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Abstract: Due to the constantly increasing demand for the automatic localization of landmarks in
hand gesture recognition, there is a need for a more sustainable, intelligent, and reliable system
for hand gesture recognition. The main purpose of this study was to develop an accurate hand
gesture recognition system that is capable of error-free auto-landmark localization of any gesture
dateable in an RGB image. In this paper, we propose a system based on landmark extraction from
RGB images regardless of the environment. The extraction of gestures is performed via two methods,
namely, fused and directional image methods. The fused method produced greater extracted gesture
recognition accuracy. In the proposed system, hand gesture recognition (HGR) is done via several
different methods, namely, (1) HGR via point-based features, which consist of (i) distance features,
(ii) angular features, and (iii) geometric features; (2) HGR via full hand features, which are composed
of (i) SONG mesh geometry and (ii) active model. To optimize these features, we applied gray
wolf optimization. After optimization, a reweighted genetic algorithm was used for classification
and gesture recognition. Experimentation was performed on five challenging datasets: Sign Word,
Dexter1, Dexter + Object, STB, and NYU. Experimental results proved that auto landmark localization
with the proposed feature extraction technique is an efficient approach towards developing a robust
HGR system. The classification results of the reweighted genetic algorithm were compared with
Artificial Neural Network (ANN) and decision tree. The developed system plays a significant role in
healthcare muscle exercise.

Keywords: directional image; geodesic distance; gray wolf optimization; hand gesture recognition;
landmark localization; reweighted genetic algorithm; saliency map

1. Introduction

Recent developments in artificial intelligence and digital technologies have provided
several effective ways to communicate in terms of human–computer interaction (HCI).
When gestures are made by human body movements, physical actions of fingers, hands,
arms, head, and face are recognized by the receiver—this methodology is termed human
gesture recognition (HGR) [1–4]. HGR has wide-ranging applications such as communica-
tion with and between deaf people, as well as interactions between young children and
patients using a PC [5–7]. For rehabilitation purposes, healthcare centers provide hand
muscle exercise in which HGR plays a vibrant role. According to the World Health Organi-
zation (WHO), 15 million people suffer from stroke and 50,000 people suffer from spinal
cord injuries. They affect individuals’ upper limb function and also leads to long-term
disabilities. Rehabilitation strategy is an essential method for upper limb recovery. HGR is
used to perform rehabilitation gestures, and also daily gestures can be recognized [8].

Sustainability 2021, 13, 2961. https://doi.org/10.3390/su13052961 https://www.mdpi.com/journal/sustainability

https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0003-2590-9600
https://doi.org/10.3390/su13052961
https://doi.org/10.3390/su13052961
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/su13052961
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/2071-1050/13/5/2961?type=check_update&version=2


Sustainability 2021, 13, 2961 2 of 26

Gestures are extensively characterized as static and dynamic in a natural way of
communication [9]. A static gesture is seen at the spurt of time, whereas a dynamic gesture
changes with a time frame. The static gestures are specific transition phases in a dynamic
gesture that display as specific action or gesture. The gesture can be inferred by a vision-
based system and data-glove-based system collected via (i) camera, (ii) sensors, and (iii)
gloves [10]. The sensors and gloves measure the angles of the joint and the positions of
a finger in real time. The use of gloves and sensors adds a certain burden to the user,
and the weight of cables can hinder the movement of the hand, which affects accuracy
when measuring gestures. On the other hand, one or more cameras can be used to capture
images of gestures performed by an individual. The camera collects static gestures, which
are used to train the machine for recognition; for this purpose, only a sufficient dataset is
required [11–14].

In this paper, we propose an effective method to extract gestures from RGB images.
First of all, preprocessing was performed on all the images. Then, the hand was segmented
from the background by two methods, one being a fused method and the other being a
directional images method. Both of these methods extracted the hand from the background
successfully, but after a comparison of the two methods, the fused method gave better
results and was used for further processing. In the second step, landmarks were extracted
via color quantization. These landmarks were then used for feature extraction. In this
paper, we extracted different features for the accurate recognition of gestures, i.e., angular
features, geometric features, and mesh geometry. Those features were optimized and then
classified via a genetic algorithm into gestures. The five datasets used for experimentation
are named Sign Word, Dexter1, Dexter + Object, STB, and NYU datasets. The proposed
system produced significantly better recognition accuracy compared with other state-of-
the-art methods.

The main contributions of the paper can be summarized as follows:

• We extracted the hand via a fused method technique from RGB images for gesture
classification.

• Auto-landmark localization was performed for multi-feature extraction to improve
the feature selection process for daily gestures.

• Multi-features were then optimized via a gray wolf algorithm and classified with a
weighted genetic algorithm.

• A comprehensive evaluation was performed on three datasets with significantly better
performance than other state-of-the-art methodologies.

The rest of the paper is organized as follows. In Section 2, the literature review is
presented on the basis of two main categories of HGR feature extraction and recognition.
Section 3 addresses the proposed HGR model, which includes angular, geometric, and
mesh geometry-based features; gray wolf optimization; and the genetic algorithm as a
classifier. Section 4 discusses the experimental setup and a comparison of the proposed
method with other state-of-the-art methods. Finally, Section 5 presents the conclusion and
future work.

2. Literature Review
2.1. HGR Through Electromyographic Signals

Human gesture recognition is applied in many research areas because the accurate
classification of hand gesture electromyography (EMG) signals provides accurate gesture
recognition results [15]. However, the collection of features and the labeling of the large
datasets consumes a large amount of processing time. Su et al. [16] proposed a novel
method in which they combined depth vision learning and EMG for hand gesture recogni-
tion. The system labels data without considering the sequence of hand motion via depth
vision learning. The hierarchical k-means (HK-mean) algorithm is used to classify 10 hand
gestures using a Myo armband. Motoche et al. [17] used superficial EMG for hand gesture
recognition. They applied a sliding window approach; a sub-window is applied to observe
signal segments through the main window. The acquired data using Myo armband is then
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applied to preprocess for rectification and filtering. After that, they extracted features from
the feature vector and the results from the functions. They used a feedforward neural
network for classification and obtained 90.7% recognition accuracy. Sapienza et al. [18]
presented a model with minimum complexity based on the average threshold crossing
(ATC) technique. Four movements of the wrist: flexion, extension, abduction, and grasp
were detected after the acquisition of signals from EMG. The signal threshold-crossing
event number was exploited and then the average ATC classifier produced 92.87% accuracy.
Arenas et al. [19] collected data via eight Myo armband sensors with the use of a power
spectral density map. For classification, they built a feature set consisting of 2880 multi-
channel feature maps, which were divided into three equal sets for training, validation,
and testing. Convolutional neural networks (CNNs) obtained 98% accuracy in validation
and 99% in testing. Benalcazar et al. [20] identified the labels of hand movements in real
time. Their model collected hand movements from a Myo armband, and they used a
window-based approach to make feature vectors. For classification, they used k-nearest
neighbor and a time wrapping algorithm, which achieved 89.5% accuracy. Qi et al. [21]
reduced the redundancy of EMG signals and enhanced real-time gesture recognition. They
used principal component analysis and General Regression Neural Network (GRNN) for
the construction of a gesture recognition system. The authors collected nine static gestures
using an electromyographic instrument for the extraction of four kinds of signals. After
dimension reduction, accuracy reached to 95.1%

