right foot,
are calculated. Three lower body angles per person, i.e., six per frame, are tracked.
Figure 6 depicts angle formation in the upper body and lower body.
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3.2.4. Way-Point Trajectory Generation

A lot of research has been done on dense trajectories [79] and localized trajectories [80].
We, however, introduced the concept of new intra-silhouette and inter-silhouette localized
way-point trajectories. In both of these trajectory types a subset S, containing a different
number of human joints, is given as a way-point to generate trajectories. Curve trajectories
are generated at a specified orientation. First of all, two joints sets, J1 and J2, are created.
Where J1 = {j1, j2, . . . jn} is constructed from n number, i.e., sixteen joints (head, neck, right
shoulder, left shoulder, right elbow, left elbow, right hand, left hand, spine-mid, spine-base,
left hip, right hip, right knee, left knee, right foot and left foot) of the first (left) person in
an interaction. J2 = {j1, j2, . . . jm} is constructed from m number, i.e., from sixteen joints
of the second (right) person in an interaction. In intra-silhouette trajectory generation, a
subset S consists of all the way-points from a single joint set, i.e., either J1 or J2. On the
other hand, in inter-silhouette trajectory generation, a subset S consists of way-points from
both joint sets J1 and J2. Table 6 shows a detailed description of each intra-silhouette and
inter-silhouette way-point trajectory cluttered around human joints.

After construction of all the trajectories over human joints, two types of feature are
extracted from each trajectory [81]. Shape descriptors are described by calculating changes
in displacement of the length T of the trajectory over time t. These changes are measured
along the coordinate positions x and y of the joints with each changing frame given as
∆lt = (xt + 1 − xt, yt +1 − yt). The normalized displacement vector is given as:

Dx,y =
(∆l1, ∆l2, . . . . . . ∆lT−1)

∑T−1
j−1 ‖∆lj‖

(9)

Motion descriptors are computed by tracking changes in velocity w.r.t time. Velocity
is measured by changes in position (i.e., displacement) of trajectories over time t. So, a first-
and second-order derivative of the position of trajectory (coordinates) is taken as x′t, y′t, x′′t
and x′′t respectively. The final curvature C over space time coordinates x and y is defined as:

Ct =
x′ty

′′
t − y′tx

′′
t

(x′2t + y′2t + 1)
3/2 (10)

Pseudo code of feature extraction from skeletal joints is given in Algorithm 2. Figure 7
displays curved intra-silhouette and inter-silhouette way-point trajectories over human
joints.
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Table 6. Intra-silhouette way-points trajectory generation.

No. of
Trajectories

No. of
Way-Points

Subsets of Joints

Intra-Silhouette Inter-Silhouette

1

Three

{H 1, N 1, SM 1} {H 1, N 1, H 2}
2 {H 1, N 1, SB 1} {H 2, N 2, H 1}
3 {H 2, N 2, SM 2} {RS 1, LS 1, RE 2}
4 {H 2, N 2, SB 2} {RS 2, LS 2, RE 1}
5 {RS 1, RE 1, RH 1} {RH 1, LH 1, LE 2}
6 {LS 1, LE 1, LH 1} {RH 2, LH 2, LE 1}
7 {RS 2, RE 2, RH 2} {SM 1,SB 1, SM 2}
8 {LS 2, LE 2, LH 2} {SM 2, SB 2, SM 1}
9 {RHP 1,RK 1, RF 1} {RHP 1, LHP 1, RK 2}

10 {LHP 1,LK 1, LF 1} {RHP 2, LHP 2, RK 1}
11 {RHP 2,RK 2, RF 2} {RF 1,LF 1,LK 2}
12 {LHP 2,LK 2, LF 2} {RF 2,LF 2,LK 1}

13

Four

{H 1, N 1, SM 1, SB 1} {H 1, N 1, H 2, N 2}
14 {H 2, N 2, SM 2, SB 2} {H 2, N 2, H 1, N 1}
15 {N 1, RS 1, RE 1,RH 1} {RS 1, LS 1, RS 2, LS 2}
16 {N 1, LS 1, LE 1,LH 1} {RE 1, LE 1, RE 2, LE 2}
17 {N 2, RS 2, RE 2,RH 2} {RH 1, LH 1, RH 2, LH 2}
18 {N 2, LS 2, LE 2, LH 2} {SM 1, SB 1, SM 2, SB 2}
19 {SB 1, RHP 1, RK 1, RF 1} {RHP 1, LHP 1, RHP 2, LHP 2}
20 {SB 1, LHP 1, LK 1, LF 1} {RK 1, LK 1, RK 2, LK 2}
21 {SB 2, RHP 2,RK 2, RF 2} {RF 1, LF 1, RF 2, LF 2}
22 {SB 2, LHP 2,LK 2, LF 2}

