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Abstract: In the present work, we represent two thiazolidinediones, namely (Z)-5-(4-methoxybenzylidene)
thiazolidine-2,4-dione (MeOTZD) and (Z)-5-(4-methylbenzylidene) thiazolidine-2,4-dione (MeTZD), as
corrosion inhibitors for carbon steel (CS) in 1.0 M HCl solution. Techniques for gravimetric methods,
electrochemical measurements, and morphological characterization were used to conduct experimen-
tal evaluations. Additionally, calculations based on the fundamental principles of Density Functional
Theory (DFT) were employed to simulate inhibitor–iron interactions. Experimental results indicated
that investigated inhibitors can significantly enhance the corrosion resistance of CS, reaching a per-
formance of 95% and 87% at 5 × 10−3 mol/L of MeOTZ and MeTZD, respectively. According to
gravimetric and electrochemical experiments, inhibitor molecules obstruct corrosion reactions by
adhering to the CS surface, which follows the Langmuir isotherm model. On the other hand, the
morphological analysis showed a well-distinguished difference between unprotected and protected
CS surfaces as a result of the inhibitors’ addition to HCl. Projected density of states and interaction
energies obtained from first-principles DFT simulations indicate that the studied molecules form
covalent bonds with iron atoms through charge transfer.

Keywords: thiazolidinediones; first-principles DFT; corrosion inhibitor; SEM; density of states;
electrochemical techniques

1. Introduction

The continuous progress of the concept of environmentally friendly chemistry has
helped to answer numerous challenges faced by modern companies, technologies, and
industries [1]. In this regard, the development of more environmentally friendly chemicals
and techniques has been a subject of great interest in corrosion protection research [2,3].
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Corrosion control is acknowledged to be necessary at both the design and operational
stages. Among the highest grades of corrosion research, an increasing focus has been
placed on the corrosion of different grades of carbon steel (CS) in many aggressive en-
vironments [4,5]. CS plays an important role in our daily lives; it is extensively used in
domestic life and in numerous technological and industrial applications due to its low cost
and excellent mechanical properties. In applications where acid solutions are used to treat
steel-based equipment, such as pickling, cleaning of industrial equipment, acidization of oil
wells, acid descaling, and many other industrial/chemical processes, corrosion inhibitors
are the first choice against acidic corrosion [6,7]. Strong corrosion prevention properties
can be found in organic compounds that feature heteroatoms like oxygen, nitrogen, sulfur,
etc., in their molecular structures, together with many bonds or aromatic rings [8–12].
However, designing and synthesizing novel and effective organic corrosion inhibitors
are challenging tasks. More specifically, meeting effectiveness, eco-friendly, and low-cost
requirements demands a substantial research effort. Recently, thiazolidinediones have
emerged as promising organic compounds with several successful applications in phar-
maceutical and medical fields [13–15]. Along with their wide range of biological activities,
these compounds have excellent structural features that make them promising corrosion
inhibitor candidates. They have highly advantageous structural characteristics because
the thiazole-derived ring contains two electron-accepting carbonyl groups as well as -NH
and -S- active sites. It is anticipated that such active regions will have a special affection for
metal-binding orbitals. A quick literature search reinforces this conclusion, since chemical
compounds with carbon chains, functional groups, and heteroatoms possess high corrosion
inhibition performance. Despite these facts, limited research efforts have been devoted
to the utilization of the thiazolidine family for corrosion inhibition of materials. Some
researchers have shown that thiadiazoline derivatives have excellent anticorrosion benefits
and could be applied as successful anti-corrosion agents. Among these, thiadiazolines
synthesized by Tiwari et al. [16] and those screened by Yadav et al. [17] stand out due to
their potent anticorrosive abilities.