2.2. HGR through Smartphone

The pioneering works of hand gesture recognition through smartphones explored
different sensing technologies and feature extraction methods for the improvement of
recognition accuracy [22]. Wang et al. [23] used a smartphone as an active sonar sensing
system for hand movement recognition. The ultrasonic signal emitted by speakers and the
phone’s microphone receives an echo that is changed by hand movements. The gesture is
identified from the recorded signals. Haseeb et al. [24] introduced a novel machine learning
solution for hand gesture recognition. They relied on standard Wi-Fi signals, thresholding
filters, and recurrent neural network (RNN); for recognition, the smartphone does not
require any change in either the hardware or the operating system. The experimental
results included changes in scenarios, as well as network traffic between smartphone and
Wi-Fi access points. They classified three gestures with 93% accuracy. Zhang [25] used
binary motion gestures methods on a smartphone with an accelerometer. They used only
two simple gestures, which were expressed as “0” and “1”. They first evaluated four kinds
of candidate binary gestures and then they split the accelerometer signal sequence into
multiple separate gesture signal segments using signal cutting and a merging algorithm.
The segments were then classified using five algorithms, namely, dynamic time wrapping
(DTW), naïve Bayes, decision tree, support vector machine (SVM) and bidirectional long
short-term memory (BLSTM) networks. Panello et al. [26] addressed the issue faced for
gesture segmentation and recognition using a smartphone device. They designed an
application that uses low-cost and diffused technologies. They designed a new machine
learning algorithm that identifies hand gestures using Hu image moments, invariance
rotation, translation, and scaling, all with low computation cost.

2.3. HGR Through Camera

A substantial amount of work has been done on the recognition of static gestures
using cameras. For static hand, gesture recognition features are extracted via different
methods [27–31]. Features can be extracted using the full hand or by using only the fingers
of the hand. This section divides the literature review into two subsections: (i) Section 2.3.1
and (ii) Section 2.3.2.
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2.3.1. HGR via Full-Hand Features

HGR of static gestures is a challenging task as the extraction of features from the
full hand is a composite and requires a lot of machine training for recognition. Many
researchers have presented different methods for gesture recognition of the full hand.
Oprisescu et al. [32] proposed a method that extracted the contour of the hand, then
calculated convexity and finger positioning from the centroid for gestures. Gesture classi-
fication is done via a decision tree on nine different gestures with 93.3% mean accuracy.
Yun et al. [33] detected the hand via skin color and angle, combined with Hu invariant
moments. For classification, they used a Euclidean distance template-matching technique.
Ghosh et al. [34] designed a system in which they segmented the hand in preprocessing.
A localized contour sequence (LCS) and block-based features are extracted for better rep-
resentation of the hand. Those features are combined and an SVM classifier is used for
the recognition of static hand gestures. Candrasari [35] extracted the hand via YCbCr
values. They extracted features on discrete wavelet transform (DWT) and those features
were passed through hidden Markov model (HMM) and k-nearest neighbor (KNN) for
classification. Rosalina et al. [36] extracted the hand via contour representation using a
glove worn by the user. ANN was applied on the American Sign Language (ASL) and
digits from 0–9 for classification. The accuracy rate of gesture recognition was 90%. Lin [37]
segmented the hand via a color model, and hand poses were obtained for training purposes.
The recognition accuracy was 95.96% for seven hand gestures. Pansare et al. [38] proposed
a system that was divided into four stages—preprocessing, hand extraction using the
Sobel edge detection method, after which the feature vector is computed via the Euclidean
distance between contours. After that, the Euclidean distance is compared with the ground
truth and the comparison is done for gesture recognition. Xu et al. [39] proposed a novel
hand gesture recognition method in which the hand is extracted via skin-color features,
and the arm is removed using distance transformation. Hu moments of the gestures are cal-
culated and SVM is used for classification. This approach produced 95.83% accuracy with
eight gestures. Lee et al. [40] introduced a method to extract the hand via wristband-based
contour features. A simple feature matching method was proposed to obtain a recogni-
tion result. Liu J. et al. [41] proposed a feature-boosting network for estimating 3D hand
pose. They used convolutional layers for feature learning; these convolution layers were
boosted with a new long short-term dependence-aware (LSTD) module which perceived
the dependency on different hand parts. To improve reliability of features representation
of each part of hand, the researchers also added a context consistency gate (CCG). They
used benchmark datasets to test their system against other state of the art methods.

2.3.2. HGR via Landmarks Features

Many approaches have been proposed to localize hand landmarks as a feature extrac-
tion technique for gesture recognition. The majority of existing methods include fingertip
detection, which is successfully applied by researchers. Puttapirat et al. [42] proposed
a system that extracted important landmarks of the hand in the image. They identified
the location to specify those landmarks, and the landmarks were matched with the corre-
sponding landmarks in a 3D model to estimate the hand posture. Ma et al. [43] designed a
method that extracted region of interest (ROI) by the local neighbor method. They used the
convex hull detection algorithm for the identification of fingertips. Al Marouf et al. [44]
developed a novel approach to determine the fingertips and the center of the palm. The
procedure of fingertip detection is performed via an adaptive hill-climbing algorithm
applied on distance graphs. Finger identification is performed via the relative distances
between fingers and valley points. Mahdikhanlou et al. [45] explained a novel multimodal
framework that computed two sets of features. The first set of features is angles from the
hand joints and the second set of features is from hand contours. Those features are then
classified using random forest. Grzejszczak [46] proposed a method for the localization of
landmarks in RGB images. They analyzed a skin-masked directional image using hand
transform and template matching. They detected landmarks on both contour and inside of
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the hand masks. Recognition is done by computing the localization error of the landmark.
Kerdvibulvech [47] made a tracking system for fingertips. They achieved detection by
matching a semicircular template to the detected skin region while for classification they
used Bayesian classifiers. Nguyen et al. [48] made a system to segment the hand using
color information separated from the arm. Then, features were extracted, namely, ratio of
width to height, wrist angle, and the number of fingers; calculations are based on fingertips
and cross-sections. SVM was applied for classification and they achieved 89.5% accuracy.