23

Five

{H 1, N 1, RS 1, RE 1, RH 1} {H 1, N 1, SM 2, N 2, H 2}
24 {H 1, N 1, LS 1, LE 1,LH 1} {H 2, N 2, SM 1, N 1, H 1}
25 {H 2, N 2, RS 2, RE 2, RH 2} {RS 1, LS 1, SB 2, RS 2, LS 2}
26 {H 2, N 2, LS 2, LE 2, LH 2} {RS 2, LS 2, SB 1, RS 1, LS 1}
27 {SM 1, SB 1, RHP 1, RK 1, RF 1} {RE 1, LE 1, RH 2,RE 2, LE 2}
28 {SM 1, SB 1, LHP 1, LK 1, LF 1} {RE 1, LE 1, LH 2,RE 2, LE 2}
29 {SM 2, SB 2, RHP 2,RK 2, RF 2} {RK 2, RF 2, RHP 1,RK 1, RF 1}
30 {SM 2, SB 2, LHP 2,LK 2, LF 2} {LK 2, LF 2, LHP 1,LK 1, LF 1}

1 Joints of the first (left) silhouette, 2 Joints of the second (right) silhouette, H = head, N = neck, SM = spine-mid,
SB = spine-base, RS = right shoulder, LS = left shoulder, RE = right elbow, LE = left elbow, RH = right hand,
LHP = left hand, RHP = right hip, LH = left hip, RK = right knee, LK = left knee, RF = right foot, LF = left foot.
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Pseudo code of feature extraction from skeletal joints is given in Algorithm 2. Figure 
7 displays curved intra-silhouette and inter-silhouette way-point trajectories over human 
joints. 
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Algorithm 2. Pseudo code of feature extraction from skeletal joints

1: Input: RGB and depth silhouette frames (f 1, f 2, . . . fN) //where N is total number of frames.
Skeleton S consisting of sixteen human joints as {j1, j2, . . . jn} //where n is total number of joints
2: Output: Skeletal joints feature descriptors from all silhouette frames as (D1, D2, . . . DN)
//Joints MOCAP feature descriptors//
3: for i = 1: N
4: for j = 1: n
5: calculate angle of tangent θup from spine mid joint to all the upper body joints
6: calculate angle of tangent θlow from spine base joint to all the lower body joints
7: compute joints MOCAP feature descriptor JMOCAP← concatenate (θup, θlow)
8: end for
//way-point trajectory feature descriptors//
9: for i = 1: n
10: compute subsets Sub3, Sub4 and Sub5 consisting of sets of three, four and five
11: number of joints, respectively
12: generate trajectories as three-way T3 from Sub3, four-way T4 from Sub4 and four-way T5
13: from Sub5
14: compute displacement dx,y and motion Ct vector from trajectories T3, T4 and T5 with
15: time t
16: generate way-point trajectory descriptor T← concatenate (dx,y, Ct)
17: end for
18: skeletal joints feature descriptor D← concatenate (JMOCAP, T)
19: end for
20: return Skeletal joints feature descriptors from all silhouette frames as (D1, D2, . . . DN)
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3.3. Particle Swarm Optimization (PSO)

After combining RGB-D descriptors to recognize human activities, a very complex
representation is generated. So, for an efficient time and space computation, PSO is applied
for feature selection and dimensionality reduction. PSO belongs to a stochastic optimization
technique category [82]. This algorithm is based on the communal behavior of groups
of animals such as birds, insects and fishes [83]. At first, optimization is initialized by
randomly selecting a swarm, i.e., a sample of candidate solutions from feature descriptors.
The t position of this swarm in dimension D is constantly regulated by a position vector

