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Abstract The inhibition of mild steel deterioration via organic substances has become popular

nowadays. Among the myriads of organic substances applied as potential inhibitors, quinoxalines

stand out as toxic-free, cheap and effective compounds in different electrolytes. This report inves-

tigates the computational aspects of selected quinoxaline compounds tested as suppressors of mild

steel deterioration in HCl medium using quantum chemical method (Density Functional Theory,

DFT) and quantitative structure property relationship (QSPR). Feature selection tool was utilized
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Ordinary least squares

regression;

Artificial neural network
to choose five top molecular descriptors (constitutional indices) that were used to characterize the

quinoxaline molecules. Linear (ordinary least squares regression) and nonlinear (artificial neural

network) modelling were adopted to correlate the selected constitutional indices of the studied

quinoxalines with their experimental inhibition performances. The nonlinear model showed better

performance as shown by the obtained results; RMSE of 5.4160, MSE of 29.3336, MAD of 2.3816

and MAPE of 5.0389. The developed models were utilized to determine the inhibition performances

of ten new quinoxaline-based corrosion inhibitors which showed excellent inhibition performances

of 87.88 to 95.73%.

� 2022 The Authors. Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Metallic deterioration has received a lot of attention in the academic

and research communities because of its socio-economic effects on

the world at large (Saranya et al., 2021). The economic impact of cor-

rosion has been reported to be 3–5% of the annual global gross domes-

tic product (GDP) which amounts to nearly $2.5 trillion (Mishra et al.,

2018). Corrosion has direct effect on materials that humans heavily

depend upon for survival and convenience. More so, corrosion has

resulted in the collapse of bridges and buildings as well as contamina-

tion of water bodies due to pipe bursts/explosions which affect human

and aquatic life (Goni and Mazumder, 2019). Chemical inhibitors have

been widely formulated by corrosion researchers to mitigate metallic

corrosion. Quinoxalines belong to a group of organic inhibitors that

have been widely assessed for their inhibitive properties in different

corrosive media (Chauhan et al., 2020, Saranya et al., 2021). They have

also been found to be environmentally friendly and suited for applica-

tion in various chemical, mechanical, material and metallurgical indus-

tries. The high performance of quinoxaline-based corrosion inhibitors

has been traced to the functional groups, conjugate multiple bonds and

aromatic rings present in their molecular structures. Generally,

researchers have employed theoretical tools such as quantum chemical

studies and atomic simulations to identify relevant electronic and

structural properties that relate to the inhibition performance. More-

over, several studies have applied results from theoretical calculations

such as density functional theory (DFT) and molecular simulations to

interpret the inhibition mechanism of investigated quinoxalines

(Zarrouk et al., 2013, Zarrouk et al., 2014, Ouakki et al., 2021).

Quantitative structure property relationship (QSPR) is the one of

the latest and reliable theoretical methods that has been widely used

in designing drugs and developing new materials for different applica-

tions (Liu et al., 2017, Lin et al., 2020). This technique makes it possi-

ble to forecast the property of interest for a series of non-tested

compounds based on the established relationship between the differ-

ences in their structural features and the targeted property (Al-Fakih

et al., 2016, Rybińska-Fryca et al., 2020). QSPR has become a desir-

able approach for determining the inhibition performance of potential

chemical compounds. The process of QSPR analysis begins with col-

lection and preparation of inhibitor molecules and their experimental

inhibition efficiencies (IE%). Thousands of molecular descriptors com-

prising electronic and structural descriptors derived from calculations

performed using theoretical software packages are reduced to a rele-

vant small number. Selection of relevant molecular descriptors utilized

in model development is often done using feature selection tools. As a

rule of thumb, Topliss and Costello proposed that the ratio of chemical

compounds to molecular descriptors should be at least 5:1 for simple

linear models to avoid overfitting (Topliss and Costello, 1972,

Topliss and Edwards, 1979). The selected relevant molecular descrip-

tors are utilized in developing correlation models via linear and/or

nonlinear methods which are validated using statistical indicators

and further employed in designing novel organic inhibitors (Quadri

et al., 2021b). Molecular descriptors are the most significant and crit-

ical elements in obtaining a reliable QSPR model as they are employed
in modelling several different chemical properties in scientific fields

(Khan, 2016). The type of molecular descriptors employed and how

best they encode the structural features of chemical compounds that

are correlated to the activity are critical determinants of the reliability

of any QSPR model. An ideal descriptor is expected to be related to a

wide range of compounds, correlate with the structural characteristics

for inhibition performance, show insignificant correlation with other

descriptors and should be easily computed. Additionally, an ideal

descriptor should yield different values for molecules with different

structures and should possess physical interpretation (Puzyn et al.,

2010, Roy et al., 2015a,b).

Instances of QSPR models developed to study the relationship

between features of organic compounds and IE% include a study

conducted by Zhao and coworkers (Zhao et al., 2014). They per-

formed quantum chemical studies and molecular dynamic simulations

on 19 amino acids tested as anticorrosive agents for mild steel degra-

dation in hydrochloric acid. Subsequently, feature selection of

obtained chemical descriptors was done using principal component

analysis (PCA) before QSPR model building. The model was con-

structed using a nonlinear technique, support vector machine

(SVM) and the model performance was determined by the root mean

square error (RMSE) and correlation coefficient (R2) value. Individ-

ual quantum chemical indices were correlated with the IE% and

showed low correlation which necessitated the demand for a nonlin-

ear model. Reported statistical parameters for RMSE and R2 were

1.48 and 0.97 for the testing set which showed good performance.

The authors theoretically designed 5 amino acids and the predicted

IE% was in the range of 62 to 68%. In another study, this research

group reported theoretical approaches of DFT calculations and

molecular simulations to study the inhibitive properties of 20

benzimidazole-based inhibitors (Li et al., 2015). Correlation of molec-

ular descriptors with IE% conducted with a linear model generally

showed poor results, improved results were obtained when descriptors

for protonated forms of the benzimidazoles were used. PCA was con-

ducted to select appropriate quantum chemical parameters to be con-

sidered for modelling. Nonlinear SVM was adopted to develop the

QSPR model for the studied benzimidazoles using six DFT-based

indices of the protonated organic inhibitors including nuclear inde-

pendent chemical shift (NICS). The reliability and predictive power

of the model was demonstrated by the obtained results; low RMSE

(6.79) and high R2 (0.96). The established model was adopted to cal-

culate 6 newly designed benzimidazole molecules. Al-Fakih and

coworkers built a QSPR model for 18 furan derivatives previously

tested to impede metallic disintegration in HCl. Dragon 6 was used

to calculate over 4,000 chemical descriptors that were reduced to 12

useful variables using the sure independence screening method (Al-

Fakih et al., 2016). Two stage sparse multiple linear regression

(MLR) was conducted, and the obtained results showed that the elas-

tic net method yielded a better predictive capacity than the ridge pen-

alty model judging by the two statistical criteria used (MSE and R2).

In another study, seven DFT-based parameters were derived from 11

thiophene molecules used as chemical additives for metallic corrosion

inhibition. The authors developed a neural network model to corre-
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late the selected molecular variables with the experimental IE% and

obtained an excellent correlation of 0.958 which indicated the predic-

tive potential of the developed model (Khaled and Al-Mobarak,

2012).