3. Materials and Methods

The proposed system is comprehensively discussed in this section. The system is
divided into various phases. The HGR system starts with the preprocessing phase, where
the hand gesture from each RGB image is segmented from the background using a morpho-
logical operation. A fused method is used for hand detection. Next is the feature extraction
phase, where geodesic distance, landmarks, geometric features, and spatial features are
extracted from processed RGB images. Then, the optimization phase results in a represen-
tation of features in the vectorized form via a gray wolf optimization algorithm. Finally, in
the classification phase, each gesture is classified via a reweighted genetic algorithm. The
overall architecture of the HGR system is shown in Figure 1.

Figure 1. Flow chart of the proposed hand gesture recognition (HGR) system.

3.1. Preprocessing

RGB images are prone to having noise. This makes the extraction of a region of
interest from the background a challenging task. We can extract the ROI by preprocessing,
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in which first of all noise is removed from the image. Then, a sharpening and enhancement
technique is used to increase the intensity and brightness of the image. This image is then
converted into binary form for further processing in designed the HGR system. In this
phase, a connected component is applied to select the largest component in the image.
Then, morphological operations, namely, dilation and erosion, are used to extract the
desired region of interest [49].

X⊕Y = { z|(
∧
Y)z ∩ X 6= ϕ} (1)

X−Y = { z|(Y)z ⊆ X} (2)

where Y is the structuring element and z is the location of the set of pixels. During the

translation of z, the reflection
∧
Y of Y joins with the pixels of the foreground element X. In

this phase, the shape of the object is maintained, and the gesture mask is extracted. Images
of all 5 datasets are passed through this phase that has enhanced the images at the pixel
level for further processing. Preprocessing results are shown in Figure 2.

Figure 2. Enhanced and binary images of three gestures in sign word dataset: (a) call, (b) close, and
(c) correct.

3.2. Hand Detection

Region of interest (ROI) extraction is the first step in any HGR system [50]. Thus,
the ROI, either single or both hand gestures in all RGB images, is first extracted from the
background using 2 methods. The 2 methods implemented to segment gesture silhouettes
are separately described in the following subsection.

3.2.1. The Fused Method

RGB silhouette extraction of all 5 datasets is carried out through the fused method
for hand detection. This method involves 2 methods of detection. Firstly, the entire image
dimension is reduced to two-dimensional space where the column size is defined by width
and rows are defined by heights in an image. The RGB image is then divided into planes
and converted into YCbCr space where the color of each pixel is 32 bits. For the extraction
of each channel, right shift is performed on red, blue, green, and alpha by 24-bit processing
to obtain the values of alpha. The alpha channel is used to check the opacity of the image;
if the pixel has 0% value, then it is fully transparent, whereas if it has 100% values, then
it is a fully opaque pixel. For the red and green channel, 16 bits and 8 bits right shift is
performed, respectively. The remaining pixel values are for the blue channel.

On these calculated values, bitwise logical AND operation with 0 xff is applied to
extract the desired color. These operations are applied to all image pixels [51]. To obtain
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accurate and more precise recognition, we converted the IRGB image into YCbCr color
space as in the equation given below: Y

Cb
Cr

 =

 16
128
128

+
1

265

 65.738 129.057 25.06
−37.945 −74.494 112.43
112.439 −94.154 −18.28

  R
G
B

 (3)

where Y is the luminance. To overcome the interference of highlights, Y ε (0, 80) is set.
Then, using an elliptical equation, human skin color is located via Cb and Cr values. The
equation is shown below:

(i−1.6)2

26.392 + (j−2.41)2

14.032 < 1[
i
j

]
=

[
cos(2.53) sin(2.53)
− sin(2.53) cos(2.53)

] [
Cb− 109.38
Cr− 152.02

] (4)

where i and j are the intermediate values. Each pixel value of IRGB and YCbCr is compared
with the standard skin pixel, and a decision, whether each pixel is skin or not, is made on
the range of predefined threshold value for each parameter.

Secondly, a contrast-based method is applied to compute a saliency map. In a saliency
map, the dominant part of the gesture is based on saliency values, making the segmentation
of gestures faster and more accurate. The algorithm designed for computing the saliency
map has 3 aspects: (1) contrast will depend on the color and the area of the two partitions
in the image; (2) the partitions will have a greater impact on each other’s saliency if the
distance between them is closer; (3) the proximity of the saliency object to the center of
the image [52]. Saliency map computation is performed by segmenting the input image
into super pixels. Then, a sparse color histogram of the super pixels is constructed and
the color number of each channel is reduced to simplify the calculations. Each histogram
is converted into lab space, and the differences of color and distance between pixels are
then calculated.

Dispixel
(

pi, pj
)
=

k1

∑
x=1

k2

∑
y=1

f (di,x) f
(
dj,y
)

Dis(di,x, dj,y) (5)

where Dis
(
di,x, dj,y

)
is the distance between color x and y in super pixel pi and pj. K1 and

K2 represent the color number of the super pixels pi and pj.
As the partitions have a greater impact on each other’s saliency map, thus the distance

between pi and pj is computed as

Disd
(

pi, pj
)
=
∣∣mi − mj

∣∣+ ∣∣ni − nj
∣∣ (6)

Disd
(

pi, pj
)

is the distance between regions. m and n represent the X and Y coordinate
values of region pi, respectively.

SuperP(pi) = ∑
t 6=i

n(pt)Disi(pi, pt)

δDisd(pi, pt)
(7)

where n(pt) is the total number of super pixels pt. The greater value will represent the
greater impact on each super pixel. The original image is then segmented using graph-
based segmentation to obtain a larger partition, and the contour of the salient object is
generated from the saliency map [53]. Then, the gray values of the saliency map are merged
in the contour. The resultant saliency map is then represented on the top of the original
image, as shown in Figure 3.
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Figure 3. Fused methods of three gestures in sign word dataset: (a) call, (b) fine, and (c) correct.

