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ABSTRACT Human-Object Interaction (HOI) recognition, due to its significance in many computer
vision-based applications, requires in-depth and meaningful details from image sequences. Incorporating
semantics in scene understanding has led to a deep understanding of human-centric actions. Therefore,
in this research work, we propose a semantic HOI recognition system based on multi-vision sensors. In the
proposed system, the de-noised RGB and depth images, via Bilateral Filtering (BLF), are segmented into
multiple clusters using a Simple Linear Iterative Clustering (SLIC) algorithm. The skeleton is then extracted
from segmented RGB and depth images via Euclidean Distance Transform (EDT). Human joints, extracted
from the skeleton, provide the annotations for accurate pixel-level labeling. An elliptical human model
is then generated via a Gaussian Mixture Model (GMM). A Conditional Random Field (CRF) model is
trained to allocate a specific label to each pixel of different human body parts and an interaction object.
Two semantic feature types that are extracted from each labeled body part of the human and labelled
objects are: Fiducial points and 3D point cloud. Features descriptors are quantized using Fisher’s Linear
Discriminant Analysis (FLDA) and classified using K-ary Tree Hashing (KATH). In experimentation phase
the recognition accuracy achievedwith the Sports dataset is 92.88%,with the SunYat-SenUniversity (SYSU)
3D HOI dataset is 93.5% and with the Nanyang Technological University (NTU) RGB+D dataset it is
94.16%. The proposed system is validated via extensive experimentation and should be applicable to many
computer-vision based applications such as healthcare monitoring, security systems and assisted living etc.

INDEX TERMS 3D point cloud, fiducial points, human-object interaction, pixel labeling, semantic segmen-
tation, super-pixels, K-ary tree hashing.

I. INTRODUCTION
Understanding Human-Object Interaction (HOI) is formu-
lated on Human Action Recognition (HAR) [1]. However,
HOI is not limited to identify human actions, it can also
detect relationships between humans and objects [2]. This
relationship is called the verb or the interaction between a
human and an object. Hence HOI is called the identification
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of triplets (human, verb, object) [3], [4]. It is a challenging
field and is of particular interest in research. Due to the
complex nature of HOI there is a need for a very thorough
understanding of each movement involved in an interaction.
Semantic segmentation has proved to be very effective in
multiple domains of image processing and computer vision,
such as intelligent transportation, medical imagery, object
detection and human-computer interaction [5], [6]. Semantic
segmentation is the clustering of pixels that belong to the
same class and labeling them individually [7]. Therefore,
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we semantically segment different human body parts and
their interaction object. Traditional HOI recognition systems
based on semantic segmentation only consists of human and
object labeling [8], [9]. However, in the proposed system,
different human body parts along with their respective object
are semantically segmented and labelled. In this way, move-
ments performed by each body part are recorded individually
resulting in the development of an accurate HOI recognition
system.

Human-object interaction is a very popular research area
due to its wide applicability to, e.g., healthcare monitor-
ing [9], assisted living [10], surveillance [11], motion sens-
ing games [12], content-based video indexing and retrieval,
etc., in the field of computer vision [13], [14]. Thus, there
is a need for a more reliable and accurate system. A lot
of research work has been performed in recent years in
this field. Nevertheless, there remain some challenges that
need to be tackled, such as variation in lighting and occlu-
sion of different objects [15], [16]. In order to overcome
these challenges, we propose a fusion of RGB and depth
sensors. Depth sensors overcome the problem of occlusion
and prove to be very effective in action recognition by pro-
viding the extra depth information of each object involved
in an interaction [17]. Moreover, we incorporate semantics
in each action class which results in deeper understanding
of each movement performed by each body part during
interaction.

The proposed HOI recognition system consists of four
major modules: image normalization, human and object
segmentation, human body parts and object detection via
elliptical modeling and pixel-level labeling, HOI interaction
recognition via semantic feature extraction, dimensionality
reduction and classification. First, RGB and depth images
are normalized by removing noise via Bilateral Filtering
(BLF). The de-noised images are subjected to a segmentation
phase performed via a Simple Linear Iterative Clustering
(SLIC) algorithm. After the segmentation of both humans
and objects from the backgrounds, skeletons are extracted
via Euclidean Distance Transform (EDT) to trace the human
skeleton human. The branch points of skeletons are given
as centroids to form clusters of different body regions by
Gaussian Mixture Model (GMM). The orientation and region
under each cluster is represented by an ellipse. Hence an
elliptical model representing different body parts and their
respective objects is produced.

Aftermodeling each human and object, pixel-level labeling
of each region under an ellipse is performed. Conditional
Random Field (CRF) is trained to label each RGB and depth
image. Two unique features from each labelled human body
part and object are extracted. After feature extraction, Fisher’s
Linear Discriminant Analysis (FLDA) is used for the dimen-
sionality reduction of feature descriptors. In the end, each
action class is classified and recognized via a K-ary Tree
Hashing (KATH) classifier. The efficiency of the proposed
work is validated via experimentation over three datasets: the
Sports dataset, the Sun Yat-sen University (SYSU) 3D HOI

dataset and the Nanyang Technological University (NTU)
RGB+D dataset.

The major contributions of this work can be summarized
as follows.
• Improved silhouette segmentation for both RGB and
depth images via a SLIC algorithm.

• A precise human body parts detection and ellipsoidal
model that is generated from detected human body parts.

• Pixel-level labeling of each detected human body parts
and object from both RGB and depth image sequences
via CRF.

• The main contribution is accurate HOI detection via
unique semantic feature extraction, from each labeled
body part and object.

The rest of the paper is structured as follows: Section II pro-
vides the related work. Section III presents the detail of each
module of the proposed HOI system. Section IV describes
the experiments performed for validating the performance of
the system and comparison of the recognition rate of our
work with other systems. Finally, Section V provides the
conclusion with some future directions.

II. RELATED WORK
Many HOI recognition systems have been proposed in
recent years comprising of both deep learning [18]–[20] and
machine learning based approaches [21]. However, in our
proposed work, we have developed a machine learning based
multi-vision sensors system that incorporates a semantic seg-
mentation technique. Therefore, we divide the related work
into two sections. The first section describes related work that
reports multi-vision sensors based HOI. The second section
consists of action recognition systems based on different
semantic segmentation techniques.