→
x i

and velocity vector
→
v I defined as:

xi(t) = (xi1(t), xi2(t), . . . . . . xiD(t)) (11)

vi(t) = (vi1(t), vi2(t), . . . . . . viD(t)) (12)

where i = 1, 2, 3 . . . N. N is the total number of particles. A movement of this selected
swarm is initialized, and the direction of this movement is toward the best found position
in the search space. During this whole optimization process, the three types of variables
that are retained by every candidate of optimization are current velocity, current position
and personal best position. The personal best position called pbest is maintained in a vector
pi = (pi1, pi2, . . . . . . piD) and gives the optimal fitness value. However, the global best
position (gbest) is also maintained in a vector as pg = (pg1, pg2, . . . . . . pgD) and gives the
best particle from all the N particles. Both the position and velocity of particles are updated
in the search space according to the new best position, thus:

→
x i(t + 1) = xi(t) + vi(t + 1) (13)

→
v i(t + 1) =

→
v 1(t) + ϕ1(pi − xi(t)) + ϕ2(pg − xi(t)) (14)

where ϕ1 and ϕ2 can be defined as random numbers. All the particles finally converge to
local minima after calculating best values. This is an iterative process which continues until
a best solution is learned. Then, original dimension of NTU RGB+D feature descriptors
is 5360 × 550, for UoL it is 5360 × 400 and for CAD it is 5360 × 250. The length of
the combined feature vector of all four proposed features is 5360 which is reduced to
4796 × 550 for NTU RGB+D, 4796 × 400 for UoL and 4796 × 250 for CAD dataset. At
the end, all the particles are assigned the best place in the search space. Movement of
each particle is influenced by both the local best position and global best position. All the
swarm particles try to get closer to the global best position by moving towards and getting
closer to it. Movement of swarm particles that are trying to achieve global best position by
moving towards gbest is displayed in Figure 8.
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3.4. Neuro-Fuzzy Classifier (NFC)

In order to accelerate the recognition rate of human actions, NFC, i.e., the hybrid of
fuzzy set theory and Artificial Neural Networks (ANN) is applied. This hybrid classifier
results in an intelligent inference system which is capable of both reasoning and self-
learning [84]. Many action recognition systems based on NFC have been proposed in
recent years [85]. This is a six-layer architecture, as displayed in Figure 9.
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First of all we fed our training data to the input layer: {(x1, c1) . . . (xk,ck)}, where
xk = [xk

1 . . . xk
m]K ∈ Rm is the vector of dimension m, and ck = [1, 2, . . . n] is the label of

the class to which it belongs and n is the total number of classes in a training dataset.
The second layer is the membership layer. In this layer, the membership function of each
input vector is recognized. We applied a Gaussian membership function. The membership
function uij for sample xsj with mean c and standard deviation σ is defined by:

uij(xsj) = exp

(
−
(xsj − cij)

2

2σ2
ij

)
(15)

where j, i and s represents the feature, the rule of the corresponding feature and the sample,
respectively. Results of the Gaussian function for each input are fed into the third layer,
i.e., the fuzzification layer [86]. The firing strength of each generated fuzzy rule w.r.t each
corresponding sample xs from all features N is calculated in this layer as:

αis =
N

∏
j=1

uij(xsj) (16)

where α is the firing strength for ith rule. The fourth layer is called the defuzzification layer.
Nodes in this layer are equal to the total number of action classes in the training data. In
this layer, output is generated by integrating the results of the preceding layers, i.e., firing
strength αis with weight values wik. The output ysk for a sample s from class k is generated
by:

ysk =
M

∑
i=1

αiswik (17)

This weighted summation is completed from rule i to overall generated rules M. At
the last layer, all the output values are normalized by dividing the output of each sample s
from each class k with the sum of the output for all the classes K. The normalized output
osk is given as:

osk =
ysk

∑K
l=1 ysl

(18)
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In this way, the class label of each s sample is obtained by maximum osk value. When
all the testing vectors are fed to the NFC architecture, the resultant output accurately
predicts its class label for the input vector. The steps involved in predicting class labels
from input data are given in Algorithm 3.