3.2.2. Directional Images

In the second hand-detection method, the outer and inner edges of the hand region
are detected via a new approach. The ROI is obtained by specifying a threshold value T,
which compares foreground and background pixel values, and as a result, a binary image
is generated. For hand detection, a 3*3 gradient vector-matrix G(x,y) is computed. The
gradient vector matrix is computed for every pixel of image I, and is represented as follows:

G(x, y) =

[
I(x, y) − I(x, y−1) , I(x, y) − I(x, y+1) I(x, y) − I(x−1, y) , I(x, y) − I(x+1, y)

I(x, y) − I(x−1, y−1) , I(x, y) − I(x+1, y+1) I(x, y) − I(x−1, y+1) , I(x, y) − I(x+1, y−1)

]
(8)

Every second pixel in the second row of the matrix will be compared with the distances
adjacent to the pixel in the 3 × 3 window, resulting from the gradient vector matrix. The
negative values of distances of every pixel, calculated after subtraction, will be converted
into positive.

dl = dl ∗ (−1) (9)

The distances that lie vertically, horizontally, and diagonally in the gradient vector
are compared with a constant threshold. A distance greater than the threshold is set to
the white pixel value of 1, and distances less than the threshold are set to the black pixel
value 0 and, as a result, a binary image is formed of outer and internal boundaries of the
hand [54]. The resulting directional image is shown in Figure 4.

Figure 4. The directional image of gestures of the Sign Word dataset: (a) close, (b) single, and (c) cold.

Both methods were tested on the Sign Word, Dexter1, Dexter + Object, STB, and NYU
datasets. The fused method gave more promising hand detection results than the direc-
tional image method. The ground truth of gestures is first computed in order to compute
the accuracy of the resultant hand detection images for both fused and directional image
methods. Then, the contour pixel index values distance is compared via geodesic distance
on both of the methods. Table 1 shows comparisons of detection accuracy for the Sign
Word dataset. It is clearly shown that the fused method produced more accurate results.
Thus, the fused method was selected for further processing of the system architecture.
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Table 1. Comparison of detection accuracy for the Sign Word dataset.

Classes Fused Method
Accuracy (%)

Directional Image
Accuracy (%) Classes Fused Method

Accuracy (%)
Directional Image

Accuracy (%)

call 92 69 ok 92 68

close 91 62 please 93 58

cold 92 67 single 92 63

correct 92 60 sit 92.5 52

fine 92 66 tall 91 56

help 92 59 wash 92 62

home 91 55 work 91 61

like 92 65 yes 91 60

love 91.5 65 you 92 62

no 91 66 iLoveYou 92 68

3.3. Landmark Detection

The segmented hand is then used for landmark detection. Many approaches are
proposed to localize hand landmarks, which help in feature extraction for distinguishing
and determining specific gestures [54–58]. The majority of techniques are quite simple and
limit the exact localization of landmarks. In our proposed method, landmark detection is
performed using 2 different methods on different segmented images for the more exact
localization of landmarks.

Geodesic Distance

In this method, gestures performed by hands are represented via geodesic wave
maps. These maps are generated by calculating geodesic distance found by a fast-marching
algorithm. First of all, the center points of a human hand silhouette are located, and the
distance value is given as d (h) = 0. Point h is the starting point, which is marked as a visited
point. All the other pixel points p are unvisited and given a distance value d (p) = ∞ on
hand silhouettes. The neighbor of each pixel p is represented as n, and p pixel distance is
measured from n. Every neighboring pixel is taken in each iteration until all pixel points
are marked “visited” [55–59]. The distance calculated from each iteration is compared with
the distance of previous iterations. Priority is given to the shortest distance calculated. An
updated distance is defined as

d =


dx + dy +

√
∆

2
min(dx, dy) + w otherwise

when ∆ ≥ 0 (10)

∆ = 2w2 − (dx − dy)
2

where dx and dy is the distance in x- and y-coordinates, respectively, dx=min(Di+1,m,Di−1,m)
and dy=min(Di,n+1,Di,n−1). Figure 5 demonstrates the wave propagation of geodesic dis-
tance via fast-marching algorithm (FMA).
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Figure 5. Wave propagation of geodesic distance via fast-marching algorithm (FMA) on the Sign
Word dataset classes of (a) call, (b) single, and (c) fine.

Landmark detection is performed after obtaining the wave propagation of geodesic
distance via the fast-marching algorithm (FMA) on images. Color values of pixels p are
computed on the outer boundary b of the hand silhouettes. Pixels having same color values
c are counted first and then the mean is computed; on the mean value of the pixel, the
landmark l is drawn. For the inner landmark, the color value of neon green is taken, and
the distance is set between points. The fingertips can be calculated as

l =
c
(

px , py

)
2

(11)

where px and py belong to the same color in the outer boundary and c
(

px , py

)
is the

total number of that colored pixel located in the outer boundary. Landmarks are drawn on
the hand silhouettes in Figure 6 given below:

Figure 6. Landmarks detection on the Sign Word dataset with (a) call, (b) fine, and (c) please hand gestures.

3.4. Feature Extraction via Point-Based Method

This section provides a detailed description of feature extraction via landmarks. The
landmarks are extracted by a point-based features extraction method for hand gesture
representation, training, and recognition.

3.4.1. Distance Features

Feature extraction for hand gestures is achieved via the point-based method, which
includes points on the thumb, index finger, middle finger, ring finger, and little finger (see
Figure 7). All the points are combined in various ways to produce a variety of features
that are extracted for training and recognition purpose. These points are distance features,
geometric features, and angle-based features. The distance feature d measures the distance
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between the ixy extreme landmark on the fingertip and the cxy inner landmark, using that
geodesic distance of the hand, which is formulated as

‖ d ‖=
√
(xi2 − xc1 )

2 + (yi2 − yc1 )
2 (12)

where d represents the distance between two points; xi2 and xc1 are the x-coordinates of
the extreme landmark and inner landmark of the hand, respectively [60,61]; while yc1 and
yi2 are the y-coordinates of the same landmarks.

Figure 7. Distance feature computed on gestures of the Sign Word dataset classes of (a) call, (b) please, and (c) fine.