In accordance with these ongoing efforts, we present here the corrosion inhibition
properties and adsorption mechanism of two thiazolidinedione derivatives for CS in HCl
solution, namely (Z)-5-(4-methoxybenzylidene) thiazolidine-2,4-dione (MeOTZD) and
(Z)-5-(4-methylbenzylidene) thiazolidine-2,4-dione (MeTZD). Attention has been given to
these organic compounds because of their electron-rich molecular structures, which can
make them excellent corrosion inhibitors even at low doses. Furthermore, in a very recent
study by our team, two thiazolidinedione derivatives, including MeTZD, were reported as
excellent corrosion inhibitors for copper in 3.5 wt.% of sodium chloride [18]. Encouraged
by these results on the structural and biological features of this class of compounds, the
present study was carried out with the aim to strengthen the existing knowledge as well
as serve as a guide for future research in this class of organic compounds. To achieve
this goal, the corrosion resistance of the compounds under consideration was assessed
using a variety of experimental techniques, including scanning electron microscopy (SEM),
the gravimetric method, and electrochemical measurements. Additionally, the optimal
geometries of inhibitor-Fe (110) complexes and the predicted densities of states of molecules
both before and after adsorption were determined using first-principles DFT calculations to
examine the underlying adsorption mechanism. The adopted research approach can lead to
useful conclusions about the capabilities of tested compounds as acid corrosion inhibitors.

2. Experimental Procedure
2.1. Synthesis of Inhibitor Molecules

All the methodologies outlined in the literature were used to synthesize all the named
molecules reported below [19]. In brief, sodium hydroxide (1.1 mmol) was added to an equimo-
lar mixture of thiazolidine-2,4-dione (1) (0.12 g, 1 mmol), 4-methoxylbenzaldehyde (2a), or
4-methylbenzaldehyde (2b) in water/ethanol (v/v, 2:1) (10 mL) and agitated for 7 h at room
temperature (Scheme 1). TLC was used to keep track of when the reaction had finished.



Metals 2022, 12, 1598 3 of 19

Using diluted hydrochloric acid, the reaction mixture was made acidic. MeOTZD and
MeTZD are pure products that were obtained after the solid was filtered and recrystallized
from ethanol. The supplemental material reports on their characterization.
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Scheme 1. General procedure for the synthesis of compounds MeOTZD and MeTZD.

2.2. Samples and Corrosive Medium

The substance under examination in this work is CS, which has the corresponding ele-
mental make-up: 0.19 C, 0.20 Si, 0.81 Mn, 0.0027 S, 0.12 Cr, 0.001 P, 0.11 Ni, 0.18 Cu, 0.032 Al,
and the rest Fe. The Sigma-Aldrich commercial acid concentrated at a 37% concentration
was diluted using distilled water to establish the aggressive medium, which contains molar
hydrochloric acid at a concentration of 1.0 M HCl. For electrochemical investigations,
CS samples with a 1 cm2 cross-section were employed. The samples were polished with
extremely fine SiC paper (#800 to #1200) before each test, then rinsed with distilled water,
degreased with acetone, and air dried. A prepared aggressive solution was tested with
different inhibitor concentrations by each assay.

2.3. Gravimetric Method

Investigations evaluating weight loss (WL) were regarded as a standard approach
to evaluating an inhibitor compound’s capacity to stop corrosion based on ASTM pro-
tocols [20]. By submerging suitable CS specimens in corrosive medium with various
concentrations of MeOTZD and MeTZD for 24 h, WL tests were carried out (303 K to 333 K).
Before being submerged in the experimental solution, the rectangular-shaped coupons
(2.7 × 2 × 0.3 cm3) had their surfaces abraded using emery paper.

The following equations were used to evaluate the corrosion parameters, such as
corrosion rate, inhibition performance, and surface coverage, in the presence and absence
of each concentration of inhibitors [21]:

CWL =
8.76 × ∆W
D × A × t

(1)

ηWL(%) =

[
1 − CWL

C◦
WL

]
× 100 (2)

θ =
C

◦
WL − CWL

C◦
WL

(3)

where ∆W is weight loss (in milligrams), A is the area of the CS samples (in cm2), t is
exposure time in hours, D is steel specimen density in grams per cubic centimeter, CWL
and C

◦
WL are corrosion rates at different inhibitor concentrations and in the absence of any

inhibitors, and θ is the surface coverage.