Algorithm 3. Pseudo code of Neuro-fuzzy Classification of Optimized Vectors

1: Step 1: for each input node in first layer do fuzzification by calculating the membership
grade as
2: uij ← gussM (x, sig, c)
3: end for
4: Step 2: for each node in second layer calculate fuzzy strength by product of each sample with
5: antecedents of previous layer αis ← rule-layer (uij)
6: end for
7: Step 3: for each node in third layer defuzzify each node and generate output by weighted
sum
8: of firing strenghts ysk ← sum(αis, wik.)
9: end for
10: Step 4: for each node in this layer normalize each output class by dividing it with sum of all
11: output classes osk ← ysk/sum(ysl)
12: end for
13: Step 5: Assign class label to each sample Cs ←max{osk}

4. System Validation and Experimentation

This section first gives a brief description of the datasets used for training and testing
the proposed system. Then, the parameters used for evaluation of the system and the
generated results are given. All the experiments are performed on MATLAB (R2017a).
Four parameters are used to validate system performance. First, the recognition rate of
the individual activities of all three datasets is given. The second parameter is the effect
of the number of membership functions on evaluation time and performance. The third
parameters are used for testing system sensitivity, specificity and error measures. The
fourth parameter is the comparison of the proposed system with other systems that have
been reported in recent years. Each parameter is explained in detailed subsections.

4.1. Dataset Descriptions

Table 7 gives the name, type of input data and description of each dataset used for the
training and testing of the proposed system.

Table 7. Description of datasets used for evaluation and experimentation.

Name of Dataset Type of Input Data Action Classes

NTU RGB+D

RGB videos, depth
map sequences, 3D

skeletal data and
infrared video

This dataset contains sixty action classes and 56,880 video samples. The eleven
mutual action classes that we used in the proposed system are: punch/slap,

kicking, pushing, pat on back, point finger, hugging, giving object, touch pocket,
shaking hands, walking towards and walking apart. Dataset descriptions and

samples are given in [87].

UoL 3D social
activity dataset

RGB-D images with
tracked skeletons

This dataset contains eight two-person social interaction activities: handshake,
hug, help walk, help stand-up, fight, push, conversation and call attention. The

rest of the details and dataset samples are given in [88].

Collective Activity
Dataset (CAD) RGB

This dataset consists of RGB sequences of five actions classes: crossing, walking,
talking, queueing and waiting. Actions are performed in both indoor and outdoor

environments. Dataset descriptions and samples are given in [89].
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4.2. Recognition Accuracy

In order to validate the system’s performance, descriptors of action classes from each
dataset are given individually to NFC to identify the recognition rate. The percentage of
accuracies for each class is given separately in the form of a confusion matrix. Each activity
class of all three datasets used for experimentation achieved very good performance results
with the proposed system. Table 8 shows the confusion matrix of action classes of the NTU
RGB+D dataset.

Table 8. Confusion matrix for action classes of the NTU RGB+D dataset.

Predicted Action Classes

S K P PB PF H GO TP SH WT WA

Actual
Action
Classes

S 1 97 0 1 0 2 0 0 0 0 0 0
K 2 0 96 0 0 0 0 0 1.5 0 2.5 0
P 3 1 0 98 0.5 0 0 0.5 0 0 0 0

PB 4 0 0 3 89 1 4 0 0 0 1 2
PF 5 1.5 0 3 2.5 88.5 0 2 0.5 2 0 0
H 6 0 0 3 0 2 93 0 0 1 1 0

GO 7 0 0.2 0 3 2 2 89 0 3.8 0 0
TP 8 0 0 0 3.8 0 1 0 92.9 0 0.7 1.6
SH 9 0 1.2 0 0 2.6 1.4 0 0 94.8 0 0

WT 10 1 0 0 0.8 0 0 2 0 0.2 96 0
WA 11 0 0 0 4 0 0 0 2 0 0 94

Mean Accuracy = 93.5%
1 slap/punch, 2 kicking, 3 pushing, 4 pat on back, 5 point finger, 6 hugging, 7 giving object, 8 touch pocket, 9

shaking hands, 10 walking towards, 11 walking apart.