3.4.2. Angular Features

The angular features are extracted through the cosine of the angles (i.e., α, β, γ) that
is measured on the geodesic distance angle of 2 extreme points [62–64]. Three points
—adjacent, side, and centroid—form a triangle, as shown in Figure 8b.

Figure 8. Angular features extraction from triangles drawn on two classes of the Sign Word dataset: (a) call, (b) angle
description, and (c) fine.

Similarly, we have vertices, i.e., A, B, and C, and a, b, and c are the sides of a particular
triangle, as shown in Figure 8a, having a = BC, b = AC, and c = AB, respectively [65].

α = cos−1 b2 + c2 − a2/2bcβ = cos−1 a2 + c2 − b2/2acγ = cos−1 a2 + b2 − c2/2ab (13)

where α, β, and γ are the measures of the angle between two adjacent sides b<->c, a<->c,
and a<->b of the triangle formed, respectively. Finally, these features are provided to the
classifier for further processing towards recognition, which is discoursed successively [66].

3.4.3. Geometric Features

Hand gestures are formed using different combinations of fingers and palms, which
result in forming different shapes. These shapes form a specific geometry over different
gestures. Such geometric shapes are the best features for the classification and recognition
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of gestures [67–70]. The geometric feature is the third point-based feature that includes
different irregular shapes formed by 2 consecutive fingers. This includes different irregular
shapes formed by 2 consecutive fingers of the hand in a gesture. The area is computed on
the shape formed via Heron’s formula.

In this method, the irregular shape is simply divided into regular shapes such as
a polygon, which is divided into 2 triangles [71]. Each side distance of the triangle is
measured as the distance calculated between 2 points, and the values are computed with
Heron’s formula:

G =
√

t (t−m)(t− n)(t− o) where t =
m + n + o

2
(14)

where m, n, and o are the sides of the triangle, as shown in Figure 9. After the area of each
triangle is calculated, the areas of both triangles are added together to find the area of the
irregular shape. In this way, all the shape areas of the various shapes are computed, and
the features are then available for classification and recognition.

3.5. Feature Extraction via Full Hand

This section provides a detailed description of feature extraction from the full hand
using the index values of points drawn using self-organizing neural gas.

3.5.1. Mesh Geometry

The aim of this stage is to estimate the morphology of the hand. This is accomplished
by applying self-organizing neural gas (SONG) on the segmented binary image. SONG is
an unsupervised learning model used in applications in which it is important to maintain
the topology between input and output spaces. The clustering of input data is achieved so
that the distance of the data item in inter-cluster variance is small, and in different classes,
inter-cluster variance is large [72–74].

Figure 9. (a) Geometric feature collected from irregular shapes of the Sign Word dataset class call; (b)
irregular shape divided into different sized triangles; (c) single triangle side representation.

A typical SONG training starts with the first two output neurons (n = 2). For training
of the SONG, all the training datasets I are circularly used. All accumulated errors Ew

(1),
Ew

(2), ∀ w ε [1, n] are set to zero from the beginning of each epoch. Ew
(1) shows the

total quantization error that corresponds to the neuron at the end of an epoch, while
the increment of the total quantization error we obtain after removal of the neuron is
represented by variable Ew

(2). For the given input vector Ix, the starting two neurons are
obtained by

Neurona1 = ‖ Ix − Wa1 ‖ ≤ ‖ Ix − Ww ‖, ∀ w ε [1, n] (15)

Neurona2 = ‖ Ix − Wa2 ‖ ≤ ‖ Ix − Ww ‖, ∀ w ε [1, n] and w 6= y1 (16)
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where the initial weight vector Ww, w = 1, 2 are randomly selected by the two neurons in
the input space. The values of the local variables Ea1

(1) and Ea1
(2) change according to the

following equation:

E(1)
a1 = E(1)

a1 − ‖ Ix − Wa1 ‖E
(2)
a1 = E(2)

a1 − ‖ Ix − Wa2 ‖ Ca1 = Ca1 + 1 (17)

The counter Ca is assigned a zero value for these two neurons, as w = 1, 2, and if
Ca1 ≤ Cidle, then the local learning rate is defined as

ε2a1=
ε1a1

ra1
(18)

where ε2a1 and ε1a1 change the value according to (17), (18), and (19). Otherwise, the local
values will have constant values ε1a1 = ε1min and ε2a1 = 0.

ε1a1 = ε1max + ε1min − ε1min ·
[

ε1max

ε1min

] Ia1
Iidle

(19)

ra1 = rmax + 1− rmax·
[

1
rmax

] Ia1
Iidle

(20)

The learning rate ε1w is applied to the winner neuron, while ε2w is applied to the
weights of the neighbor of the winning neuron. The learning rate changes values from
maximum to minimum, which is defined by the Iidle parameter. The initial value of rmin = 1,
with the period of time the value of raw defined by Iidle parameter, reaches to maximum
rmax. The weight vectors of the winning neuron Neurona1 and its neighbor neurons Neurono,
o ε ne(a1) are adapted according to the following equations:

Wa1 = Wa1 + ε1a1 · (Ix − Wa1) (21)

Wo = Wo + ε2o · (Ix − Wo), ∀ o ∈ ne(a1) (22)

After neurons Neurona1 and Neurona2 are detected, the connection between them is
created. At the end of each epoch, all the neurons are in the idle state. If the local counters
are greater than the value of Cidle then the neurons are well trained. Here, the convergence
SONG network is assumed. Figure 10 shows the topological features of input space I
extracted by SONG.

Figure 10. Self-organizing neural gas (SONG) extracted on the input space.
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Algorithm 1. Pseudo code for self-organizing neural gas

Input: Input space, I;
Output: the map, G = (V, E);
Initialization:
First, randomly generate two nodes, N = (n1, n2) in the input space.
Second, set the neighboring neuron to zero and set the maximum number of nodes to 100.
1. Randomly generate one input signal Ўto update input space I, calculate the winning node x1

and x2 nearest to Ў
x1 = argminn ∈N ‖ U − wn ‖

x2 = argminn ∈{x1} ‖ U − wn ‖
2. Adjust x1 and x2

(a) Create a connecting edge if there is no connection between x1 and x2.
edge = edge U{(x1, x2)}

(b) Set the edge=0.
(c) Adjust the error of the winning node x1:

Ex1 = Ex1+ ‖ U − wx1 ‖
(d) To adjust the winning node x1 use the learning rate
(e) Adjust all of the edges connected with node x1:

3. Remove all edges larger than amax and delete all nodes without connecting edges
4. Insert new nodes and divide them into two parts.
5. Insert new nodes in the following steps

i. Locate the neighboring node n of u with the largest error, and insert
new node r between them.