A. MULTI-VISION SENSORS BASED HOI SYSTEMS
Data acquisition in vision-sensors based action recognition
systems comprise of RGB [22], [23], depth and skeletal data
[24], [25]. In this section related work in the field of HOI
systems based on all three aforementioned vision sensors
techniques is presented. Yao and Fei-Fei [26] proposed an
HOI system that consists of a mutual context for human and
object. The two types of contextual data used in this method
are: co-occurrence context models and the co-occurrence
statistics between objects and human poses. Furthermore,
to represent the relationships between humans and objects,
a spatial context is also represented. The efficacy of the sys-
tem is proved with two publically available RGB datasets but
still, the system lacked annotation of human body parts and
objects. Yan et al. [27] proposed a multitask neural network
based HOI recognition system based on a combination of
human body and hand motion. A digital glove called Wise-
Glove was used to record the motion of the hands. A neural
network based technique was used to identify object and
HOI. Experimental results with both RGB and skeletal data
achieved a better recognition rate but testing was performed
with a very limited data range of eight action classes.
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Meng et al. [28] proposed a system based on the distance
of skeletal joints. This is a depth sensor-based system in
which inter-joint and joint-object distance is calculated. The
features in this system were pose invariant and classified by
random forest. A good recognition rate was achieved but the
system was tested on only one dataset. In [29] Wan et al.
proposed a pose aware system for HOI detection. A global
spatial configuration of HOI is captured to focus only on
action related parts of humans. In order to incorporate pose,
a multi-branch network is used to represent the relationships
between semantic parts, objects and interaction contexts. Two
publically available RGB datasets were used for experimen-
tation. Robust predictions were made via fine grained HOI
recognition rates. Qi et al. [30] proposed Graph Parsing Neu-
ral Network (GPNN) based HOI detection. The graph struc-
ture includes the adjacency matrix and node labels. Results
on two RGB and one depth dataset proved the validity of
the system. In [31] Gkioxari et al. proposed the detection of
triplets, i.e., human, verb and object detection. They exploit
the concept of the appearance of a person to determine the
object and the interaction. An action-specific density is cal-
culated to detect the targeted object. They proved the effec-
tiveness of their approach through extensive experimentation
on two RGB datasets. Li et al. [32] proposed a 3D pose
based system and a new benchmark named Ambiguous-HOI.
To mine features, a 2D and 3D representation network is pro-
posed. To represent both humans and objects, a cross-modal
consistency tasks and joint learning structure was proposed.
Experimentation on two RGB datasets proved the better per-
formance of the system.

B. SEMENTIC SEGMENTATION AND LABELING
Semantic segmentation is the significant part of our pro-
posed methodology. In recent years, different methodologies
have been adopted by researchers in the field of seman-
tic segmentation [33], [34]. So, in this section we describe
some semantic segmentation based scene understanding and
human action identification systems. In [35], Zhou et al.
proposed cascaded parsing network based HOI. An instance
detection module and interaction reasoning module were
proposed. HOI representation, in the form of instance and
relation features, is parsed via GPNN. The detection of inter-
action is not only limited to a bounding box but to pixel-
level segmentation of humans and objects. Experimental
results demonstrate better performance than prior methods
on two RGB datasets (V-COCO and HICO-DET). In [36],
J. Ji et al. provided semantic segmentation for different action
classes instantaneously. They used the concepts of multi-
task learning and contextual data. Region Based Convolu-
tional Neural Networks (R-CNN) was used for pixel-level
labeling. They proved the performance of the system by
experimenting both detection and segmentation on one RGB
dataset. Khowaja and Lee [37] proposed a semantic analysis
of videos by applying localized sparse segmentation using
global clustering. Through experimentation they proved that

semantic images produce better activations by focusing on
regions that are significant for action recognition. The use of
approximate rank pooling from Long Short Term Memory
(LSTM) showed better performance. High recognition rate
with three public datasets validated the performance of the
system.

In [38], Arnab et al. proposed semantic segmentation based
scene understanding via Conditional Random Field (CRF)
and neural networks. They used deep neural networks to auto-
matically learn features. The mean field algorithm of CRF
was used as a Recurrent Neural Network (RNN) layer. They
improved the segmentation performance on an RGB public
dataset (Pascal VOC). Paisitkriangkrai et al. [39] proposed a
pixel labeling technique consisting of CRF andConvolutional
Neural Networks (CNN). They proposed robust features by
combining both hand-crafted and CNN extracted features.
Then, to label probabilities, CRF was applied. As a result,
segmentation was improved with the ISPRS labelling contest
dataset. In [40] A. Jalal proposed a depth silhouette based
HAR labeled human body parts and identified the centroids
of each part. Random field was used to label and train
the images. A motion vector comprising of magnitude and
direction was computed via identified centroids. Experiments
performed on six daily life activities show a better recognition
rate than many state-of the art methods. All of these method-
ologies showed improvement in the recognition of human
actions so we propose an HOI recognition system based on
semantic human body parts segmentation.

III. THE PROPOSED APPROACH
The proposed approach consists of four major modules:
image normalization, human and object segmentation, human
and object detection, modeling and labeling and in the end
HOI recognition. The overall architecture of the proposed
system is shown in Fig.1. Detail of the techniques used for
each of the aforementioned modules is explained in the fol-
lowing subsections.