It is inferred from Table 8 that the average recognition rate for the NTU RGB+D dataset
is 93.5%. Each activity class is recognized with a high recognition accuracy. Due to our
robust features set, the proposed system has achieved excellent accuracies of 98%, 97% and
96% with slap/punch, kicking and pushing interactions, respectively. Thus, it is proved
that our system is capable of detecting anomalous activities from environment. Regular
activities like pointing the finger and hugging are also recognized with very high accuracy
rates. The lowest accuracy rates are observed in activities such as pat on back, point finger
and giving object due to the repetition of similar movements involved in these activities.
For example, the actions giving object and shaking hands are performed with similar
movements of the same body parts (the hands). Table 9 shows the confusion matrix for
action classes of the UoL dataset.

When a testing set of action classes from the UoL dataset is given to NFC, an average
recognition rate of 92.2% is achieved. It is inferred from Table 9 that anomalous activities
from this dataset are also detected with excellent recognition rates. This is because of the
strong set of skeletal joints data and full body features which enable our system to detect
continuous activities such as hug and handshake with very high accuracy rates. However,
a slight drop in the recognition rate is observed with conversations and call attention
activities due to similarities in human body gestures and postures. Table 10 shows the
confusion matrix for action classes of the CAD dataset.
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Table 9. Confusion matrix for action classes of the UoL dataset.

Predicted Action Classes

Handshake Hug Help
Walk

Help
Stand-Up Fight Push Conversation Call

Attention

Actual
Action
Classes

Handshake 96.5 1.5 2 0 0 0 0 0
Hug 2 95 1 0 0 0 2 0

Help walk 0 2 92 3 1 0 2 0
Help stand-up 2 0 0 91.2 4.8 0 0 2

Fight 0 2 0 1 92 5 0 0
Push 0 1 1 0 3 94 0 1

Conversation 2 5 0 0 2 0 89 2
Call Attention 3 0 0 4 0 0 5 88

Mean Accuracy = 92.2%

Table 10. Confusion matrix for action classes of the CAD dataset.

Predicted Action Classes

Actual
Action
Classes

crossing talking walking queueing waiting
crossing 88 0 10 2 0
talking 0 92 3 0 5

walking 8 0 84 3 5
queueing 0 2 4 90 4
waiting 1 0 1 4 94

Mean Accuracy = 89.6%

CAD is a very challenging outdoor dataset with highly occluded backgrounds. The
average recognition rate with CAD is slightly less compared to the NTU RGB+D and the
UoL datasets. Nevertheless, our system is capable of recognizing some activities such as
talking and waiting with 92% and 94% recognition rates, respectively. Actions involved
in all classes of the CAD dataset are strongly related to each other so a confusion rate as
high as 10% is observed in activities such as crossing and walking. A mean performance
rate of 89.6% is achieved with the CAD dataset. In summary, this experiment proved the
effectiveness of the proposed system by achieving high recognition rates with all three
datasets.

4.3. The Effects of Numbers of Membership Functions

In this experiment, the effect of different numbers of Membership Functions (MF) over
computation time, Root Mean Square Error (RMSE) and accuracy is observed. A Gaussian
membership function is used. During experimentation, the number of MFs is varied from
2, 3, 5, to 8. The number of epochs is changed from 200 to 300 and 500. This experiment
is performed with all the three datasets. Tables 11–13 demonstrate the effects of different
numbers of MFs on NTU RGB+D, UoL and CAD datasets, respectively.
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Table 11. Effects of different numbers of Membership Function (MF) on performance with the NTU
RGB+D dataset.

Parameters Performance

No. of Epochs No. of MF Computational Time (s) RMSE Accuracy (%)

200
3 20 0.065 90.5
5 27.4 0.059 91.2
8 35.2 0.060 90.9

300
3 25 0.058 92.0
5 32.8 0.055 93.5
8 38 0.055 93.0

500
3 32 0.059 92.9
5 47.2 0.055 93.1
8 58 0.056 93.1

Table 12. Effects of different numbers of MF on performance with the UoL dataset.

Parameters Performance

No. of Epochs No. of MF Computational Time (s) RMSE Accuracy (%)

200
3 15 0.069 88.7
5 24 0.059 90.5
8 32 0.060 90

300
3 27 0.070 89
5 33 0.056 92
8 45 0.061 91.9

500
3 29 0.070 90
5 43 0.059 92
8 57 0.066 92

Table 13. Effects of different numbers of MF on performance with the CAD dataset.