V = V U {r}, wr = ( wu + wv)/2
ii. Create the edges of r with u and v, and delete the edge between u and

v and locate the induced subgraph
iii. Lower down the error of u and v, and set the error of node r.
iv. Regulate error of all nodes

6. If stop conditions are not satisfied, then go back to Step 1.

The outer nodes index value is taken as a feature. Each gesture depicts the different
morphology of the gesture. The outer nodes are selected by inspecting the neighborhood
pixel values. If the pixel has the white value, then the node is selected; otherwise, it is
rejected. Figure 11 shows the mesh and the selected outer boundary of the hand.

Figure 11. (a) SONG on the call gesture with the outer region selected as a feature. (b) SONG on fine gesture with the outer
region selected for feature.

3.5.2. Active Model

The second method used for feature extraction from the full hand uses 8 Freeman
chain code algorithms. This method measures the intensity change along with the curve
points on the boundary of hand gestures. First, the boundary of the hand is identified.
All the curve points along the hand contour are identified and represented using the 8
Freeman chain code algorithm [75,76]. Let us suppose all the points along the boundary b
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are represented by points n. The s is the starting point on the top left side of the thumb,
and s will check points until n-1. The curve point on the boundary is represented as Cb,
and thus all points will be Cb = {s0, s1, . . . . . . , sn−1}.

We start to find feature points from s0 and move in a clockwise direction along the
boundary until a change in the direction is observed. Let the next point be s1 and current
points s0; if the direction of both s0 and s1 is the same, then the point s1 will be excluded
and the next point, s2, will be checked. If the directions of both s0 and s1 are different,
then s1 will be considered as feature point f. All points on the boundary will be checked
similarly and, if the current point and the next point difference is greater than 0, then it
will be selected as feature point f [77]. Figure 12 depicts point selection.

Figure 12. (a) depicts active model feature extraction and the direction of extracted points, while (b) depicts the
points extracted.

A total of 8 cases of 45◦ and 4 cases of 90◦ are taken to find the changes in the direction
of points in order to find the points for features. Figure 13 represents the changes in direion
of 45◦ and 90◦ in which the yellow line shows the direction of the current curve point while
the blue arrow shows the subsequent direction of the curve point.

Figure 13. Cases of full-hand feature extraction: (a) three cases of 45◦ change in direction; (b) three cases of 90◦ change
in direction.

3.6. Features Optimization

For feature optimization, gray wolf optimization (GWO) is applied in order to ob-
tain the best feature vector for classification. GWO discriminates the different cases and
provides multiple solutions. It resembles the organizational structure of wolves for group
hunting, which is a very clever swarm tactic. Four types of wolves stimulate leadership
hierarchy. The alpha wolf is the master for all the gestures. The beta wolf is a subordi-
nate wolf, which also helps the alpha to make choices [51,78,79]. The delta wolf is only
appointed when alpha, beta, and omega are not wolves. The omega is a low-rated wolf
that only reports to the other wolves. The omega is also dominated by delta wolves and it
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reports to both alpha and beta. The strategies of hunting that identify a wolf’s location can
be seen mathematically as

Âα =
∣∣Ý1·Lα− L(t)

∣∣, Âβ =
∣∣Ý2·Lβ− L(t)

∣∣,Âδ =
∣∣Ý3·Lδ− L(t)

∣∣ (23)

where t is iterations. When the target is identified, the repletion begins (t = 1). The alpha,
delta, and beta would instruct the omegas to chase and encircle the target. L is the location
trajectory of the gray wolf [80]. L is defined as

L1 = Lα− Z1·Âα, L2 = Lβ− Z2·Âβ,L3 = Lδ− Z3·Âδ, L(t) =
L1 + L2 + L3

3
(24)

where L1, L2, and L3 are the location trajectories of alpha, beta, and delta wolves, respec-
tively. The L and d are the mixtures of the containing restriction a and the haphazard
quantities x1 and x2 as

L = 2αx1 , d = 2x2 (25)

The optimization result for the Sign Word dataset is given below (Figure 14):

3.7. Classifier: Reweighted Genetic Algorithm

For classification, a modified version of the state-of-the-art genetic algorithm (GA) is
introduced. A genetic algorithm (GA) is an evolutionary algorithm that is robust, heuristic,
and stochastic and is reliable for high-dimensional space [81]. The genetic strategy is used
during complex computational problems. It is a pool-based algorithm that uses small
chunks of data to find optimal solutions with random biological operations, i.e., crossover,
mutation, and selection. In the genetic model, operations are performed on a basic unit
known as chromosomes. Feature vectors are converted into chromosomes by mapping
every single feature to respective genes [82]. Chromosomes consist of genes; each gene
represents a single feature in the feature vector. Figure 15 shows the basic structure of
genetic model units. To find the optimal solution chromosomes, filter the search space in
different orders. On the other hand, the population is the pool of chromosomes. In selection
process, the first chromosome is selected randomly from the pool, and after that, a fitness
function is applied to all chromosomes and numbers are generated. The chromosome
having greater number is the fittest and it is selected for the optimal path solution [83].

Figure 14. Gray wolf optimization best solution on the Sign Word dataset.
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Figure 15. Representation of the basic units of a genetic model.

In the reweighted genetic algorithm, the classifier is divided into 2 phases: reweighted
feature selection and classification. In the first phase, weights are assigned to optimized
features using a support vector machine and random forest classifier. In the classification
phase, the resultant output is classified into different human gestures.

Initially, GA starts with optimized features on which crossover and mutation tech-
niques are applied. In the crossover function, the optimized features are represented as
chromosomes in a subspace known as population. After this, mutation is applied to crossed
chromosomes to increase diversity. This also provides a method that helps in escaping
from the local optimum. Finally, resultant chromosomes are duplicated, and weights are
assigned to them so that prominent features are assigned according to better weights.