2.4. Assessment of Electrochemical Behavior Using LPR, EIS, and PDP

In order to monitor CS corrosion, electrochemical methods are increasingly used. This
study made use of three electrochemical techniques: linear polarization resistance (LPR),
electrochemical impedance spectroscopy (EIS), and potentiodynamic polarization (PDP).
The three-electrode cell with a Volta lab potentiostat/galvanostat of the kind made by
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Corrtest Instruments Corp, Ltd. was used for all electrochemical experiments (Wuhan,
China). Platinum (Pt), which has a surface area of 1 cm2, and Hg/Hg2Cl2/KClsat (SCE),
were utilized as the counter and reference electrodes, respectively. Before measurements,
the working electrode, which is composed of carbon steel, was submerged with SCE in
the solution for 0.5 h to achieve a constant open circuit potential (OCP) (OCP curves are
shown in Figure S1, Supplementary Material). A circulating water thermostat was used to
complete each measurement at 303 ± 2 K.

The measurement of EIS was done at frequencies between 100 KHz and 10 mHz,
using a sinusoidal disturbance potential of 10 mV. The determination of the electrochemical
impedance from the corresponding diagrams provides information on different processes
concerning the corrosion inhibition ability of the inhibitors for which the protection effi-
ciency (%) was calculated. The current-potential curves were captured for PDP measure-
ments in the potential range of −800 to −200 mV at a scan rate of 0.5 mV s−1 at 303 K.
Linear polarization resistance (LPR) experiments were performed from −15 to +15 mV vs.
Ecorr at the scan rate of 0.125 mV/s. The reported values of electrochemical parameters are
the average values of three tests executed under similar conditions.

2.5. Computational Methods

To depict the adsorption mechanism, spin-polarized DFT simulations were employed.
The structure was optimized using the CASTEP algorithm implemented in Materials Studio.
Considering exchange-correlation energy, the generalized gradient approximation (GGA)
with PBE parameterization was employed. An empirical dispersion correction method was
used to handle the vdW interactions (DFT-D3). The plane-wave basis energy cutoff was set
at 30 Ry. Convergence thresholds in the CASTEP module had preset values of “Fine” quality.
The measured value (2.866) and the lattice constant determined from DFT simulations were
nearly identical [22]. The Fe crystal was split into four layers in the (110) plan, which was
found to be the most stable iron surface [23]. Afterward, a 5 × 5 supercell was formed. In
order to take into account erroneous interactions between slabs, a 20-vacuum slab was made
along the z-axis. For computations of the inhibitor-Fe(110) complex, inhibitory compounds
were positioned 7 Å above the top layer of the iron surface. Given that the majority of
large-size organic molecules exhibit a parallel adsorption mode on metal surfaces, an initial
parallel orientation was taken into consideration [24]. The following equation was used
to calculate the interaction energy (Einter) of each adsorption system, MeTZD-Fe(110) and
MeOTZD-Fe(110):

Einter = EMol/sur f −
(

Esur f + EMol

)
(4)

where EMol is the total energy of the isolated molecule, Esurf is the total energy of the Fe(110)
slab, and EMol/surf is the total energy of inhibitor-Fe(110) complexes.

2.6. Morphological Analysis

The morphological behavior of the CS surface was studied both with and without
the addition of the greatest concentration of inhibitors during a 24-h exposure period
using the surface morphology obtained using the SEM technique (Model-Hitachi TM-1000,
recorded at a magnification of around 1000). The CS specimens were treated in the manner
previously discussed in weight loss techniques.