A. IMAGE NORMALIZATION
During pre-processing, the raw images from both RGB and
depth datasets are fed into the system. In order to keep
dimension of images from all three datasets similar, they are
cropped to a fixed dimension of 560× 350. After identifying
the initial region of interest, BLF is applied. BLF removes
noise, smooths the images and preserve the edges of all the
objects in the images [41]. All the images are de noised by
Gaussian smoothing kernels. The intensity value of each pixel
x of the image I is replaced by a weighted intensity obtained
by neighboring pixels [42]. The range kernel fr smooths
differences in intensities and spatial kernel gs smooths differ-
ences in coordinates. The filtered image Ifil , obtained after
applying bilateral filter, is defined as;

Ifil(x)=
1
Wp

∑
xi∈�

I (xi)fr (
∥∥I (x i)−I (x)∥∥)gs(‖xi−x‖) (1)
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FIGURE 1. Architecture of the proposed HOI recognition system.

where xi is one of the neighboring pixels from the specified
neighborhood window � centered at x and Wp is defined as;

Wp =
∑

xi∈�
I (xi)fr (

∥∥I (x i) − I (x)∥∥)gs(‖xi − x‖) (2)

The weight ofWp, i.e., the normalization factor is assigned
by spatial closeness and differences in intensity values.

B. HUMAN AND OBJECT SEGMENTATION
After the normalization phase, both humans and their respec-
tive interaction objects are segmented from the background
using an SLIC algorithm [43]. In this section, we propose a
linear iterative clustering based super-pixels approach. In this
approach k- means the algorithm is used to generate
super-pixels [44]. First, all RGB images are converted to a lab
(l∗ specifies lightness, and a∗ and b∗ for the four colors: red,
green, blue, and yellow) color space. After that, the numbers
of super-pixels k is specified. Then, initial centers Ci =
[li ai bi xi yi]T , which are S pixels apart, are initialized for each
cluster. The grid interval S =

√
N/k produces nearly equal

sized super-pixels. The centers of the super-pixels should not
be at the edges of objects, for this reason the centers are
moved to the lowest gradient positions in a 3× 3 neighbour-
hood. After specifying a cluster, searching starts where each
pixel i is assigned to its nearest cluster center. Compared to
traditional k-means, the search space of the SLIC algorithm is
very limited [45]. The search space is reduced by measuring
the distance D to define the nearest centers for each pixel.
This distance D is a 5D Euclidean distance in a labxy color
space and is given by 3D color distance dc and 2D spatial

distance ds as;

dc =
√
(l j − li)

2
+ (aj − ai)

2
+ (bj − bi)

2 (3)

ds =
√
(x j − xi)

2
+ (yj − y)

2 (4)

As the depth images are given in grayscale, they only have
l component so the distance dc for grayscale is given as dc =√
(l j − li)

2.The normalized distanceD′ is given by maximum
distance within the cluster in color and space proximity Nc
and Ns respectively as;

D′ =

√(
dc
Nc

)
+

(
ds
Ns

)
(5)

At the final stage, after each pixel is assigned to the nearest
neighbor, an update in cluster centers is made. At the end
there are still some pixels that are not assigned to their
respective clusters. So, a super-pixel merging algorithm [46]
is performed to further refine the segmentation process. Dif-
ferent visual features are used to define n super-pixels X =
[x1, . . . , xn] ∈ Rm×n in an image. These image features
describe l semantic labels in an image and the similarity of
any super-pixel xi and xj is given as;

Si,j=
∑m

i,j=1
i6=j

[
δ1d labij + δ2d

tex
ij +δ3d

sift
ij +δ4d

surf
ij

]
× Di,j

(6)

where δ is the weight factor for distance adjustment,
d labij , d

tex
ij , d

sift
ij , d

surf
ij represent the Euclidean distance

between color, texture, sift and surf distances of super-pixels
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FIGURE 2. Results of the SLIC algorithm on RGB images showing (a) the
original RGB image, (b) converted L∗a∗b∗ color space, (c) super-pixels
overlaid on the grayscale image and (d) segmented regions after
super-pixel merging.

FIGURE 3. Results of the SLIC algorithm on depth images of phone
interaction showing (a) original images, (b) super-pixel extraction,
(c) super-pixel merging and (d) the segmented human and object.

i and j. The relationship between super-pixels is stored in
D. If ci is adjacent to cj then Di,j = 1, Di,j = 0 otherwise.
Fig. 2 shows the results of SLIC segmentation over an RGB
image while Fig.3. shows the results of the SLIC algorithm
on depth images from the SYSU dataset.

C. HUMAN BODY PARTS DETECTION, MODELING AND
LABELING
In this section human body parts are detected, elliptically
modeled and labeled. This section is divided into three
phases. In the first phase, human body parts are detected
and in the second phase an ellipsoidal model of human body
parts is generated. In the third phase, detected human body
parts and the respective interaction object are labelled using
CRF. Each of these phases is described in the following
sub-sections.

1) HUMAN BODY PARTS DETECTION
In order to provide accurate human joints annotations,
a human skeleton is first extracted via Euclidean Distance
Transform (EDT) [47]. All segmented RGB and depth images
are converted to binary images. The binary images are then
converted to grayscale images in which only those foreground
pixels p are taken whose distance from the background pixels
q is minimum [48]. This grayscale image is called the Dis-
tance Transform [DT] and its pixel values are given by:

DT p = min{d (p.q) |I (q) = 0} (7)

This distance is calculated by Euclidean distance. Then a
morphological operation of thinning is the applied to extract
continuous skeleton pixels [49]. The operation of skeletoniza-
tion further reduces the image to a single line without destruc-
tion of the structure of a human. The skeletonization process
is demonstrated in Fig. 4.

FIGURE 4. Skeletonization results showing, (a) the original binary images,
(b) EDT and (c) the extracted skeleton via morphological thinning.

FIGURE 5. Skeletal joints detection via branch points extraction on
(a) tennis forehand and (b) volleyball smash interactions.

In order to determine skeletal joint points, first, a Critical
Point (CP) is determined [50]. This is the point with aminimal
DT from the boundary. Keeping the CP as the root node, a tree
is traversed in four directions, i.e., upward, downward, left
and right. In each of these directions, a constraint is followed,
i.e., only the foreground pixels having value of 1 are searched
in 8-connected neighborhood [51]. There are two types of
points in this search.
• Endpoints(EP): those points in which there is only one
skeletal point among 8 neighborhoods.

• Bifurcation points(BP): those points in which there
are three or more than three skeletal points among
8 neighborhoods.