The aim of the present report is to present computational insight

into the inhibition mechanism of 40 quinoxalines using quantum chem-

ical method and QSPR model with constitutional indices as input

parameters. Quantum chemical parameters are commonly used as

input variables for QSPR model construction but recently, some

researchers have continued to challenge the simplistic correlation often

reported between quantum chemical indices and inhibition perfor-

mances (Kokalj, 2010, Winkler et al., 2014, Winkler et al., 2016,

Kokalj, 2021, Kokalj et al., 2021). Constitutional indices derived from

Dragon 7 software have been employed in this study to model the rela-

tionship between experimental inhibition performances and 40 quinox-

aline molecules. Linear model using ordinary least squares regression

(OLS) and nonlinear model via artificial neural network (ANN) was

developed. Several studies have reported traditional linear regression

tools in QSPR model development. On the other hand, ANN which

offers a modern intelligent approach to solving regression and classifi-

cation problems has been scarcely reported. ANN has gained wide

acceptance and applications in several fields of study and is also suit-

able for QSPR studies in corrosion inhibition. Furthermore, the built

models were used to forecast the inhibition performances of 10 non-

synthesized, non-tested quinoxaline molecules as potential inhibitors

of metallic deterioration in acidic solution.

2. Materials and methods

2.1. Selected quinoxaline compounds

A database of 40 quinoxaline-based corrosion inhibitors and
their inhibition performances were retrieved from published

reports (Adardour et al., 2010, Benbouya et al., 2012, Fu
et al., 2012, Adardour et al., 2013, El-Hajjaji et al., 2014,
Olasunkanmi et al., 2015, Lgaz et al., 2016a,b, Olasunkanmi

et al., 2016a,b, Tazouti et al., 2016, Rbaa et al., 2018,
Benhiba et al., 2020, Laabaissi et al., 2020, Olasunkanmi and
Ebenso, 2020). Data curation and filtration were done to

ensure the development of a reliable model. This includes
ensuring collected data are from reliable sources, confirming
the correctness of the molecular structures of collected com-

pounds, and removing redundant and/or duplicate inhibitor
molecules if any (Golbraikh et al., 2012). Important informa-
tion on the collected series of quinoxalines used for QSPR
model development are displayed in Table 1. From the table,

it is clear that 4-(quinoxalin-2-yl)phenol (PHQX) offered the
maximum protection of 98.30% to the steel substrate.

2.2. Molecular descriptors calculation

The study considered molecular descriptors derived from
quantum chemical calculations and Dragon 7 software. Quan-

tum chemical descriptors were generated by carrying out DFT
calculations using B3LYP functional with 6-31+(d,p) basis set
on the neutral forms of the quinoxaline molecules in aqueous

and gaseous phases.The chemical structures of the quinoxali-
nes were modelled using ChemDraw Professional 15.0 soft-
ware and viewed using Gaussview 5.0. Optimizations of the
molecules to a local minimum were performed using Gaussian

09 software and full optimization was verified by the absence
of imaginary vibrational frequencies. Total energy (TE), dipole
moment (l) and energies of the lowest unoccupied molecular
orbital (ELUMO) and highest occupied molecular orbital
(EHOMO) were obtained for all the studied molecules. Other
molecular descriptors for the inhibitor molecules were calcu-

lated using the following equations (Yusuf et al., 2020,
Quadri et al., 2021a).

DE ¼ ELUMO � EHOMO ð1Þ

EA ¼ �ELUMO ð2Þ

IP ¼ �EHOMO ð3Þ

v ¼ � 1

2
EHOMO þ ELUMOð Þ ð4Þ

g ¼ 1

2
ELUMO � EHOMOð Þ ð5Þ

r ¼ g�1 ð6Þ

DN ¼ vFe � vinh
2 gFe þ ginhð Þ ð7Þ

where DE, EA, IP, v, g, r and DN represent energy gap, elec-
tron affinity, ionization potential, absolute electronegativity,
global hardness, global softness and change in the number of

electrons transferred, respectively.
Using the optimized molecular structures, numerous molec-

ular descriptors were obtained from Dragon 7 (Mauri et al.,

2006). Dragon 7 is a software application that calculates above
5000 molecular descriptors (0D, 1D, 2D and 3D) divided into
30 categories which can be used for QSPR modelling. Opti-

mized quinoxaline molecules were converted from .log to
.mdl file format using Open Babel (O’Boyle et al., 2011) and
were used as inputs into Dragon 7 to calculate a host of molec-
ular descriptors. Preliminary eliminations of high dimensional

descriptors were done using the Dragon 7 software to remove
descriptors with missing entries, descriptors with zero values
and those with constant and/or near constant values. In addi-

tion, multicollinear descriptors and descriptors having stan-
dard deviation (SD) lower than 0.0001 were removed. The
filtered descriptors were combined with DFT-based descriptors

and subjected to standardization with the aim of ranking the
descriptors in order of relative significance to the experimental
IE%. This process was performed using Minitab 7.

2.3. Statistical modelling

Ordinary least squares regression, a form of MLR, was utilized
to model the linear correlation between the filtered chemical

variables (X) and the inhibition performance (Y) where X
denotes the independent variable and Y is the dependent vari-
able. The OLS regression was carried out using Minitab 7 and

characterized by correlation coefficient and standard deviation.
On the other hand, ANN was adopted to model the nonlin-

ear relationship between the chosen chemical variables and the

inhibition performances of the investigated 40 quinoxaline
molecules. Using a supervised learning method and a feedfor-
ward backpropagation architecture, neural network modelling
was performed using Matlab. Six input parameters comprising

five selected constitutional indices and inhibitor concentration
served as the inputs, while three hidden neurons governed by
logsig activation function and five hidden neurons controlled



Table 1 Molecular structures and experimental IE% of the investigated quinoxaline-based corrosion inhibitors.

S/N Quinoxalines Chemical structures IE% Ref

1.

1-[3-(4-methylphenyl)-5-(quinoxalin-6-

yl)-4,5-dihydropyrazol-1-yl]butan-1-one

(Me-4-PQPB)

80.42
Olasunkanmi et al. (2016a)

2.

1-[3-(4-methoxyphenyl)-5-(quinoxalin-6-

yl)-4,5-dihydro-1H-pyrazol-1-yl]butan-1-

one

(Mt-4-PQPB)

72.01 Olasunkanmi et al. (2016a)

3.

1-[3-(3-methoxylphenyl)-5-(quinoxalin-6-

yl)-4,5-dihydropyrazol-1-yl]butan-1-one

(Mt-3-PQPB)

69.66
Olasunkanmi et al. (2016a)

4.

1-[3-(2H-1,3-benzodioxol-5-yl)-5-

(quinoxalin-6-yl)-4,5-dihydropyrazol-1-

yl]butan-1-one

(Oxo-PQPB)

68.41
Olasunkanmi et al. (2016a)

5.

1-[3-(phenyl-5-quinoxalin-6-yl)-4,5-

dihydro-1H-pyrazol-1-yl]butan-1-one

(PQDPB)

90.50
Olasunkanmi et al. (2015)

6.