3. Results and Discussion
3.1. Long-Term Immersion by Weight Loss Study

Long-term immersion at different temperatures ranging from 303 K to 333 K was
performed to study the change in corrosion rate and inhibition efficiency before and after
the addition of different concentrations of MeTZD and MeOTZD inhibitors. The effect
of inhibitor concentration on the corrosion rate and inhibition performance is graphically
shown in Figure 1. In Figure 1, it can be seen that the rate of CS corrosion decreases
with increasing concentration, indicating that higher dosages of MeOTZD and MeTZD
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inhibitors can adequately protect the CS substrates. This result is frequently ascribed to
the increased number of adsorbed molecules on the steel surface, which provides better
protection against corrosion. In addition, there is an improved inhibition performance of
MeOTZD and MeTZD at 5 × 10−3 mol/L concentration. The comparison between the
inhibition efficacy of the two inhibitors (at 5 × 10−3 mol/L) shows that the adsorption
capacity of MeOTZD is superior to that of the MeTZD inhibitor. It is noticeable that the
addition of the methoxy group instead of the methyl group leads to an improved adsorption
ability of thiazolidinedione compounds. It is well reported that functional groups with
higher electron-donating properties make a substantial difference in the adsorption of
inhibitor molecules [25]. In this regard, DFT calculations were completed to evaluate the
variations in the corrosion inhibition capabilities of the two studied molecules and how
their molecular structures affect the adsorption strength.
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Figure 1. The relationship among corrosion rate, inhibition efficiency, and inhibitor concentration for
CS after 24 h of immersion time in 1.0 mol/L HCl with MeTZD and MeOTZD at 303 K.

The corrosion process is generally considered to be significantly influenced by tem-
perature [26–29]. The temperature effect on CWL and ηWL(%) for MeOTZD and MeTZD is
given in Tables 1 and 2. In addition, activation parameters were calculated and are reported
in the Supplementary Material. The results in Tables 1 and 2 indicate that the inhibition
efficiency decreases as temperature increases, which may indicate that the adsorbed layer
of inhibitor molecules is more likely to become desorbed at high temperatures. However,
at optimum conditions, inhibitors still provide higher inhibition performance at 333 K.
Together, this confirms the adsorption nature of the tested molecules and their suitability
for application even at higher temperatures.
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Table 1. Effect of temperature on corrosion rate and inhibition efficiency in the absence and presence
of different concentrations of MeOTZD compound obtained from weight loss tests.

Medium Concentration
(mol/L)

Temperature
(K)

Corrosion Rate
(mg/cm2 × h)

Inhibition Efficiency
(%)

Blank 1.0 M HCl

303 1.135 ± 0.0121 -
313 1.416 ± 0.0215 -
323 1.998 ± 0.0214 -
333 2.539 ± 0.0316 -

MeOTZD

5 × 10−3

303 0.0681 ± 0.0034 94
313 0.1274 ± 0.0071 91
323 0.2197 ± 0.0098 89
333 0.3808 ± 0.0029 85

1 × 10−3

303 0.1362 ± 0.0078 88
313 0.2124 ± 0.0047 85
323 0.3396 ± 0.0098 83
333 0.4824 ± 0.0063 81

5 × 10−4

303 0.1816 ± 0.0027 84
313 0.2549 ± 0.0067 81

323 0.3996 ± 0.0078 80
333 0.5586 ± 0.0088 78

1 × 10−4

303 0.227 ± 0.0026 80
313 0.3115 ± 0.0043 78
323 0.4795 ± 0.0060 76
333 0.6855 ± 0.0079 73

Table 2. Effect of temperature on corrosion rate and inhibition efficiency in the absence and presence
of different concentrations of MeTZD obtained from weight loss tests.

Medium Concentration
(mol/L)

Temperature
(K)

Corrosion Rate
(mg/cm2 × h)

Inhibition Efficiency
(%)

Blank 1.0

303 1.135 ± 0.0121 -
313 1.416 ± 0.0215 -
323 1.998 ± 0.0214 -
333 2.539 ± 0.0316 -

MeTZD

5 × 10−3

303 0.187 ± 0.0034 83
313 0.297 ± 0.0032 79
323 0.539 ± 0.0067 73
333 0.863 ± 0.0089 66

1 × 10−3

303 0.238 ± 0.0054 79
313 0.368 ± 0.0035 74
323 0.619 ± 0.0078 69
333 0.990 ± 0.0084 61

5 × 10−4

303 0.295 ± 0.0098 74
313 0.439 ± 0.0045 69
323 0.719 ± 0.0067 64
333 1.117 ± 0.0089 56

1 × 10−4

303 0.355 ± 0.0043 69
313 0.467 ± 0.0065 65
323 0.794 ± 0.0078 60
333 1.193 ± 0.0085 53