By keeping the root node as a parent node, the first child
is searched in the upward direction. The direction of search
is guided by the slop of the line that is connecting the root.
The EP in the upward direction is the head and the BP is the
neck. In the search from root node to the left direction, the EP
is the left hand. The mean of the EP and the CP is the left
elbow and the mean of the left elbow and the neck is the left
shoulder. Similarly, these three joints of right arm are located
by a search towards the right. The root or the CP is the torso
of the human body. Searching from the CP in the downward
direction, the first BF is the torso base. The EP in the left side
is the left foot and, on the right side, it is the right foot. The
mean point between the torso base and both feet is the left
knee and the right knee point respectively. Similarly, themean
point between the torso base and both knees is the left and
right upper legs, and the mean point between both the knees
and both the feet is the right and left ankle joint respectively.
In this way a total of eighteen human joints are located as
shown in Fig. 5. During all this searching, the constraint of
the pixel value as 1 is followed.
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2) GAUSSIAN-BASED ELLIPTICAL MODELING
The binary image I with skeleton S and k numbers (i.e. 18)
of joint annotations is fed to an elliptical modeling phase.
As the object is already detected in section (B) so in this
section a Gaussian Mixture Model-Expectation Maximiza-
tion (GMM-EM) algorithm [52] is implemented to represent
each body part with an ellipse. First of all, the human is rep-
resented by non-overlapping or partially overlapping circles
CC . A graph G = (V ,W ) in which V is a set of the nodes
that represent the endpoints of a skeleton and W is the set of
edges. The skeleton is segmented into li parts by W where
i ∈ {1, . . . , |W |} and W is the number of edges. From these
segmented parts the 16-bin histogram of radii of each circle
and shape complexity C is computed where C is an entropy
function given as;

C = −
∑|W |

i=1

∑16

j=1
pij logpij + log |S| (8)

Through these circles, ellipsoidal fitting within the bound-
ary is initiated. Each joint location is the centroid c of the
circle and the line joining two consecutive joints in the skele-
ton is the radius R of each circle. Each of these circles is
tangent to the boundary at two points. The ellipse fitting
process is carried out according to the GMM-EM algorithm.
The GMM-EM algorithm is initialized by specifying the
centroid and the number of clusters because random initial-
ization will have led to a suboptimal local minimum of the
problem [53]. The shape skeleton by EDT is exploited for a
more informed decision at the GMM-EM initialization stage.
The 2D Gaussian function used for clustering of foreground
pixels is given by;

Pi (p) = Ai.e−(p−ci)
TMI (p−ci) (9)

where Pi gives the probability of a foreground pixel p to
belong to an ellipse Ei with origin ci and Mi represents a
2 × 2 matrix with eccentricity ad orientation information of
Ei. Moreover, the amplitude Ai = 1 to keep the same values
of Pi (p) at the ellipse boundary for all ellipses. In this way
the probability of a particular point belonging to an ellipse
depends only on its position, orientation and eccentricity and
not on the area of the ellipse. The object is already detected
in Section B using SLIC. In this section the object is enclosed
with a bounding box using connected components and blob
analysis on the segmented image. The elliptical models for
some sample images from SYSU and NTU datasets are
shown in Fig. 6.

3) PIXEL-LEVEL LABELING OF HUMAN BODY PARTS AND
THEIR RESPECTIVE OBJECTS VIA CRF
After detecting different human body parts, the results of the
elliptical modeling phase are fed to the pixel-level labeling
phase, as each human body part is already segmented with an
ellipse in the previous phase. In this phase, fully-connected
CRF [54] is used to assign a label for each pixel in each of
the detected human body parts and the object. A relationship
between the output variables (specified labels) represented

FIGURE 6. Elliptical models showing (a) the original segmented image,
(b) the ellipse fitting of human body parts with joint annotations and
(c) the final human body parts and object model.

as y = y1, y2, . . . .yN and observed features (such as pixel
intensities) as input variable x is described by CRF in the
form of conditional probability P (y | x) [55]. During pixel
labeling, N is the total number of pixels and yi is the label
assigned to the ith pixel. The modeling of P (y | x) in CRF
is approached by representing y as a Markov random field.
CRF is represented in the form of an undirected graph as
G = (V ,E) with V as a set of vertices or nodes and E
as a set of edges of the graph. Each label yi corresponds to
each node [56]. In order to assign a label to each pixel, the
probability distribution of CRF is defined in the form of an
energy function as;

P (y | x) =
1
Zx
exp {−E (y; x)} (10)

where Zx is the partition function to normalize the probability
distribution and E (y; x) is the energy function that is the sum
of smaller clique potentials ψc(yc; ) represented as;

E (y; x) =
∑

c
ψc(yc; x) (11)

So, to define a label for each pixel, an energy function is
defined as;

E (y; x) =
∑n

i=1
ψU
i (yi; x)+

∑
ȳ∈ε
ψP
ij (yi, yj; x) (12)

where ψU is the unary energy component associated with
each pixel and ψP is the pairwise energy component asso-
ciated with a set of pixels ε. The most probable assignment
to a label requires minimization of the energy function as;

ŷ = argmax
y

E(y; x) (13)

For inference, a mean-field algorithm is used as given in
Algorithm 1 that approximates energy minimization [57].
This algorithm is initialized with Gibbs distribution and it
performs in a loop for Q energy minimization. The weighted
Gaussian is computed in a message passing step.

In order to train the data, maximum likelihood is used. The
parameters that produce the training data with the highest
probability under the model are chosen. On a training sample
((x1, y1) , (x2, y2) . . . (xT , yT )) conditional log likelihood is
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Algorithm 1Mean Field Inference Algorithm
1. Initialize Q as Qi(l)← 1

Zi
exp {−Ui(l)} for all i pixels

while not converged do
2. Message passing from all Xj to all Xi as;

Q(m)
i (l)←

∑
j6=i

k(m)
(
fi, fj

)
QJ (l) (14)

//where k(m)
(
fi, fj

)
QJ is Gaussian kernel and

(
fi, fj

)
is feature

vector for pixel i and j//
3. Adding weight to filter outputs as Q(l)

i ←
∑

m w
(m)Qi (l) for

all m
//where w(m) is the weight of m-th kernel//

4. Compatibility transform

Q(l)
i (l)←

∑
l′∈L

µ
(
l, l ′

)
Qi
(
l ′
)

(15)

5. Adding unary potentials to Q(l)
i (l) as Q(l)

i ← UI (l)− Qi(l)
6. At the end normalizing output as Q(m)

i ←
1
Zi
exp (Qi(l))

end while

maximized with respect to unknown parameter θ as;

(arg)max
θ

∑T

t=1
ln p (yt | xt ; θ)

= (arg)min
θ

∑T

t=1
[−lnZ (xt , θ)− E(xt , yt , θ)]) (16)

Now a CRF model is trained to predict a correct label for
each segmented body part and the interaction object. Some of
the results of the CRF in the form of labelled body parts and
objects are demonstrated in Fig. 7.