1-[3-(phenyl-5-quinoxalin-6-yl)-4,5-

dihydro-1H-pyrazol-1-yl]propan-1-one

(PQDPP)

93.65
Olasunkanmi et al. (2015)
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Table 1 (continued)

S/N Quinoxalines Chemical structures IE% Ref

7.

2-phenyl-1-[3-phenyl-5-(quinoxalin-6-yl)-

4,5-dihydro-1H-pyrazol-1-yl]ethanone

(PPQDPE)

86.88
Olasunkanmi et al. (2015)

8.

N-{2-[1-propanoyl-5-(quinoxalin-6-yl)-

4,5-dihydro-1H-pyrazol-3-yl]phenyl}

methanesulfonamide

(MS-2-PQPP)

91.54
Olasunkanmi et al. (2016b)

9.

N-{3-[1-propanoyl-5-(quinoxalin-6-yl)-

4,5-dihydro-1H-pyrazol-3-yl]phenyl}

methanesulfonamide

(MS-3-PQPP)

93.88
Olasunkanmi et al. (2016b)

10.

N-{4-[1-propanoyl-5-(quinoxalin-6-yl)-

4,5-dihydropyrazol-3-yl]phenyl}

methanesulfonamide

(MS-4-PQPP)

93.56
Olasunkanmi et al. (2016b)

11.

N-{2-[1-(methanesulfonyl)-5-(quinoxalin-

6-yl)-4,5-dihydro-1H-pyrazol-3-yl]

phenyl}methanesulfonamide

(MS-2-PQPMS)

92.68
Olasunkanmi et al. (2016b)

12.

N-{3-[1-(methanesulfonyl)-5-(quinoxalin-

6-yl)-4,5-dihydro-1H-pyrazol-3-yl]

phenyl}methanesulfonamide

(MS-3-PQPMS)

93.39 Olasunkanmi et al. (2016b)

(continued on next page)
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Table 1 (continued)

S/N Quinoxalines Chemical structures IE% Ref

13.

N-{4-[1-(methanesulfonyl)-5-(quinoxalin-

6-yl)-4,5-dihydro-1H-pyrazol-3-yl]

phenyl}methanesulfonamide

(MS-4-PQPMS)

94.00
Olasunkanmi et al. (2016b)

14.

1-[3-(3-methoxyphenyl)-5-(quinoxalin-6-

yl)-4,5-dihydropyrazol-1-yl]propan-1-one

(Mt-3-PQPP)

93.69
Olasunkanmi and Ebenso (2020)

15.

1-(3-(4-chlorophenyl)-5-(quinoxalin-6-yl)-

4,5-dihydro-1H-pyrazol-1-yl)propan-1-

one

(Cl-4-PQPP)

92.27 Olasunkanmi and Ebenso (2020)

16.

(E)-1-benzyl-3-(4-methoxystyryl)

quinoxalin-2(1H)-one

(QN1)

93.00
Lgaz et al. (2016a)

17.

(E)-3-(2-(furan-2-yl)vinyl)quinoxalin-2

(1H)-one

(QN2)

90.00
Lgaz et al. (2016a)

18.

(E)-3-(4-methoxystyryl)quinoxalin-2(1H)-

one

(QN3)

87.00
Lgaz et al. (2016a)
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Table 1 (continued)

S/N Quinoxalines Chemical structures IE% Ref

19.

(E)-3-styrylquinoxalin-2(1H)-one

(QN4)
85.00

Lgaz et al. (2016a)

20.

3-methyl-1-prop-2-ynylquinoxalin-2(1H)-

one

(Pr-N-Q = O)

88.80 El-Hajjaji et al. (2014)

21.

3-methyl-1-prop-2-ynylquinoxaline-2

(1H)-thione

(Pr-N-Q = S)

92.30
El-Hajjaji et al. (2014)

22.
Quinoxaline

(QX)

84.20
Fu et al. (2012)

23.
2-chloroquinoxaline

(CHQX)

92.50
Fu et al. (2012)

24.
2-quinoxalinethiol

(THQX)
95.50 Fu et al. (2012)

25.
4-(quinoxalin-2-yl)phenol

(PHQX)

98.30
Fu et al. (2012)

26.
3-methylquinoxalin-2(1H)-one

(Q = O)

66.60
Benbouya et al. (2012)

(continued on next page)
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Table 1 (continued)

S/N Quinoxalines Chemical structures IE% Ref

27.
3-methylquinoxalin-2(1H)-thione

(Q = S)

82.80
Benbouya et al. (2012)

28.

7-chloro-3-methylquinoxalin-2(1H)-

thione

(Cl-Q = S)

75.00
Benbouya et al. (2012)

29.

7-chloro-2-(4-methoxyphenyl)thieno[2,3-

b]quinoxaline

(CMOPTQ)

89.00
Adardour et al. (2013)

30.

7-chloro-3-(4-methoxystyryl)quinoxalin-

2-one

(CMOSQ)

87.00
Adardour et al. (2013)

31.

(E)-3-(4-methoxystyryl)-7-

methylquinoxalin-2(1H)-one

(MOSMQ)

92.00
Tazouti et al. (2016)

32.

(E)-3-(2-(furan-2-yl)vinyl) quinoxalin2

(1H)-one

(FVQ)

94.98
Lgaz et al. (2016b)

33.
3,7-dimethylquinoxalin-2 (1H)-one

(DMQ = O)

88.07
Adardour et al. (2010)

34.
3,7-dimethylquinoxalin-2 (1H)-thione

(DMQ = S)

93.27
Adardour et al. (2010)
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Table 1 (continued)

S/N Quinoxalines Chemical structures IE% Ref

35.

1,4-bis((8-hydroxyquinolin-5-yl)-methyl)-

6-methylquinoxalin-2,3-(1H,4H)-dione

(Q-HNHyQ)

89.40
Rbaa et al. (2018)

36.

1,4-bis-((8-hydroxyquinolin-5-yl)-

methyl)-quinoxalin-2,3-(1H,4H)-dione

(QCH3NHyQ)

95.40 Rbaa et al. (2018)

37.

2-(2,4-dichlorophenyl)-1,4-

dihydroquinoxaline

(HQ)

91.00
Benhiba et al., (2020)

38.

2-(2,4-dichlorophenyl)-6-methyl-1,4-

dihydroquinoxaline

(CQ)

94.20
Benhiba et al., (2020)

39.

(E)-3-(4-chlorostyryl)quinoxalin-2(1H)-

one

(CSQN)

92.80
Laabaissi et al. (2020)

40.

(E)-3-(4-(dimethylamino)styryl)

quinoxalin-2(1H)-one

(NSQN)

96.40
Laabaissi et al. (2020)
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10 T.W. Quadri et al.
by the softmax activation function were utilized to model the
output inhibition efficiencies (Fig. 1). The Levenberg-
Marquardt training algorithm was implemented because of

its effectiveness and quick convergence. Several iterations
(training and retraining) were carried out until a low statistical
error value was obtained.