3.2. PDP Measurements

PDP study was performed to characterize the cathodic and anodic responses of CS
electrodes before and after the addition of MeOTZD and MeTZD inhibitors, as shown in
Figure 2. Concerning the cathodic part, the presence of MeOTZD and MeTZD leads to
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an insignificant modification of the cathodic slopes, showing that the reduction reaction
of H+ protons on the surface of the steel in solution is not modified by the addition of
inhibitors and that it takes place according to a pure charge transfer process [30,31]. On the
other hand, by inspecting anodic branches overall, one can notice an obvious decrease in
anodic current densities. However, a sudden increase is observed around 300 mV/SCE. All
curves remain lower than those of the blank test. At that potential, called the desorption
potential, inhibitor molecules are partially desorbed from the steel surface, which makes it
accessible to corrosive species, thus reducing the surface protected area [32]. Once again,
this confirms the adsorption nature of selected molecules and that their adsorption is a
potential-dependent phenomenon.
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concentrations of (a) MeTZD and (b) MeOTZD at 303 K.

At all measured concentrations, the corrosion current density is significantly lower
than the blank test. The inhibition performance of MeOTZD and MeTZD inhibitors was
estimated using corrosion current according to the following equation [33]:

ηPDP(%) =
i
◦
corr − icorr

i◦corr
× 100 (5)

where i
◦
corr and icorr denote the corrosion current density for uninhibited and inhibited

media, respectively; the polarization parameters are listed in Table 3.
According to Table 3, the inhibitory efficacy increases with increasing inhibitor concen-

tration until it reaches its maximum values at 5 × 10−3 mol/L for each organic compound.
These findings support the outstanding corrosion inhibition characteristics of both com-
pounds, with MeOTZD exceeding MeTZD by 8%. Additionally, MeOTZD and MeTZD
inhibitors do not significantly alter the Ecorr; hence, they function as mixed-type inhibitors,
restricting both hydrogen evolution and metal dissolution reactions. The results were
in good agreement with weight loss measurements. More insights about corrosion and
corrosion inhibition mechanisms can be obtained from EIS tests.
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Table 3. PDP parameters estimated from Tafel curves for CS in the uninhibited and inhibited
1.0 mol/L HCl solution at 303 K.

Inhibitor Concentration
(mol/L)

−Ecorr
(mV vs. SCE)

−βc
(mV dec−1)

icorr
(µAcm−2)

ηPDP
(%)

Blank 1.0 496 ± 0.4 150 ± 3.5 599 ± 2.4 -

MeOTZD

5 × 10−3 480 ± 0.6 203 ± 0.6 29.9 ± 0.8 95
1 × 10−3 490 ± 0.5 190 ± 0.4 59.9 ± 0.8 90
5 × 10−4 496 ± 0.7 183 ± 0.6 83.8 ± 0.5 86
1 × 10−4 501 ± 0.9 160 ± 1.2 113.8 ± 0.9 81

MeTZD

5 × 10−3 502 ± 0.8 181 ± 1.1 77.8 ± 1.3 87
1 × 10−3 508 ± 1.4 170 ± 0.9 101.8 ± 0.2 83
5 × 10−4 480 ± 1.3 159 ± 0.6 131.8 ± 1.1 78
1 × 10−4 496 ± 0.5 150 ± 0.7 155.7 ± 0.6 74

3.3. Electrochemical Behavior by EIS and LPR Assessment

EIS analysis is an efficient, non-destructive method for describing an inhibitive sys-
tem’s corrosion inhibition properties [34,35]. Using this technique, EIS results in both
Nyquist and Bode forms are represented in Figure 3. It can be seen that with increasing
inhibitor concentration, Nyquist diagrams display a single capacitive loop and a larger
diameter of the capacitive half loops. This indicates that the effectiveness of inhibitors
depends on their concentration and that a charge transfer mechanism controls both cor-
rosion and its inhibition [36,37]. Additionally, the adsorption of inhibitor compounds
on the metal surface, which increases charge transfer resistance, can contribute to the
increase in the diameter of EIS spectra. Supporting this, Bode diagrams show only one
time constant at all concentrations and increased phase angle values with an increase in
inhibitor concentrations.