Copt ( f ) =
K

∑
k=1

O f 1, O f 2 . . . . . . , O f n, ∗ O f 1, O f 2 . . . . . . , O f n Mopt( f ) = O” f 1, O” f 2 . . . . . . , O” f n1 (26)

where Of1 is the optimized feature, Copt is the crossover, and Mopt is the mutation
function applied over gray wolf optimized features. These GA patterns are then inserted
into a codebook pattern and classified by finding a maximum matching cluster from the
codebook [84] (Figure 16).

Figure 16. Flow chart of the reweighted genetic model for HGR.

4. System Validation and Experimentation

This section provides a brief description of the datasets used for the training and
testing of the proposed system. All the experiments were performed on MATLAB R2017a.
The following parameters were used to validate the system’s performance. Firstly, the
recognition rate of single and gesture performed by both hands from all five datasets is
given. Secondly, the precision, recall, and F1 values via decision tree, ANN, and genetic
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algorithm are given for all five datasets. Finally, a comparison of our method with other
state-of-the-art methods is provided.

4.1. Dataset Description

Table 2 represents the name, type of input data, and description of each dataset for the
training and testing of the proposed system.

Table 2. Descriptions of datasets used for evaluation and experimentation.

Name of Dataset Type of Input Data Gesture Classes

Sign word RGB images

This dataset contains 20 isolated hand gestures (11 single-hand gestures
and 9 double-hand gestures), i.e., call, close, cold, correct, fine, help, home,

like, love, no, ok, please, single, sit, tall, wash, work, yes, you, iloveyou.
The images of the dataset were collected with a pixel resolution of 200 x

200. To collect dataset images, we requested three volunteers (mean age 25)
to perform the gesture of Sign Word [85].

Dexter1
RGB frames with 5 Sony

DFW-V500 RGB cameras at
25 fps

Dexter1 consists of seven sequences, i.e., abduction–adduction,
flexion–extension, finger count, finger wave, flexex1, pinch, random, tiger

grasp of the hand. Roughly the first 250 frames in each sequence
correspond to slow motions while the remaining frames are fast motions.

All sequences are performed with an actor’s right hand [86].

Dexter + Object RGB frames with Creative
Senz3D color camera

Dexter + Object is a dataset for evaluating algorithms for joint hand and
object tracking. It consists of six sequences, i.e., grasp1, grasp2, pinch, rigid,
rotate, and occlusion with two actors (one female) and varying interactions

with a simple object shape [87].

STB RGB and RGBD frames STB dataset contains 18,000 images with ground truth. Six people
performed counting and random poses having different backgrounds [88].

NYU RGBD data with ground
truth images

NYU hand pose dataset consists of 8252 test set and 72,757 training set
frames. The dataset consists of RGBD and RGB images. The training set
consists of single user while test set consist of two users with different

hand poses [89].

4.2. Recognition Accuracy

To validate the system’s performance, we first gave the Sign Word dataset hand
gesture to the proposed system to determine the recognition rate using a genetic classifier.
The percentage of accuracies for each class was given separately in the form of a confusion
matrix. Each gesture class for all five datasets used for experimentation achieved up to
the mark performance with our proposed system. Tables 3–5 show the confusion matrix
of accuracy scores for gesture classification for the proposed approach for the Sign Word
dataset, the Dexter1, and the Dexter + Object, respectively. Table 6 shows the mean accuracy
of all five datasets used for testing the proposed system.

We used five HGR datasets for experimentation, namely, Sign Word, Dexter1, Dexter +
Object, STB, and NYU datasets that produced 92.1%, 93.1%, 88.2%, 90.8%, and 85.3% mean
accuracy, respectively.

4.3. Precision, Recall, and F1 Score

In this Section, precision accuracy, recall, and F1 scores are given using a decision tree,
ANN, and genetic algorithms on all five datasets. Results show that the genetic algorithm
produced a better performance over all three classifiers. The decision tree omitted sampling
features for classification while training and the classification process was faster compared
to training. ANN required a maximum number of samples for training and, as the number
of training samples was less than 100 million, the accuracy rate for ANN was less compared
to the other classifiers. The genetic algorithm gave better results in the proposed system.
Tables 7–11 present the test results for precision, recall, and F1 scores for all the three
classifiers on all five respective datasets.
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Table 3. Confusion matrix of accuracy scores for gesture classification for the Sign Word dataset.

Classes C 1 CL 2 CO 3 CR 4 F 5 H 6 HM 7 L 8 LV 9 N 10 O 11 P 12 S 13 ST 14 T 15 WA 16 WO 17 Y 18 U 19 IL 20

C 1 0.99 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
CL 2 0.00 0.96 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00
CO 3 0.01 0.00 0.87 0.00 0.00 0.01 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.01 0.00 0.03 0.05 0.00 0.00 0.00
CR 4 0.00 0.00 0.00 0.97 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00
F 5 0.00 0.00 0.00 0.00 0.99 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
H 6 0.03 0.00 0.01 0.00 0.00 0.85 0.01 0.00 0.02 0.00 0.02 0.00 0.00 0.01 0.00 0.02 0.03 0.00 0.00 0.00

HM 7 0.00 0.00 0.00 0.00 0.00 0.00 0.95 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00
L 8 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.96 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.02

LV 9 0.00 0.00 0.01 0.00 0.00 0.03 0.00 0.00 0.94 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.00
N 10 0.01 0.00 0.00 0.02 0.00 0.00 0.00 0.01 0.00 0.91 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.02 0.00
O 11 0.02 0.00 0.00 0.01 0.01 0.00 0.00 0.03 0.00 0.03 0.86 0.01 0.01 0.00 0.00 0.00 0.00 0.01 0.01 0.00
P 12 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.97 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
S 13 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.96 0.00 0.00 0.00 0.00 0.00 0.00 0.01

ST 14 0.00 0.00 0.03 0.00 0.00 0.02 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.85 0.00 0.07 0.02 0.00 0.00 0.00
T 15 0.00 0.04 0.01 0.00 0.00 0.02 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.89 0.00 0.01 0.00 0.00 0.00

WA 16 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.02 0.00 0.87 0.08 0.00 0.00 0.00
WO 17 0.00 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.89 0.02 0.00 0.00

Y 18 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.88 0.07 0.00
U 19 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.08 0.89 0.00
IL 20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.97

1 call, 2 close, 3 cold, 4 correct, 5 fine, 6 help, 7 home, 8 like, 9 love, 10 no, 11 ok, 12 please, 13 single, 14 sit, 15 tall, 16 wash, 17 work, 18 yes, 19 you, 20 iLoveYou.
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Table 4. Confusion matrix of accuracy scores for gesture classification for the Dexter1 dataset.