2.4. Statistical criteria

The performance of the linear model was characterized using

R2 and SD while the nonlinear model was characterized using
several statistical criteria. Statistically robust and reliable mod-
els are demonstrated by low statistical error values. The main

statistical parameters are obtained using the following rela-
tionships (Gramatica 2013, Eftekhari et al., 2018, Liu et al.,
2019, Olatunji et al., 2019, Adedeji et al., 2020a,b):

Root mean square error,

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

k¼1 yk �cyk½ �2
N

s
ð8Þ

Mean square error,

MSE ¼
PN

k¼1 yk �cyk½ �2
N

ð9Þ

Mean average deviation,

MAD ¼ 1

N

XN
k¼1

yk � y
��� �� ð10Þ

Mean average percentage error,

MAPE ¼ 1

N

XN
k¼1

yk �cyk
yk

���� ����� 100% ð11Þ

Coefficient of variation,
Fig. 1 ANN architecture for the model.
CoV ¼ median cyk � dyk medianj jdyk median

ð12Þ

Relative mean bias error,

rMBE ¼ 1

N

XN
k¼1

cyk � yk
yk

� �
ð13Þ

where N denotes the number of dataset for analyzing each

ANN model, yk; represents the experimental IE%, cyk ; repre-
sents the predicted IE%, dyk median represents the median of

the predicted IE% and y
�
denotes the mean IE%.

3. Results and discussion

3.1. DFT studies of selected quinoxalines

Inhibition performances of organic corrosion inhibitors of

metal are closely correlated with their chemical stability or
reactivity. The chemical reactivity of a series of chemical com-
pounds are predicted by the analysis of frontier molecular

orbital (FMO) theory. The theory gives useful insight on the
probable adsorption centres of the organic molecules under
study. From the presented images in Table 2, it is clear that
the LUMO and HOMO energy orbitals in aqueous phase

are widely spread on the quinoxaline moiety with minimal
extension to the different substituent groups in some cases.
This indicates that these sites would be the sites of preference

for adsorption onto the mild steel (Fu et al., 2012,
Olasunkanmi and Ebenso 2020). It should also be noted that
there are a few cases where the HOMO and LUMO are local-

ized around the phenyl rings (MS-n-PQPP series) (Ola-
sunkanmi et al., 2016) and a few other cases where nearly all
the atoms in the quinoxaline molecule act as sites of
adsorption.

Generally, the adherence capacity of inhibitor compounds
can be explained as a donor–acceptor interface between the
investigated compounds and the metal of interest. EHOMO is

proportional to the electron contributing potential of the stud-
ied inhibitor, while ELUMO is connected to the electron accept-
ing potential of the investigated compound. Lesser values of

energy gap, DE are reported to imply higher inhibition efficien-
cies as these molecules undergo ease of transfer of one or more
electrons from the HOMO level to the metallic orbital

(Olasunkanmi et al., 2015, Benhiba et al., 2020). Studies have
also shown that a hard molecule possesses higher values of
energy gap, while the reverse occurs for soft molecules. It is
therefore expected that a compound with a greater value of

softness and lesser value of hardness will be more reactive
and consequently favour adsorption potential ((Lgaz et al.,
2016a) (Olasunkanmi et al., 2016a)). Lower TE also indicates

that the quinoxaline compound adsorbs favourably through
the active adsorption sites (Benhiba et al., 2020). The calcu-
lated DFT variables shown in Table 3 for the investigated

quinoxalines do not follow any particular trend with respect
to the reported experimental IE% due to the complex nature
of the reaction occurring at the mild steel/electrolyte interface.
The factors affecting the IE% of the quinoxaline-based inhibi-

tors are quite numerous (Li et al., 2015).
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3.2. Feature selection

Few highly informative descriptors from the numerous calcu-
lated quantum chemical and Dragon-based descriptors were
obtained using feature selection. The MLR standardization

method was adopted to carry out feature selection by ranking
all the obtained molecular descriptors in order of their stan-
dardized coefficients or relative significance. Fig. 2 shows the
significant features among the numerous molecular descrip-

tors. The five topmost descriptors shown in Fig. 2 were utilized
along with concentration in QSPR analysis using linear mod-
elling (MLR) and nonlinear modelling (ANN) techniques.
Table 2 Molecular orbital electron density distribution for investig
The selected descriptors (MW, nCsp2, nCsp3, nO and nN)
have been described in Table 4. In addition, the plot of the
Pearson’s correlation matrix of the selected chemical variables

is presented in Table 5.

3.3. MLR model

The obtained mathematical relation representing the QSPR
model of investigated quinoxalines using the OLS method is
as follows:
ated quinoxalines in aqueous phase.

continued on next page



Table 2 (coninued)
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IE %ð Þ ¼ 74:84þ 270Concþ 0:0440MWþ 4:92nN

� 1:89nO� 4:00nCsp3� 0:170nCsp2 ð14Þ
R2 = 0.3009, SD = 7.24607 where MW, nN, nO, nCsp2

and nCsp3 are the screened descriptors of interest and Conc

denotes the concentration of quinoxalines. The developed
OLS model clearly showed that the IE% of studied quinoxali-
nes are influenced by increase in Conc, MW, nN and decrease
in nO, nCsp3 and nCsp2. The screened descriptors are consti-
tutional indices, which are known to affect the adherence abil-

ity of quinoxalines on mild steel surface. Numerous corrosion
scientists have investigated the adsorption ability of organic
molecules such as quinoxalines with oxygen and nitrogen

atoms. These heteroatoms serve as active sites of adsorption
thereby offering effective protection for the metal from corro-
sive ions. In addition, molecules having high molecular weight
and sp2 and sp3 hybridized carbon atoms have been established

to be effective corrosion inhibitors as they serve as anchoring



Table 3 DFT-based indices for neutral forms of quinoxaline molecules in gas and liquid phases, as well as experimental parameters*.

Quinoxalines Conc* (M) Temp* (K) Phase TE

(eV)

EHOMO (eV) ELUMO (eV) DΕ (eV) m
(D)

IP

(eV)

EA

(eV)

Χ
(eV)

g
(eV)

r
(eV�1)

DΝ IE%*

Me-4-PQPB 0.000280 303 G �31182.23 �6.035 �2.269 3.766 4.738 6.035 2.269 4.152 1.883 0.531 0.756 80.42

A �31182.71 �6.143 �2.418 3.725 7.156 6.143 2.418 4.281 1.863 0.537 0.730

Mt-4-PQPB 0.000270 303 G �33228.80 �5.839 �2.249 3.590 5.114 5.839 2.249 4.044 1.795 0.557 0.823 72.01

A �32610.20 �6.160 4.946 11.106 2.632 6.160 �4.946 0.607 5.553 0.180 0.576

Mt-3-PQPB 0.000270 303 G �33228.78 �6.077 �2.258 3.819 5.462 6.077 2.258 4.168 1.909 0.524 0.742 69.66

A �32610.18 �6.523 4.949 11.471 3.332 6.523 �4.949 0.787 5.736 0.174 0.542

Oxo-PQPB 0.000260 303 G �34588.63 �6.211 4.910 11.121 2.353 6.211 �4.910 0.650 5.561 0.180 0.571 68.41