Parameters Performance

No. of Epochs No. of MF Computational Time (s) RMSE Accuracy (%)

200
3 20 0.125 82.2
5 23 0.097 87.8
8 31 0.098 85

300
3 25 0.099 88.7
5 27 0.096 89.5
8 34 0.096 89

500
3 31 0.111 87
5 35 0.098 89
8 40 0.099 88.5

It is observed from the results given in Tables 11–13 that increases in the number
of membership functions affect the performance and computation time of the system.
Increases in the number of MFs up to some points result in increased performance. How-
ever, after a certain limit increases in the number of MFs will result in the repetition of
similar patterns. For example, in Table 11, increases in the number of MFs from five to
eight results in increases of RMSE and decreases in the system’s recognition rate. This is
because increases in number of MFs after a certain limit will result in increased in fuzzy
rules and the problem of overfitting occurs. However, if we use very few numbers of
MFs, then fewer numbers of fuzzy rules will be compared and system performance will
decrease. The minimum RMSE is observed with five MFs at the cost of computation time
with NTU RGB+D, UoL, and also with CAD dataset. It is also observed that an increase in
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the number of MF and iterations results in increased computation time. However, increases
in the number of iterations above a certain limit start to produce similar results to previous
iterations. The best performance is achieved with 300 iterations. Thus, it is inferred that the
number of MF and iterations effects the performance of the system.

4.4. Sensitivity, Specificity and Error Measures

For an in-depth evaluation and validation of the proposed system, we calculated
sensitivity, specificity and error measures. Sensitivity measures the probability of detection,
i.e., the True Positive Rate (TPR), while specificity measures the True Negative Rate (TNR).
In order to represent false classifications, False Positive Rates (FPR) or fall-out rate and
False Negative Rates (FNR) or miss-rate are calculated. FPR and FNR identify errors or
misclassification rates. Sensitivity, specificity, FPR and FNR for each activity class of NTU
RGB+D, UoL and CAD dataset are displayed in the form of bar graphs in Figures 10–12,
respectively.
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It is observed from Figure 10 that the sensitivity ratio of all action classes of the NTU
RGB+D dataset is very high. The proposed system can clearly distinguish between the
classes and accurately predict the true label of the class to which it belongs. The overall
sensitivity for all action classes is as high as 93.5%, 92.2% and 89.6% for the NTU RGB+D,
UoL and CAD datasets, respectively. This shows that the system has a very small failure
rate. The mean true negative rate of the system is 99.3% with NTU RGB+D dataset, 98.8%
with the UoL dataset and 97.3% with the CAD dataset. Most of the specificity ratios that
we obtained with all three datasets are as high as 99%. Thus, our system has a high ability
to reject a testing sample if it does not belong to a specific class.

When the FPR of action classes for all three datasets are compared, it is observed
that the mean FPR of NTU RGB+D, UoL and CAD datasets is 0.61%, 1.06% and 2.58%,
respectively, as seen in Figures 10–12. On the other hand, the FNR of all three datasets is
6.43% with NTU RGB+D, 7.78% with UoL and 10.4% with CAD datasets. Hence, the error
rates are very low, compared to sensitivity and specificity. So, a robust system is produced
with high TPR and TNR, and low FPR and FNR.

4.5. Computational Time Complexity

In order to demonstrate the efficiency of a system, an experiment is performed to
compute the computational time of the system. This experiment investigates the running
time with respect to given input in the form of frames. A Core i5-4300U CPU (Control
Processing Unit of speed 1.90 GHz and MATLAB (R2017a)) is used to compute the running
time. The testing set of single activity class consists of 30 frames per action. When a testing
sample of each activity class was given to the system, it took 3.3 s to recognize the action and
assign a class label to a given input. For one frame, the computational time for recognition
of the human action was 0.11 s. So, our system is capable of providing real-time human
action recognition of 10 frames per second. Furthermore, in this experiment, computational
time of the proposed system was compared with Artificial Neural Networks (ANN) as a
classifier. First of all, the action classes from all three datasets were given individually as
an input to the proposed system and the computational time in which the system classified
all the action classes is measured. Then action classes from all three datasets were given
individually as an input to the proposed system and classified via ANN instead of NFC.
The proposed system with NFC provided results faster than ANN approach. Figure 13
shows the computational time with action classes of NTU RGB+D dataset, UoL dataset
and CAD dataset classified via NFC and ANN.
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4.6. Comparison with Other Recently Proposed Systems