D. HUMAN-OBJECT INTERACTION RECOGNITION
HOI recognition is the identification of triplets (human, verb
and object) as the human along with its body parts and
interaction object are detected and labelled. Now, in this
section, the verb, i.e., the interaction between the human
and the object is identified. For HOI interaction recognition,
this section is sub-divided into three modules. The first is
the semantic feature extraction, the second is dimensionality
reduction via FLDA, and the third phase is classification
with KATH.

1) SEMANTIC FEATURE EXTRACTION
The two types of features extracted from each semantic region
including human body parts and objects are fiducial points
and 3D point cloud.

a: FIDUCIAL POINTS
The Fiducial Point (FP) of each human body part and each
object is detected individually [58]. First of all, the boundary
of each segmented body part is detected and then divided
into Left Boundaries (LB) and Right Boundaries (RB). The
boundary points are scanned from top to bottom in a horizon-
tal rows of the xy coordinates. In a ith row the transition in
x-axis from high pixel values to low pixel values indicates
right boundaries as RB = {rb1, rb2, . . . .rbm}. Similarly,
the transition along the x-axis from low pixel values to high

FIGURE 7. Pixel-level labelling over samples of (a) the sports dataset,
(b) the SYSU dataset and (c) the NTU RGB+D dataset.

pixel values indicates LB = {lb1, lb2, . . . .lbn}. Where m and
n are the total numbers of pixels in RB and LB respectively.
After identifying RB and LB, peaks and valley points are
detected in each side of the boundary. The first-order deriva-
tive is taken as local maxima and minima to detect peaks and
valleys respectively. A change in the slope of a boundary from
negative to positive is referred to as minima while a change
in slope from positive to negative is referred as maxima.
The first order derivative of RB from i = 1 . . . .m − 1 is
drbi = rbi+1 − rbi and its vector is given as;

dRB = drb1, drb2, . . . . . . drbm−1 (17)

The first order derivative of LB from j = 1 . . . .n − 1 is
dlbj = lbj+1 − lbj and its vector is given as;

dLB = dlb1, dlb2, . . . . . . dlbn−1 (18)

The peaks Pr of RB are given as;

Pr = {rbi | drbi ≥ 0 ∩ drbi+1 < 0} , ∀i = 1, 2 . . .m− 1

(19)

Similarly, the peaks Pl of LB are calculated from dLB.
On the other hand the valleys Vr of RB are calculated as;

Vr = {rbi | drbi ≤ 0 ∩ drbi+1 > 0} , ∀i = 1, 2 . . .m− 1

(20)

Similarly, the valleys Vl of LB are calculated from dLB. If
the contour of any body part is flat, i.e., if it has consecutive
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FIGURE 8. Peaks and valley points detection showing (a) PP and VP
detection on boundaries of the head, (b) labeled eating meal interaction,
(c) detected boundaries on each body part and (d) detected PP and VP on
each body part.

TABLE 1. Fixed numbers of valley points and peaks for each human body
part and object.

zeros, then the median point of the consecutive zeroes is
taken. The coordinates value of each FP is recorded in a
feature vector and tracked with each changing frame. Peaks
and valley point detected on boundaries of some body parts
are displayed in Fig.8.

The Peak Points (PP) and Valley Points (VP) of all the
body parts and the object may not be the same in every
interaction class. So these points are fixed for each body part.
Table 1 shows the number of peaks and valley points for each
body part and object.

b: 3D POINT CLOUD
In this feature, humans along with their interaction objects are
represented in the form of point clouds. The RGB labelled
images are converted into 3D point clouds with xyz coor-
dinates [59]. Let K be a point cloud then its coordinate is
given as X kp = (xk , yk , zk ). The pixels in the RGB image are
converted into 3D points. This conversion ismade on the basis
of pixel coordinates and their corresponding intensity values.
In order to extract features from the point cloud, these points
are down sampled using aVoxel Grid (VG) filter [60]. A voxel
is a grid defined over 3D point clouds. A spatial average is
taken inside each voxel to down sample the points. Those
points, which lie inside the voxel bounds, are joined to form
one output point. The points inside the voxel are given with
the centroid as;

x =
1
S

∑
(x,y,z)∈A

x (21)

y =
1
S

∑
(x,y,z)∈A

y (22)

z =
1
S

∑
(x,y,z)∈A

z (23)

where S is the number of points in a voxel A. In every interac-
tion class, each human body along with the interacted object
is down sampled to 6000 cloud points while maintaining the
posture or shape of the human and interaction object as shown
in Fig.9.

FIGURE 9. A down-sampled 3D point cloud on a human and object over a
wearing hat interaction.