A �35243.16 �5.912 �2.417 3.495 7.146 5.912 2.417 4.165 1.747 0.572 0.811

PQPDB 0.000170 303 G �29550.99 �6.574 4.927 11.502 2.529 6.574 �4.927 0.824 5.751 0.174 0.537 90.50

A �30112.69 �6.256 �2.421 3.835 6.313 6.256 2.421 4.338 1.918 0.521 0.694

PQDPP 0.000180 303 G �28501.14 �6.580 4.925 11.505 2.546 6.580 �4.925 0.827 5.753 0.174 0.537 93.65

A �28501.14 �6.580 4.925 11.505 2.547 6.580 �4.925 0.827 5.753 0.174 0.537

PPQDPE 0.000150 303 G �34260.11 �6.202 �2.270 3.932 4.117 6.202 2.270 4.236 1.966 0.509 0.703 86.88

A �34260.62 �6.296 �2.422 3.874 6.546 6.296 2.422 4.359 1.937 0.516 0.682

MS-2-PQPP 0.000240 303 G �46546.65 �6.327 �2.403 3.925 6.173 6.327 2.403 4.365 1.962 0.510 0.671 91.54

A �46547.39 �6.325 �2.437 3.888 9.869 6.325 2.437 4.381 1.944 0.514 0.674

MS-3-PQPP 0.000240 303 G �45739.13 �6.739 4.869 11.608 5.577 6.739 �4.869 0.935 5.804 0.172 0.522 93.88

A �31560.33 �6.527 4.947 11.474 3.342 6.527 �4.947 0.790 5.737 0.174 0.541

MS-4-PQPP 0.000240 303 G �45739.16 �6.470 4.844 11.314 4.062 6.470 �4.844 0.813 5.657 0.177 0.547 93.56

A �46547.38 �6.118 �2.422 3.695 7.497 6.118 2.422 4.270 1.848 0.541 0.739

MS-2-PQPMS 0.000230 303 G �57319.91 �6.589 �2.420 4.169 9.081 6.589 2.420 4.505 2.085 0.480 0.598 92.68

A �57320.90 �6.471 �2.448 4.023 14.915 6.471 2.448 4.460 2.012 0.497 0.631

MS-3-PQPMS 0.000230 303 G �56372.15 �7.070 4.861 11.931 4.737 7.070 �4.861 1.105 5.966 0.168 0.494 93.39

A �45739.13 �6.739 4.869 11.608 5.577 6.739 �4.869 0.935 5.804 0.172 0.522

MS-4-PQPMS 0.000230 303 G �57319.87 �6.369 �2.369 4.000 5.952 6.369 2.369 4.369 2.000 0.500 0.658 94.00

A �57320.89 �6.373 �2.441 3.932 11.481 6.373 2.441 4.407 1.966 0.509 0.659

Mt-3-PQPP 0.000275 303 G �31560.33 �6.527 4.947 11.474 3.342 6.527 �4.947 0.790 5.737 0.174 0.541 93.69

A �31560.33 �6.527 4.947 11.474 3.342 6.527 �4.947 0.790 5.737 0.174 0.541

Cl-4-PQPP 0.000275 303 G �40855.49 �6.823 4.834 11.658 1.247 6.823 �4.834 0.995 5.829 0.172 0.515 92.27

A �40855.49 �6.823 4.834 11.658 1.247 6.823 �4.834 0.995 5.829 0.172 0.515

QN1 0.005000 303 G �32290.52 �5.591 �2.421 3.170 0.539 5.591 2.421 4.006 1.585 0.631 0.945 93.00

A �31687.93 �5.667 4.602 10.269 1.860 5.667 �4.602 0.533 5.135 0.195 0.630

QN2 0.005000 303 G �21756.03 �5.742 �2.606 3.136 2.513 5.742 2.606 4.174 1.568 0.638 0.901 90.00

A �21756.41 �5.845 �2.739 3.106 3.753 5.845 2.739 4.292 1.553 0.644 0.872

QN3 0.005000 303 G �24467.82 �5.714 4.585 10.299 1.733 5.714 �4.585 0.564 5.149 0.194 0.625 87.00

A �24467.82 �5.713 4.584 10.297 1.733 5.713 �4.584 0.565 5.149 0.194 0.625

QN4 0.005000 303 G �21408.61 �5.959 4.529 10.488 2.008 5.959 �4.529 0.715 5.244 0.191 0.599 85.00

A �21408.61 �5.959 4.530 10.489 2.008 5.959 �4.530 0.715 5.244 0.191 0.599

Pr-N-Q = O 0.001000 303 G �17304.46 �6.355 5.263 11.618 2.056 6.355 �5.263 0.546 5.809 0.172 0.555 88.80

A �17634.00 �6.593 �2.226 4.367 4.608 6.593 2.226 4.410 2.184 0.458 0.593

Pr-N-Q = S 0.001000 303 G �26421.81 �6.044 �2.555 3.488 4.015 6.044 2.555 4.299 1.744 0.573 0.774 92.30

A �26422.09 �6.292 �2.680 3.612 6.436 6.292 2.680 4.486 1.806 0.554 0.696

QX 0.001000 298 G �11374.34 �6.987 �2.299 4.688 0.596 6.987 2.299 4.643 2.344 0.427 0.503 84.20

A �11374.52 �7.031 �2.382 4.649 0.765 7.031 2.382 4.706 2.325 0.430 0.493

(continued on next page)
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Table 3 (continued)

Quinoxalines Conc* (M) Temp* (K) Phase TE

(eV)

EHOMO (eV) ELUMO (eV) DΕ (eV) m
(D)

IP

(eV)

EA

(eV)

Χ
(eV)

g
(eV)

r
(eV�1)

DΝ IE%*

CHQX 0.001000 298 G �23880.88 �7.184 �2.533 4.651 2.399 7.184 2.533 4.859 2.325 0.430 0.460 92.50

A �23881.05 �7.144 �2.554 4.590 3.161 7.144 2.554 4.849 2.295 0.436 0.469

THQX 0.001000 298 G �22209.92 �6.620 �2.326 4.295 1.087 6.620 2.326 4.473 2.147 0.466 0.588 95.50

A �22210.15 �6.659 �2.386 4.273 1.422 6.659 2.386 4.522 2.136 0.468 0.580

PHQX 0.001000 298 G �19709.40 �6.187 �2.240 3.947 1.951 6.187 2.240 4.214 1.974 0.507 0.706 98.30

A �19709.72 �6.263 �2.386 3.877 2.435 6.263 2.386 4.325 1.938 0.516 0.690

Q = O 0.001000 308 G �14492.12 �6.538 �2.117 4.421 3.335 6.538 2.117 4.328 2.210 0.452 0.604 66.60

A �14492.44 �6.553 �2.168 4.384 4.846 6.553 2.168 4.360 2.192 0.456 0.602

Q = S 0.001000 308 G �23280.35 �6.115 �2.573 3.541 4.192 6.115 2.573 4.344 1.771 0.565 0.750 82.80

A �23280.66 �6.271 �2.649 3.622 6.751 6.271 2.649 4.460 1.811 0.552 0.701

Cl-Q = S 0.001000 308 G �35786.78 �6.275 �2.759 3.516 2.501 6.275 2.759 4.517 1.758 0.569 0.706 75.00