Finally, we compared the performance of the proposed system with other recently de-
veloped systems. We compared the recognition rates of our system with other system using
same activities from all three datasets. In [49] each interaction is divided into interaction of
different body parts. Two unique features called RLTP (Relative Location Temporal Pyra-
mid) and PCTP (Physical Contact Temporal Pyramid) are produced. In [90], two libraries,
OpenPose and 3D-baseline, are used to extract human joints while Convolutional Neural
Networks (CNN) is used to classify the results. In [57], a feature factorization network
is proposed. For better classification, a sparsity learning machine is produced. In [91], a
system is proposed for both pose estimation and action recognition. In this method, action
heat maps are generated via CNN. In [92], a scale and translation invariant transformation
of skeletal images to color images is performed. In order to adjust frequency, a multi-scale
CNN is used.

In [50], a method to temporally detect human action is presented by tracking the
movements of upper body joints. HMM is used to detect and classify human actions. They
used proxemics theory which depends on the usage of space during social interactions.
In [93], spatiotemporal features are extracted from each person interacting in an action
class, while social features are extracted between two interacting persons. In [94], human
actions are tracked with skeletal data and by human body postures. SVM and X-means
are used in the training and testing phase. In [95], a method based on the fusion of RGB,
depth and wearable inertial sensors is presented. HOG and statistical features are extracted
to record human actions. In [39], a connection between atomic activities is measured
and interaction responses are formulated. A multi-task interaction response (MIR) was
computed for each class separately. In [61], inter-related dynamic among different persons
is identified via LSTM. First the static features of one person are given to Single-person
LSTM and then its output is given to Concurrent-LSTM. In [96], a graphical model is used
to find relationships between individual persons in an interaction. Furthermore, structured
learning is introduced to connect with right output. In [97], the relationships among
individuals as well as the atomic activity performed by each individual are measured.
Table 14 shows the comparison of performances on the NTU RGB+D, UoL and CAD
datasets.

It is observed from Table 14 that the proposed system performed better than many
action recognition systems of recent years. The proposed system works well for HAR
because of the features used to track each and every movement made by both persons
involved in an interaction. The incorporation of depth sensors makes it possible to predict
even complex human-to-human actions accurately. The data obtained after extracting
features are in a more structured form to make decisions which improve the performance
of the system. In a very short time, our system can give results with high sensitivity and
accuracy. On the other hand, deep learning methods presented in the comparison consist
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of very complex data models that take more computational time to predict results. A
large amount of data is used in the compared deep learning-based approaches for training
and then predicting the right outcome. By contrast, the proposed system can be used as
real-time surveillance system which can learn from a small number of data samples and
produce results in less time.

Table 14. Comparison of the proposed system with other recently proposed systems.

Datasets Authors Methodology Recognition Accuracy (%)

Meng Li et al. [49] Pairwise features 88.6
Junwoo et al. [90] Mobile robot platform 75.0

Amir et al. [57] Deep multimodal features 74.9
NTU

RGB+D Diogo et al. [91] Multitask deep learning 85.5

Bo et al. [92] Skeletal based action recognition 88.6
Proposed Methodology RGB-D skeletal and full body features 93.5

Claudio et al. [50] Statistical and geometrical features 85.5

UoL 3D
activity

Claudio et al. [93] Probabilistic merging of skeleton features 85.1
Alessandro et al. [94] Skeletal data 87.0
Muhammad et al. [95] Multimodal feature level fusion 85.1

Proposed Methodology RGB-D skeletal and full body features 92.2

Xiaobin et al. [39] Interaction response from atomic actions 83.3

CAD
Xiangbo et al. [61] Hierarchical Long Short-Term Concurrent Memory 83.7
Zhiwei et al. [96] Relationship in group activity 81.2