The coordinate value along with the intensity of each point
in a down-sampled point clouds is stored in a feature descrip-
tor. The feature descriptor from the two extracted features
of both the human and object are concatenated at the end
(see Algorithm (2)).
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Algorithm 2 Semantic Feature Extraction
Input: Labelled images
Output: Feature Vectors containing Semantic Features
1. F1 = ExtractFiducialPoints←Human
2. F2 = Calculate3DPointCloud←Human
3. F3 = ExtractFiducialPoints←Object
4. F4= Calculate3DPointCloud←Object
5. Vi = CreateFeatureVectorsfi
6. For each fi in features do

{
Concatenate = (Vi,Vi+1)
}

2) FISHER’S LINEAR DICRIMINANT ANALYSIS
After combining feature vectors of all the interaction classes,
a complex matrix is generated. FLDA is used as a dimension-
ality reduction algorithm before classification. The objective
is to reduce intra-class variance and to increase inter-class
variance [23]. The FLDA is applied to the interaction classes
of each dataset individually. In a multiclass discriminant
analysis, let µi be the mean of each HOI class C, 6 be the
same covariance and µ be the mean of class means, then the
scatter between each class C is defined as;

6b =
1
C

∑C

I=1
(µI − µ)(µI − µ)T (24)

while T is the transpose and the separation of classes is given
in direction Ew as;

S =
EwT6b Ew
EwT6 Ew

(25)

The rows represent the number of images in the training set
of each dataset. The final dimension of the Sports dataset after
feature reduction is 6120× 250, the SYSU dataset is 6120×
360 and that of the NTU dataset is 6120 × 380. The scatter
plot for the Sports and NTU datasets are displayed in Fig.10.

3) K-ARY TREE HASHING
The optimized vectors of all three classes are fed to a KATH
classifier. It is a graph-based classifier given as G = {gi}
while i = 1 . . . .N and N is the total number of objects in
the graph [61]. The graph consists of vertices V , undirected
edges E and label function l : V → L to assign labels to
nodes in gi from a label set L. Based on the structure of the
graph and node labels, a class label yi is also given to each
graph gi. Furthermore, a size K of the traversal table and
MinHashes {D(r)}Rr=1 for R iterations is also specified [62].
Random permutation functions {π (r)

d } are generated for Min-
Hashes. A MinHash technique is used to measure the Jaccard
similarity Ĵ of two sets Si and Sj based on DMinhashes as;

Ĵ (SI , SJ ) =

∑D
d=1 1

(
min (πd (Si)) = min

(
πd
(
Sj
)))

D
(26)

where, if the state is true, then 1(state) is 1, otherwise it is 0.
The KATH algorithm consist of three steps, namely, traversal

FIGURE 10. Scatter plot showing classes for (a) the sports dataset and
(b) the SYSU dataset.

table construction, recursive leaf extension and leaf sequence
using the MinHash scheme. This MinHash scheme classifies
the data into various interactions. All three steps are given in
Algorithm 3.

IV. EXPERIMENTAL SETUP AND RESULTS
This section gives the details of each experiment performed to
validate the proposed system. All the processing and exper-
imentation is performed on MATLAB (R2018a). The hard-
ware system used is Intel Core i5 with 64-bit Windows-10.
The system has an 8 GB and 5 (GHz) CPU. We divided
the experiments into two sections. In the first section HOI
recognition performance in which recognition accuracies of
each interaction class is given in the form of a confusion
matrix and the precision, sensitivity, specificity and F1 scores
are also measured along with comparisons of the proposed
method with other state-of-the-art (SOTA) methods. In the
second section, i.e., pixel-level labeling, the label accuracies
for each human body part and object are measured using
CRF. All these experiments are performed using a Leave One
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Algorithm 3 K-Ary Tree Hashing

Input: g = (V ,E,L), K, {D(r)}Rr=1
//where R is number of iterations//

Output: {x(r)}Rr=1
// Traversal Table Construction//

1. V ← |V |
2. l(V + 1)←∞
3. T ← (V + 1) ∗ ones(V + 1, 1+ K )

for v=1: V do
4. Nv ← neighbour(v)

//MinHash Selection//
5. temp← [min (π1 (l (Nv))) , . . . ,min (πk (l (Nv)))]
6. T (v)← [v, index (temp)]

end for
//Recursive Leaf Extension//

7. z(1) ← [1 : V ]T

8. S(1) ← l(z(1))
for r=1: R do

if r >1 then
9. z(r) ← reshape

(
T
(
z(r−1), :

)
, [1, ∗]

)
10. S(r) ← reshape

(
l
(
z(r)

)
, [V , ∗]

)
end if

//Leaf Sequence//
11. f (r) ←

[
h
(
S(r) (1, :)

)
, . . . h

(
S(r) (V , :)

)]T
12. x(r) ←

[
min

(
π
(r)
1 (f (r))

)
, . . .min

(
π
(r)
D(r)

(
f (r)

))]T
end for

Subject Out (LOSO) cross-validation scheme. Each dataset is
divided into N subsets containing k number of images. First
all the subsets are used to train the system and then one subset
is used for testing. The system is then validated by taking
another subset for testing and the remaining subsets for train-
ing. The images of the subsets that are used for training are not
included in the testing set. In case of the sports dataset, there
is a different subject in each image of each interaction class
so LOSO cannot be applied. The sports dataset is divided by
splitting 50% images of each interaction class for training and
the rest of 50% for testing of the system. In case of the SYSU
and the NTU RGB+D dataset, LOSO is applied in which the
actions performed by one subject are used for testing and
the actions performed by the rest of the subjects are used
for training. This section is further divided into two sections:
dataset description and experimental results.

A. DATASETS DESCRIPTION
The three datasets that are used for experimentation are:
The Sports dataset, the SYSU 3D HOI dataset and the NTU
RGB+D dataset. Details of each dataset are given in follow-
ing subsections:

1) THE SPORTS DATASET
This is a static image dataset that consists of six RGB sports
activities. The activities performed in this dataset are: cricket
batting, cricket bowling, croquet shot, tennis forehand, tennis
serve and volleyball smash. The details of the dataset and
samples are given in [63]. This is a complex dataset as the
poses and scenes of many interaction classes are similar

FIGURE 11. RGB samples for six interaction classes of sports dataset.

FIGURE 12. RGB and depth images of (a) mopping, (b) moving chair and
(c) pouring interactions from SYSU dataset.

to each other, e.g., volleyball smash and tennis serve. Few
sample images of sports dataset are displayed in Fig. 11.