A �35787.08 �6.355 �2.747 3.609 4.469 6.355 2.747 4.551 1.804 0.554 0.679

CMOPTQ 0.010000 303 G �45481.52 �6.199 4.034 10.233 4.906 6.199 �4.034 1.082 5.116 0.195 0.578 89.00

A �45481.52 �6.199 4.034 10.233 4.906 6.199 �4.034 1.082 5.116 0.195 0.578

CMOSQ 0.010000 303 G �36822.14 �5.919 4.236 10.156 1.767 5.919 �4.236 0.842 5.078 0.197 0.606 87.00

A �37439.97 �5.805 �2.731 3.074 1.689 5.805 2.731 4.268 1.537 0.651 0.889

MOSMQ 0.000100 298 G �25517.79 �5.633 4.640 10.274 2.138 5.633 �4.640 0.496 5.137 0.195 0.633 92.00

A �25517.79 �5.633 4.640 10.274 2.138 5.633 �4.640 0.496 5.137 0.195 0.633

FVQ 0.000100 298 G �21756.03 �5.742 �2.606 3.136 2.513 5.742 2.606 4.174 1.568 0.638 0.901 94.00

A �21756.41 �5.845 �2.739 3.106 3.753 5.845 2.739 4.292 1.553 0.644 0.872

DMQ = O 0.000100 298 G �15271.34 �6.267 5.384 11.651 2.631 6.267 �5.384 0.441 5.825 0.172 0.563 88.07

A �15271.34 �6.267 5.384 11.651 2.631 6.267 �5.384 0.441 5.825 0.172 0.563

DMQ = S 0.010000 298 G �23960.66 �5.348 4.890 10.239 2.871 5.348 �4.890 0.229 5.119 0.195 0.661 93.27

A �23960.66 �5.348 4.890 10.238 2.871 5.348 �4.890 0.229 5.119 0.195 0.661

Q-HNHyQ 0.001000 298 G �42704.01 �6.235 5.150 11.384 3.496 6.235 �5.150 0.542 5.692 0.176 0.567 89.40

A �42704.01 �6.235 5.150 11.384 3.496 6.235 �5.150 0.542 5.692 0.176 0.567

Q-CH3NHyQ 0.001000 298 G �44583.73 �6.081 �2.033 4.047 6.401 6.081 2.033 4.057 2.024 0.494 0.727 95.40

A �43753.97 �6.172 5.158 11.329 3.774 6.172 �5.158 0.507 5.665 0.177 0.573

HQ 0.001000 303 G �42072.41 �5.323 5.519 10.842 1.961 5.323 �5.519 �0.098 5.421 0.184 0.655 91.00

A �42707.73 �4.741 �1.263 3.478 2.418 4.741 1.263 3.002 1.739 0.575 1.149

CQ 0.001000 303 G �43777.44 �4.566 �1.266 3.300 2.024 4.566 1.266 2.916 1.650 0.606 1.238 94.20

A �43122.36 �5.251 5.541 10.793 2.131 5.251 �5.541 �0.145 5.396 0.185 0.662

CSQN 0.001000 303 G �33762.98 �6.162 4.271 10.433 4.983 6.162 �4.271 0.946 5.217 0.192 0.580 92.80

A �33762.98 �6.162 4.271 10.433 4.984 6.162 �4.271 0.946 5.217 0.192 0.580

NSQN 0.001000 303 G �24986.21 �5.445 4.659 10.104 1.236 5.445 �4.659 0.393 5.052 0.198 0.654 96.40

A �24986.21 �5.445 4.659 10.104 1.236 5.445 �4.659 0.393 5.052 0.198 0.654

* Experimental parameters i.e temperature, concentration and experimental IE% were retrieved from published studies.
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Fig. 2 Significance of molecular descriptors to the inhibition

efficiencies of quinoxalines.

Table 4 Definition of the selected descriptors for model

building.

Descriptors Group name Description

MW Constitutional

indices

Molecular weight

nN Constitutional

indices

Number of nitrogen atoms

nO Constitutional

indices

Number of oxygen atoms

nCsp3 Constitutional

indices

Number of sp3 hybridized carbon

atoms

nCsp2 Constitutional

indices

Number of sp2 hybridized carbon

atoms

Table 6 Analysis of variance and regression coefficients for

the OLS model.

Source DF Adj SS Adj MS F-value p-value

Regression 6 745.92 124.320 2.37 0.052

Conc 1 15.58 15.578 0.30 0.590

MW 1 37.94 37.942 0.72 0.401

nN 1 127.18 127.180 2.42 0.129

nO 1 67.97 67.969 1.29 0.263

nCsp3 1 649.92 649.924 12.38 0.001

nCsp2 1 4.06 4.056 0.08 0.783

Error 33 1732.68 52.506

Lack-of-Fit 28 1725.83 61.637 44.97 0.000

Pure Error 5 6.85 1.371

Total 39 2478.60

Term Coeff SE Coeff T-value p-value

Constant 74.84 5.860 12.77 0.000

Conc 270.00 496.000 0.54 0.590

MW 0.04 0.052 0.85 0.401

nN 4.92 3.160 1.56 0.129

nO �1.89 1.660 �1.14 0.263

nCsp3 �4.00 1.140 �3.52 0.001

nCsp2 �0.17 0.613 �0.28 0.783
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sites for molecular adherence on the metallic substrate ((Lgaz
et al., 2016a; Olasunkanmi et al., 2016a) Benhiba et al., 2020,

Olasunkanmi and Ebenso, 2020).
Table 6 presents the ANOVA and regression coefficients

table, which shows a p-value slightly higher than expected. It

is clear that the model lacks the capability to accurately
explain the inhibition mechanism of quinoxalines on the
account of its low R2, high SD and high sum of squares error

(SSE). Thus, it is mandatory to employ a nonlinear model to
further investigate the relationship between the screened vari-
ables and the IE% of quinoxaline-based corrosion inhibitors.
Table 5 Correlation matrix of selected features.

Conc MW nN

Conc 1 �0.224 �0.473

MW �0.224 1 0.845

nN �0.473 0.845 1

nO �0.123 0.819 0.709

nCsp3 �0.427 0.697 0.849

nCsp2 �0.018 0.818 0.482

IE% 0.103 0.108 0.023
3.4. ANN model: internal validation

The inadequacy of the proposed linear model mandated the
development of a nonlinear model to better comprehend the
relationship between the descriptors and the IE% for quinox-

aline compounds studied as anticorrosive agents. The neural
network models were established to model the connection
between the experimental IE% and the predicted IE%. The

internal validation was carried out using k-fold validation
technique. A k-fold of 5 was used which implies that the
quinoxaline dataset was randomly divided into five equal

groups and four groups (i.e., 32 compounds) were used to train
the model in each case and one group (i.e., 8 compounds) was
utilized to check the accuracy of the established model.