Wongun et al. [97] Multitarget tracking 73.3
Proposed Methodology RGB-D skeletal and full body features 89.6

5. Discussion

A sustainable system with high stability and uniformity towards different challenges
faced during performance is proposed in this research work. We used three challenging
datasets in both indoor and outdoor environments. Our system produced uniformly
good performance with all three datasets by tackling problems of varying environment
conditions such as various brightness and lightning conditions due to the incorporation of
depth sensors. Actions of all three datasets used in the proposed system are very complex
because the movements involved in performing most of the actions are quite similar to
each other. For example, walking towards, shaking hands, giving an object are actions in
which two persons move towards each other. However, our system remained stable and
reliable in differentiating all similar actions; this is due to the robust set of features. Our
features resulted in high accuracy, sensitivity and specificity ratios.

The challenge of silhouette overlapping is faced during the system’s execution. Silhou-
ette segmentation of both RGB and depth images is not affected by overlapping silhouettes.
However, in the feature extraction phase, there are some images where the silhouette of
one person either slightly or completely overlaps the silhouette of another person. For
example, in classes such as shaking hands and giving objects, hands of two silhouettes
do not overlap at the beginning of the interaction. However, at the end of interaction, the
hands of two persons overlap with each other and it is difficult to distinguish and mark
the hand joints of each person. In the case of slight silhouette overlapping, blob extraction
is performed through connected component analysis and specifying height and width of
human. Through blob extraction, the silhouettes of both humans are extracted individually
and then the feature extraction is performed. So, the performance of these actions is not
very much affected. In some actions such as pat on the back, performance is affected by
overlapping of the silhouettes and it is slightly lower (89%) compared to other classes. This
is because in this action class, there is constant overlapping of hand of one person with
shoulder of other person from start of the interaction until end. Moreover, in instances
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where one silhouette overlaps more significantly with the other silhouette (e.g., hugging
interaction), connected component analysis fails. In such instances, full-body features such
as geodesic distance and 3D Cartesian-plane features are still being computed which is
why recognition accuracy is not very much affected. For example, in hugging interaction,
the geodesic maps are created by taking a single point of origin, i.e., single centroid is used
for both persons. However, in skeletal joints features, the joints of one person are detected
on the silhouette of the other person, and the skeleton is deformed. As shown in Figure 14,
human joints are not identified in the correct positions.
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6. Conclusions

In this research work, an efficient and sustainable human surveillance system is
proposed. We developed an action recognition system that is capable of good performance
due to the deployment of RGB-D sensors and regardless of varying environments. We
proposed four novel features in this research work. These features track each and every
movement made by humans. Two features, namely, geodesic distance and 3D Cartesian-
plane features are extracted from full human body images. Two of the proposed features,
joints MOCAP and way-point trajectory, are extracted from the skeletal joints of humans.
By combining all four feature descriptors, we are able to track human locomotion. These
feature descriptors are optimized via PSO and, at the end, a hybrid neuro-fuzzy classifier
is used to recognize human actions.

The proposed system has been validated via extensive experimentation. At first,
feature descriptors of each dataset are separately fed into NFC and the mean recognition
rate for each action class is calculated. Mean recognition accuracy with the NTU RGB+D
dataset is 93.5%, with the UoL dataset it is 92.2% and with CAD it is 89.6%. We also
evaluated our system with different numbers of membership functions over different
numbers of iterations. The best performance was obtained with five membership functions
but at the cost of computation time. The resulting RMSE values at 300 iterations are 0.55
with the NTU RGB+D dataset, 0.056 with the UoL dataset and 0.096 with CAD. Sensitivity
and specificity measures for each activity class were taken to measure system performance
from the true positive rate and true negative rate, respectively. Overall, the true positive
rate for all action classes was 93.5%, 92.2% and 89.6% with the NTU RGB+D, UoL and
CAD datasets, respectively. The overall true negative rate is 99.3%, 98.8% and 97.3% with
the NTU RGB+D, UoL and CAD datasets, respectively. Finally, the performance of the
proposed system was compared with other systems and these comparisons showed that
the proposed system performed better than many state-of-the-art systems.

In future, we have plans to further evaluate our model with deep learning concepts
over more challenging human action datasets as well as for group interaction recognition.
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