2) THE SYSU 3D HOI DATASET
This is an RGB-D dataset in which a Kinect sensor is used to
collect RGB and depth images. This dataset consists of twelve
human object interactions performed by 40 participants. The
HOI classes in this dataset are sweeping, mopping, taking
from wallet, taking out wallet, moving chair, sitting chair,
packing backpacks, wearing backpacks, playing phone, call-
ing phone, pouring and drinking. There are 480 video clips
of different durations ranging from 1.9s to 21s. The details of
the dataset and samples are given in [64]. FewRGB and depth
sample images of SYSU dataset are displayed in Fig. 12.

3) THE NTU RGB+D DATASET
This is an RGB-D dataset that contains RGB, depth and
3D skeletal data. This dataset contains 56,880 video sam-
ples of 60 action classes. Only RGB data is in the form
of video while the depth data is provided in the form of
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image sequences. Out of 56,880 video samples provided for
60 action classes, 2715 video samples are used in the pro-
posed work. The actions in this dataset have three categories:
40 daily actions (e.g., reading, drinking, eating), nine medical
conditions (e.g., falling down, sneezing, staggering,), and
11 mutual actions (e.g., hugging, punching, kicking). From
the 40 daily actions, we only worked on twelve human-object
interactions. The twelve interactions that we used for training
and testing in the proposed system are: drink water, eat meal,
brush teeth, brush hair, tear up paper, put on jacket, take off
jacket, put on a hat/cap, take off a hat/cap, phone call, play
with phone/tablet and taking a selfie. The objects in these
interactions are: glass of water, meal, paper, jacket, hat and
phone. The rest of the details and samples are given in [65].
Few sample images of NTU REGB+D dataset are displayed
in Fig. 13.

FIGURE 13. RGB and depth images showing few samples from interaction
classes of NTU RGB+D dataset.

B. PERFORMANCE METRICES AND RESULTS
The two types of experiments performed for system’s val-
idation were, HOI recognition performance via KATH and
pixel-level labeling performance via CRF. The results for
each experiment are given in the following sub-sections.

1) HOI RECOGNITION PERFORMANCE
In this section, the performance of the system validated from
a mean accuracy, precision, sensitivity, specificity and F1
scores. A comparison of the proposed system with other
SOTA methods is also given in this section. The results
for each performance metric is given in the following
subsection:

a: HOI CLASSIFICATION ACCURACY
This experiment was repeated three times on the testing
sets for each dataset individually to evaluate the classifi-
cation accuracy using the KATH classifier. The results of

TABLE 2. Confusion matrix of individual HOI class over the sports dataset
using KATH.

this experiment are given in the form of confusion matrix
showing true positive, true negative, false positive and false
negative for each class individually. The confusion matrix for
the Sports, SYSY 3D HOI and NTU RGB+D datasets are
given in Tables 2, 3 and 4 respectively. It can be observed,
from Tables 2, 3 and 4, that classes of all three datasets
achieved high recognition rates with the mean accuracy rates
of 92.88%, 93.5% and 94.16% with the Sports, SYSU and
NTU datasets respectively. However, there is still some con-
fusion between interaction classes that involve similar actions
such as the tennis forehand and the volleyball smash interac-
tions in sports dataset. Similarly, weeping and mopping inter-
actions of the SYSU dataset are confused with each other.
It can also be observed from the results of this experiment
that confusion happens among the interaction classes that
involve similar objects. For example, moving chair, siting
chair interactions of the SYSU dataset and the phone call,
play with phone and taking selfie interactions of the NTU
dataset.

b: PRECISION, SENSITIVITY, SPECIFICTY AND F1 MEASURES
In this experiment precision, sensitivity, specificity and F1
scores of all the interaction classes for each dataset are
calculated as;

Precision =
True Positive

True Positive+ False Positive
(27)

Sensitivity =
True Positive

True Positive+ False Negative
(28)

Specificity =
True Negative

True Negative+ False Positive
(29)

F1 score =
2(Precision× Recall)
(Precision+ Recall)

(30)

The precision, sensitivity, specificity and F1 scores of
the Sports, SYSU and NTU RGB+D datasets are given
in Table 5, Table 6 and Table 7 respectively. It is observed
from Table 5 that the positive predicted values, i.e., precision
is very high for all the classes of the Sports dataset. The lowest
precision of 84% is achieved with volleyball smash due to
its high false positive rate. The volleyball smash also has
the lowest sensitivity and F1 score due to its confusion with
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TABLE 3. Confusion matrix of individual HOI class over the SYSU dataset using KATH.

TABLE 4. Confusion matrix of individual HOI class over the NTU RGB+D dataset using KATH.

cricket bowling and tennis forehand. the mean specificity of
this dataset is 98% which means that it can accurately reject
a sample if it does not belong to a class for which it is tested
for. In case of the SYSU dataset, it is observed that the mean
precision, sensitivity and F1 scores are as high as 93%, 93%
and 94% respectively. Less precise results are obtained with
the playing phone interaction due to its 12% false positive
rate. This dataset has a mean specificity rate of 99 %. From
Table 7 it is inferred that the NTU RGB +D dataset has
the highest precision, sensitivity, specificity and F1 scores of
above 90% among all three datasets. In this dataset only the
brush teeth interaction has lower than 90% sensitivity due to
the lower visibility of the object and the resemblance of the
action to interactions like eating meal, brush hair. Overall,
it is inferred from the results of this section that the proposed
methodology is an accurate HOI recognition system.

c: COMPARISON WITH OTHER SOTA METHODS
In this section the proposed method is compared with differ-
ent methodologies adopted by researchers for HOI recogni-
tion from recent years. The action recognition accuracies of

TABLE 5. Measurements of precision, sensitivity, specificity and F1 scores
for the proposed method over the sports dataset.

each evaluated methodology are used for comparison with
the proposed system. Table 8 gives the comparison of the
proposed system with other SOTA systems in recent years.
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TABLE 6. Measurements of precision, sensitivity, specificity and F1 score of the proposed method over the SYSU 3D HOI dataset.

TABLE 7. Measurements of precision, sensitivity, specificity and F1 score of the proposed method over the NTU RGB+D dataset.

TABLE 8. Comparison of HOI recognition accuracy of the proposed
method with other SOTA methods over the sports dataset.