The results of the training and validation phase of the ANN
built models for quinoxaline inhibitors are displayed in Fig. 3.
The plots show instances of the calculated IE% diverging from
the measured IE%. These divergences are observed both at the

training and validation phases of the model development pro-
cess. At the training phase, models 1 and 2 showed clear cases
of underprediction while model 5 was clearly overpredicting

the measured IE%. Models 3 and 4 revealed fair cases of diver-
gence. At the validation stage, models 2, 4 and 5 clearly under-
predict the checking dataset, while model 3 is a case of
nO nCsp3 nCsp2 IE%

�0.123 �0.427 �0.018 0.103

0.819 0.697 0.818 0.108

0.709 0.849 0.482 0.023

1 0.504 0.629 0.079

0.504 1 0.341 �0.246

0.629 0.341 1 0.165

0.079 �0.246 0.165 1



Model 1 training and validation   

Model 2 training and validation   

Model 3 training and validation   

Fig. 3 Experimental IE% and predicted IE% at the model training and validation phase for quinoxaline derivatives (models 1–5).
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Model 5 training and validation   

Model 4 training and validation   

Fig. 3 (continued)
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overprediction. These observed discrepancies between the
experimental and calculated IE% are attributed to the misfir-

ing of the neural network node (Adedeji et al., 2019).
ANN architecture used for model development was

reported on Table 7 as 6-3-5-1. This implies that six molec-

ular variables were used as input variables with 3 and 5 neu-
rons at the hidden layers and an output of IE%. The error
estimates between the measured and the predicted IE% have

been established to be a reliable means of assessing the abil-
ity of the proposed models. Several statistical performance
indices have been employed in this work to appraise the reli-
ability and predictive power of the developed models. These

include error functions such as MSE, RMSE, MAD and
MAPE. These have been reported in other fields as excellent
metrics to evaluate neural network models (Aouidate et al.,

2016, Abdel-Ilah et al., 2017, Eftekhari et al., 2018). The
selection of the best model is achieved by considering the
model that yields the lowest values of these error functions

and also shows minor variance between the training and val-
idation phase (Gramatica, 2013). On this basis, the five pro-
posed models with their respective error functions have been

displayed in Table 7.
A careful comparison of the presented data in the table

shows that model 3 could be adjudged to be the least biased

to the selected dataset, based on statistical error analyses tools.
This is because model 3 is characterized by consistent lower
values of MSE, RMSE, MAD and MAPE when compared

to the other developed models. Models 1 and 4 showed some
promising error functions at some levels but were inconsistent
with large variance between the training and validation phase.

3.5. ANN model: external validation

From the above findings and using the variants of molecules
that yielded the highest inhibition efficiencies from experimen-

tal assessments, ten new quinoxaline compounds were theoret-
ically designed. The inhibition performances of these novel
quinoxalines were assessed using the QSPR models developed



Table 7 ANN predictive model performance at the training and validation phase.

Metric Model 1 Model 2 Model 3 Model 4 Model 5 Average

Train Validation Train Validation Train Validation Train Validation Train Validation Train Validation

MSE 27.7813 57.9311 32.1215 1304.0 21.2783 29.3336 8.9254 140.9121 30.7511 338.9934 24.1715 380.4940

RMSE 5.2708 7.6112 5.6676 36.5421 4.6128 5.4160 2.9875 11.8706 5.5454 18.4118 4.8168 15.9703

MAD 3.3810 6.3525 2.7213 26.0772 2.8527 2.3816 2.0521 6.5330 3.6843 11.9122 2.9383 10.6513

MAPE 4.0055 7.9444 2.8803 22.1418 3.3460 5.0389 2.3188 11.7086 4.4810 10.5053 3.4063 11.4678

rMBE 0.5134 �0.8351 �1.1694 �22.1535 �0.8127 4.9120 0.6472 10.3818 0.3852 �9.7155 �2.1074 �3.4821

CoV 0.0171 0.0174 0.0440 0.0091 0.0296 0.0112 0.27 0.0098 0.0138 0.0357 0.1503 0.0166

Iterations 141 245 64 620 471 –

Topology 6-3-5-1 6-3-5-1 6-3-5-1 6-3-5-1 6-3-5-1 6-3-5-1

Table 8 Descriptors for novel quinoxaline molecules.

Compounds Conc MW nN nO nCsp3 nCsp2

A 0.001 256.32 2 0 0 18

B 0.001 206.26 2 0 0 14

C 0.001 222.26 2 1 0 14

D 0.001 220.29 2 0 1 14

E 0.001 251.26 3 2 0 14

F 0.001 264.30 2 2 0 16

G 0.001 262.33 2 1 1 16

H 0.001 293.30 3 3 0 16

I 0.001 282.74 2 1 0 16

J 0.001 286.35 2 1 1 18

Table 9 Inhibition efficiencies of novel quinoxaline molecules from

Quinoxalines IUPAC nomenclature Mole

A. 2-phenylquinoxaline

B. 2-(naphthalen-2-yl)quinoxaline

C. 3-(quinoxalin-2-yl)phenol

D. 2-(p-tolyl)quinoxaline

E. 2-(4-nitrophenyl)quinoxaline

F. (E)-3-(4-hydroxystyryl)quinoxalin-2(1H)-one
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from MLR and ANN techniques. The calculated descriptors
of the novel quinoxalines obtained from Dragon 7.0 software
are displayed in Table 8.

The chemical names and structures of the novel quinoxali-
nes proposed as efficient anticorrosive agents for mild steel
deterioration in HCl at 0.001 M are presented on Table 9.

The predicted inhibition performances ranged from 87.88 to
94.77% for MLR model and 94.59 to 95.73% for the ANN
model. The predicted IE% from the developed MLR and

ANN models show that the novel quinoxalines are excellent
inhibitors of acidic corrosion. The effect of the presence of sub-
stituents on the IE% of the newly designed quinoxaline
molecules are also observed as is often reported in literature
MLR and ANN models.

cular structure MLR

predicted IE%

ANN

predicted IE%

93.17 94.80

91.65 95.65

90.46 95.60

88.26 95.21

94.77 95.73

90.08 95.60



Table 9 (continued)

Quinoxalines IUPAC nomenclature Molecular structure MLR

predicted IE%

ANN

predicted IE%

G. (E)-3-(4-methylstyryl)quinoxalin-2(1H)-one 87.88 95.27

H. (E)-3-(4-nitrostyryl)quinoxalin-2(1H)-one 94.39 95.66

I. (E)-7-chloro-3-styrylquinoxalin-2(1H)-one 92.78 95.46

J. (E)-3-(2-(1H-inden-7-yl)vinyl)quinoxalin-2(1H)-one 88.60 94.59

Fig. 4 Comparison of predicted IE% of novel quinoxalines

obtained with MLR and ANN models.

Table 10 Analysis of variance between the MLR and ANN predic

Source of variation SS df MS

Between Groups 86.22407 1 86.2

Within Groups 58.98817 18 3.2

Total 145.2122 19
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(Fu et al., 2012 (Lgaz et al., 2016b) Tazouti et al., 2016,
Benhiba et al., 2020).

Fig. 4 showed a graphical representation of the predicted IE
% from MLR and ANN models. It is obvious from the plot
that the best ANN model showed a better surface coverage

of the novel quinoxaline-based inhibitors on the mild steel sur-
face in molar HCl than the linear model.