Gesture Classes AD 1 FC 2 FW 3 F 4 P 5 R 6 TG 7

AD 1 0.95 0.0 0.00 0.05 0.00 0.00 0.00
FC 2 0.03 0.96 0.00 0.00 0.00 0.00 0.02
FW 3 0.00 0.04 0.94 0.02 0.00 0.00 0.00

F 4 0.03 0.00 0.02 0.95 0.00 0.00 0.00
P 5 0.01 0.01 0.00 0.00 0.92 0.00 0.06
R 6 0.00 0.03 0.05 0.00 0.03 0.89 0.0

TG 7 0.00 0.00 0.00 0.02 0.07 0.00 0.91
1 adbadd, 2 fingercount, 3 fingerwave, 4 flexer1, 5 pinch, 6 random, 7 tigergrasp.

Table 5. Confusion matrix of accuracy scores for gesture classification for the Dexter + Object dataset.

Predicted Gesture Classes

G 1 GR 2 O 3 P 4 R 5 RO 6

G 1 0.91 0.07 0.00 0.00 0.00 0.02
GR 2 0.09 0.89 0.00 0.00 0.01 0.01
O 3 0.00 0.00 0.85 0.00 0.09 0.06
P 4 0.06 0.05 0.00 0.84 0.03 0.02
R 5 0.00 0.01 0.06 0.00 0.92 0.01

RO 6 0.00 0.00 0.00 0.05 0.07 0.88
1 grasp1, 2 grasp2, 3 occlusion, 4 pinch, 5 rigid, 6 rotate.

Table 6. Mean accuracy for gesture classification of datasets.

Datasets Mean Accuracy %

Sign Word 92.1

Dexter1 93.1

Dexter + Object 88.2

STB 90.8

NYU 85.3

Table 7. Test results of the three classifiers using the Sign Word dataset.

Classifier Accuracy Precision Recall F1

Decision tree 0.9142 0.9012 0.8412 0.8701
ANN 0.8924 0.8214 0.8516 0.8362

Genetic algo 0.9212 0.8817 0.8833 0.8824

Table 8. Test results of the three classifiers using the Dexter1 dataset.

Classifier Accuracy Precision Recall F1

Decision tree 0.9212 0.9102 0.8702 0.8897
ANN 0.9024 0.8313 0.8714 0.8508

Genetic algo 0.9312 0.8927 0.8923 0.8924

Table 9. Test results of the three classifiers using the Dexter + Object dataset.

Classifier Accuracy Precision Recall F1

Decision tree 0.9021 0.9012 0.8412 0.8701
ANN 0.8761 0.7915 0.8315 0.8110

Genetic algo 0.8822 0.8315 0.8012 0.8160
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Table 10. Test results of the three classifiers using the STB dataset.

Classifier Accuracy Precision Recall F1

Decision tree 0.8901 0.8542 0.8612 0.8576
ANN 0.8912 0.8612 0.8415 0.8512

Genetic algo 0.9081 0.8522 0.8724 0.8621

Table 11. Test results of the three classifiers using the NYU dataset.

Classifier Accuracy Precision Recall F1

Decision tree 0.8641 0.8414 0.8213 0.8312
ANN 0.8421 0.8321 0.8101 0.8214

Genetic algo 0.8532 0.8462 0.8387 0.8424

4.4. Comparison

The comparison between our proposed method and other state-of-art-methods is
given in Table 12. The results show that our proposed method, which is the combined
feature extraction method (i.e., using both key points and full hand), produced higher
recognition accuracy rates than the other state-of-the-art methods, which use a single
feature extraction method (i.e., either point based or full hand). Our proposed method
accurately extracted ROI from RGB images and accurately extracted feature vectors on the
proposed method. The reweighted genetic algorithm used optimized features, 70% of the
feature vectors for training and 30% of the feature vector for testing, to produce accurate
results. The table shows that on all five datasets, namely, Sign Word, Dexter1, Dexter +
Object, STB, and NYU used for training and testing, our proposed method produced higher
accuracy than the other methods.

Table 12. Result comparison with the other state-of-the-art methods on all three datasets.

Dataset Feature Extraction Method Authors Recognition Accuracy (%)

Sign Word

Point-based Vaitkevičius et al. [90] 86.1

Full-hand
Ahlawat et al. [91] 90

Wang et al. [92] 92

Point-based + full-hand Proposed methodology on Sign
Word dataset 92.1

Dexter1

Point-based Cai [93] 88

Full-hand
Imashev [94] 86

Shan et al. [95] 89

Point-based + full-hand Proposed methodology on
Dexter1 dataset 93.1

Dexter + Object

Point-based
Spurr et al. [96] 85

Brahmbhatt et al. [97] 86.49

Full-hand Li et al. [98] 84

Point-based + full-hand Proposed methodology on Dexter
+ Object dataset 88.2

STB

Point-based
Chen et al. [99] 75

Dai et al. [100] 77

Full-hand Zhou et al. [101] 89

Point-based + full-hand Proposed methodology on STB 90.8

NYU
Point-based Deng et al. [102] 74

Full-hand Moon et al. [103] 83.4

Point-based + full-hand Proposed methodology on NYU 85.3
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5. Conclusions

In this research work, we developed an efficient HGR system for healthcare muscle
exercise via point-based and full-hand features and a reweighted genetic algorithm. Fea-
tures proposed in this method include Euclidean distance, the cosine of angles (i.e., α, β,
γ), area of irregular shapes, SONG mesh, and chain model to select the optimal features.
GWO with RGA is used to optimize, train, and recognize different gestures for muscle
exercise. Our proposed system outperformed other HGR systems in terms of accuracy at
92.1%, 93.1%, 88.2%, 90.8%, and 85.3% over the Sign Word, Dexter1, Dexter + Object, STB,
and NYU datasets, respectively. Then, precision, recall, and F1 scores were also measured
for overall gesture recognition in all datasets. In the end, the performance of the proposed
system was compared with the other state-of-the-art systems. We expect our system to
perform well for the recognition of daily gestures performed in any environment.

In the future, we plan to improve features with different techniques. 3D mesh features
will be improved. We will also develop our dataset for healthcare, which will include
complex gestures. Dynamic gestures will also be tackled and recognized by the system.
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