In [66], a spatial and probabilistic configuration of the object
is used in the form of exemplars. In [26] a mutual context
of both human and object is utilized to recognize different
body arts and objects. In [67] the spatial relationship between
human and object is learned based on geometrical proper-
ties. A contextual relationship between postured human body
parts and the object is measured in [68]. A latent structural
SVM is used for learning. The recognition rate of the pro-
posed system is 92.88% which is higher than the systems
with which it was compared. Table 9 gives the compari-
son of the proposed system over the SYSU and the NTU
RGB+D datasets. The results of the proposed system over
the SYSU and NTU datasets are compared with joint hetero-
geneous features learning (JOULE), sparsified graph regres-
sion, multi-modality, Local Accumulative Frame Feature
(LAFF), skeleton-based methods and pairwise wise features

TABLE 9. Comparison of hoi recognition accuracy of the proposed
method with other SOTA methods over the SYSU and the NTU RGB+D
dataset.

based-models. The comparison showed a higher recognition
rate for the proposed system compared to the other systems.

The comparison of the recognition accuracy of the pro-
posed method with other methods is shown in the form of
a bar graph in Fig. 14.

2) PIXEL-WISE LABELING PERFORMANCE
In this experiment the performance of semantic segmenta-
tion which is implemented to label different human body
parts is observed. This experiment is repeated three times
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FIGURE 14. Bar graph showing comparison of the recognition accuracy of
the proposed method with other methods.

to check the accuracy of pixel-level labeling in interaction
classes of each dataset via CRF. For this experiment each
dataset is divided into 50% for training and 50% for testing.
The interaction classes for each dataset are given separately
to the trained CRF model. The true positive, true negative,
false positive and false negative of each labelled body part
and object is evaluated individually from each class. The
mean accuracy (Acc) of each labelled body part and object is
calculated as;

Acc =
(TP+ TN )
(P+ N )

(31)

The per class accuracy of each interaction class is calcu-
lated from the confusion matrix of each class individually.
The accuracy measure for each body part and object of the
Sports, SYSU HOI and NTU RGB+D datasets is given
in Tables 10, 11 and 12 respectively. It is observed from the
results of this section that the proposed technique of labeling
using the elliptical model results in better labeling accuracy
for each body part and object. It is also observed during
experimentation that the pose of the human has effected the
recognition accuracy of some body parts. For example, in the
croquet interaction of the sports dataset, accuracy of neck is
79% as the person’s posture is bent and the neck is not visible.
Similarly, the labelling accuracy of the torso in the mopping
interaction of the SYSU dataset is affected. Furthermore,
the labelling accuracy of very small-sized objects such as
tooth-brush and wallet is also less than for larger objects.
The overall accuracy rates over three datasets are higher than
90% due to the prior phase of segmenting each body part with
elliptical modeling via GMM-EM.

TABLE 10. Labelling accuracy of each body part and object over the
classes of the sports dataset via CRF.

V. DISCUSSION
The proposed approach is tested with one outdoor RGB
dataset and two indoor RGB+D datasets and showed better
performance. So this system is applicable to both indoor and
outdoor environments. It is a complete interaction recogni-
tion system from preprocessing of images to the recognition
of each interaction class. It should be applicable to many
real-world scenarios of human behavior monitoring systems,
surveillance systems and smart homes, etc. However, the
system also has some limitations such as the detection of
smaller objects and body parts is challenging. For example,
the mean labeling accuracy of the neck is 88.17%, 88.73%
and 89.08% in the sports, the SYSU and the NTU RGB+D
dataset respectively. This labeling accuracy is lesser than
other body parts due to the occlusion of the neck by either
the objects or other body parts. Similarly, in the brush teeth
interaction of NTU RGB+D dataset, the labeling accuracy
of the toothbrush is less than other objects due to its smaller
size and occlusion by the hand of the person. However, in the
proposed work we still achieved 84% labeling accuracy due
to the efficient SLIC segmentation algorithm and CRF-based
labeling.
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TABLE 11. Labelling accuracy of each body part and object over the classes of the SYSU dataset via CRF.

TABLE 12. Labelling accuracy of each body part and object over the classes of the NTU dataset via CRF.

VI. CONCLUSION
In this paper, we proposed a novel framework for HOI recog-
nition. The proposed system is based on semantic human
body part segmentation and feature extraction. At first an
efficient silhouette segmentation of the human and object is
performed via an SLIC algorithm. Then human body parts are

modeled via Gaussian-based elliptical modeling and labelled
at the pixel-level using CRF. Two unique semantic features,
i.e., fiducial points and cloud points, are extracted. These fea-
ture descriptors are then optimized via FLDA and classified
with a KATH classifier. The validity of the proposed system
is proved via extensive experimentation. The experimental
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section is divided into two section. At first the performance of
HOI recognition is proved via accuracy, precision, sensitivity,
specificity and F1 scores. The mean accuracy achieved with
the Sports dataset is 92.88%, while for the SYSU dataset
it is 93.5% and for the NTU RGB+D dataset it is 94.16%.
Comparison with other SOTA systems showed that the pro-
posed semantic HOI recognition system is proved to be more
precise. A few instances of confusion occur between the inter-
action classes based on similar objects. However, the high
rate of precision, sensitivity, specificity and F1 scores proved
that the proposed system has high a capability of assigning
accurate labels to its class and rejecting a sample if it does
not belong to a specific label. In the second experiment the
performance of semantic segmentation is proved via accuracy
measure of human body parts and object labeling in the
interaction classes of each dataset. The overall semantic seg-
mentation accuracy of the proposed system is 91.26% with
Sports dataset, 91.23% with the SYSU dataset and 91.42%
with the NTU dataset. So, the proposed system is not limited
to human interaction recognition, it is also applicable to
other domains of computer vision such as human body parts
segmentation, labelling and human pose estimation. It should
be applicable to many computer-vision based applications
such as healthcare monitoring, security systems and assisted
living etc.

In future, we plan to investigate new features to work on
multi-human and multi-object-based systems. Furthermore,
we would like to work on more complex scenarios for human
action recognition. We would like to increase the efficiency
of labelling by applying some deep learning techniques.
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