A statistical analysis to ascertain whether the difference

between the MLR and ANN models for the inhibition perfor-
mance of the novel quinoxalines is statistically significant was
conducted and the outcome is presented in Table 10. At a con-
fidence level of 0.05, F (26.31093) > Fcrit (4.413873) which

shows that there is a statistically significant variance between
the MLR and ANN models for the test dataset.

4. Conclusions

1. Quantum chemical studies of 40 quinoxalines was performed and

the orbital density distribution images provided information on

the probable sites of adsorption. Molecular descriptors were calcu-

lated using DFT method and Dragon 7 software.
ted test results.

F p-value Fcrit

2407 26.31093 7.02E-05 4.413873

7712
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2. Linear model showed poor correlation with the experimental IE%

and high statistical error values which portends that corrosion inhi-

bition mechanism is a complex nonlinear process that is affected by

many factors. Nonlinear neural network presented a more reliable

and robust alternative to modelling inhibition data to gain insight

into inhibition mechanism.

3. The established models suggest that the considered constitutional

indices comprising molecular weight, number of oxygen atoms,

number of nitrogen atoms and number of hybridized carbon atoms

form an efficient group of molecular descriptors for QSPR mod-

elling of quinoxaline inhibitors. Thus, constitutional indices are

crucial for determining the inhibition efficiencies of quinoxaline

molecules.

4. Excellent inhibition performances of the 10 novel quinoxaline-

based inhibitors obtained from the forecast using the developed

QSPR models suggest that the non-synthesized compounds are

potential organic compounds that can be explored experimentally

as safe and effective inhibitors of metallic deterioration in molar

HCl.
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Kokalj, A., Lozinšek, M., Kapun, B., et al, 2021. Simplistic correla-

tions between molecular electronic properties and inhibition

efficiencies: do they really exist? Corros. Sci. 179, 108856.

Laabaissi, T., Benhiba, F., Missioui, M., et al, 2020. Coupling of

chemical, electrochemical and theoretical approach to study the

corrosion inhibition of mild steel by new quinoxaline compounds in

1 M HCl. Heliyon. 6, e03939.

Lgaz, H., Saadouni, M., Salghi, R., et al, 2016a. A thermodynamical

and electrochemical investigation of quinoxaline derivatives as

corrosion inhibitors for mild steel in 1 M hydrochloric acid

solution. Der Pharma Lett.

Lgaz, H., Salghi, R., Jodeh, S., et al, 2016b. Understanding the

adsorption of quinoxaline derivatives as corrosion inhibitors for

mild steel in acidic medium: Experimental, theoretical and molec-

ular dynamic simulation studies. J. Steel Struct. Constr. 2, 1–17.

Li, L., Zhang, X., Gong, S., et al, 2015. The discussion of descriptors

for the QSAR model and molecular dynamics simulation of

benzimidazole derivatives as corrosion inhibitors. Corros. Sci. 99,

76–88. https://doi.org/10.1016/j.corsci.2015.06.003.

Lin, X., Li, X., Lin, X., 2020. A review on applications of compu-

tational methods in drug screening and design. Molecules 25, 1375.

Liu, Y., Guo, Y., Wu, W., et al, 2019. A machine learning-based QSAR

model for benzimidazole derivatives as corrosion Inhibitors by incorpo-

rating comprehensive feature selection. Interdiscip. Sci. 11, 738–747.

Liu, Y., Zhao, T., Ju, W., et al, 2017. Materials discovery and design

using machine learning. J. Materiomics. 3, 159–177. https://doi.org/

10.1016/j.jmat.2017.08.002.

Mauri, A., Consonni, V., Pavan, M., et al, 2006. Dragon software: an easy

approach to molecular descriptor calculations. Match 56, 237–248.

Mishra, A., Verma, C., Srivastava, V., et al., 2018. Chemical,

electrochemical and computational studies of newly synthesized

novel and environmental friendly heterocyclic compounds as

corrosion inhibitors for mild steel in acidic medium. 4, 32.

O’Boyle, N.M., Banck, M., James, C.A., et al, 2011. Open Babel: An

open chemical toolbox. J. Chemom. 3, 33.

Olasunkanmi, L.O., Ebenso, E.E., 2020. Experimental and computa-

tional studies on propanone derivatives of quinoxalin-6-yl-4, 5-

dihydropyrazole as inhibitors of mild steel corrosion in hydrochlo-

ric acid. J. Colloid Interface Sci. 561, 104–116.

Olasunkanmi, L.O., Kabanda, M.M., Ebenso, E.E., 2016a. Quinox-

aline derivatives as corrosion inhibitors for mild steel in hydrochlo-

ric acid medium: electrochemical and quantum chemical studies.

Physica E Low Dimens. Syst. Nanostruct. 76, 109–126.

Olasunkanmi, L.O., Obot, I.B., Ebenso, E.E., 2016b. Adsorption and

corrosion inhibition properties of N-{n-[1-R-5-(quinoxalin-6-yl)-4,

5-dihydropyrazol-3-yl] phenyl} methanesulfonamides on mild steel

in 1 M HCl: experimental and theoretical studies. RSC Adv. 6,

86782–86797.

Olasunkanmi, L.O., Obot, I.B., Kabanda, M.M., et al, 2015. Some

quinoxalin-6-yl derivatives as corrosion inhibitors for mild steel in

hydrochloric acid: experimental and theoretical studies. J. Phys.

Chem. C 119, 16004–16019.

Olatunji, O.O., Akinlabi, S., Madushele, N., et al, 2019. Estimation of

the elemental composition of biomass using hybrid adaptive neuro-

fuzzy inference system. BioEnergy Res. 12, 642–652.
Ouakki, M., Galai, M., Benzekri, Z., et al, 2021. Insights into

corrosion inhibition mechanism of mild steel in 1 M HCl solution

by quinoxaline derivatives: electrochemical, SEM/EDAX, UV-

visible, FT-IR and theoretical approaches. Colloids Surf. A:

Physicochem. Eng. Aspects 611, 125810.

Puzyn, T., Leszczynski, J., Cronin, M.T., 2010. Recent Advances in

QSAR Studies: Methods and Applications. Springer Science &

Business Media.

Quadri, T.W., Olasunkanmi, L.O., Akpan, E.D., et al, 2021a.

Chromeno-carbonitriles as corrosion inhibitors for mild steel in

acidic solution: electrochemical, surface and computational studies.

RSC Adv. 11, 2462–2475.

Quadri, T.W., Olasunkanmi, L.O., Fayemi, O.E., et al, 2021b.

Quantitative structure activity relationship and artificial neural

network as vital tools in predicting coordination capabilities of

organic compounds with metal surface: A review. Coord. Chem.

Rev. 446, 214101.

Rbaa, M., Galai, M., El Faydy, M., et al, 2018. Synthesis and

characterization of new quinoxaline derivatives of 8-hydroxyquino-

line as corrosion inhibitors for mild steel in 1.0 M HCl medium. J.

Mater. Environ. Sci. 9, 172–188.

Roy, K., Kar, S., Das, R.N., 2015a. A Primer on QSAR/QSPR

Modeling: Fundamental Concepts. Springer.

Roy, K., Kar, S., Das, R.N., 2015b. Understanding the Basics of

QSAR for Applications in Pharmaceutical Sciences and Risk

Assessment. Academic press.
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