The equivalent electrical circuit (EEC) employed to fit experimental EIS results is
shown in Figure S3 [38–40]. It must be noted that the fitting quality was evaluated by the
goodness of fit values (χ2), which were of the order of 10−3. An EEC model consists of
a constant phase element (CPE) that is used instead of capacitance, along with solution
resistance (Rs), and polarization resistance (Rp). Rp refers to the sum of all involved
resistances, such as film resistance and charge transfer resistance. The capacitance (Cdl) is
evaluated from the following equation [41]:

Cdl =
n
√

Q × R1−n
p (6)

where Q is a proportionality factor and n represents the surface heterogeneity.
Using Rp, the following formula is used to determine the protective capability in terms

of inhibitor performance inhibition [42]:

ηEIS (%) =

[
Rinh

p − R◦
p

Rinh
p

]
× 100 (7)

where R◦
p and Rinh

p are the polarization resistance in the absence and presence of inhibitor
compounds, respectively.
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concentrations: (a,c) MeOTZD and (b,d) MeTZD.

Table 4 regroups all parameters derived from EIS tests along with the calculated inhi-
bition performances. It was found that the double-layer capacity (Cdl) and Q coefficient
decrease with increasing inhibitor concentration while the polarization resistance values
(Rp) increase, suggesting the modification of the double-layer behavior. It is reported that
a lower capacitance value indicates a higher thickness of the protective barrier film [43],
meaning a higher adsorption capability of organic compounds on the metal surface. Un-
surprisingly, the corrosion inhibition performance obtained from EIS results is practically
unchangeable compared to weight loss and PDP results. Structural differences between
tested molecules are believed to be responsible for the observed difference in inhibition
performance. An overall analysis of both molecular structures shows the presence of
several active sites that are capable of participating in donor–acceptor behavior at the in-
hibitor/steel interface. Deep insight into the structure–activity relationship can be obtained
from the first-principles DFT investigation in the theoretical sections of this work.
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Table 4. EIS data estimated using impedance spectroscopy for CS corrosion in 1.0 mol/L HCl solution
in the absence and presence of inhibitors at 303 K.

Inhibitor Concentration
(mol/L)

Rp

(Ω cm2)
n Q×10−4

(SnΩ−1 cm−2)
Cdl

(µF cm−2)
ηEIS
(%)

Blank 1.0 25.03 ± 1.3 0.90123 ± 0.008 1.772 ± 0.0018 97

MeOTZD

5 × 10−3 654.7 ± 1.9 0.78276 ± 0.009 0.220 ± 0.0043 6 96
1 × 10−3 275.6 ± 1.6 0.78004 ± 0.004 0.450 ± 0.0066 13 91
5 × 10−4 180.8 ± 1.5 0.82262 ± 0.008 0.570 ± 0.0023 21 86
1 × 10−4 139.7 ± 1.3 0.84478 ± 0.002 0.600 ± 0.0067 24 82

MeTZD

5 × 10−3 217.1 ± 1.7 0.72809 ± 0.001 0.450 ± 0.0089 8 88
1 × 10−3 150.1 ± 0.8 0.78788 ± 0.006 0.550 ± 0.0054 15 83
5 × 10−4 120.2 ± 0.5 0.76825 ± 0.005 0.810 ± 0.0036 20 79
1 × 10−4 98.22 ± 1.4 0.79927 ± 0.009 0.910 ± 0.0078 27 74

Although all reported techniques gave similar results in terms of corrosion inhibition
performance, LPR was performed for further confirmation. The results of the linear polar-
ization resistance tests were obtained in the tested solution during 30 min of immersion.
Table 5 summarizes the data of both tested molecules. The findings demonstrate that the
formed film in the presence of MeOTZD and MeTZD has the highest resistance to chloride
attack and that the polarization resistance improves with inhibitor concentration along with
a noticeable improvement in efficiency [44,45]. The inhibitory performance of MeOTZD
and MeTZD, as well as the extremely high reproducibility of the experimental procedures,
demonstrate the potency of both compounds as effective inhibitors of steel in acid solution.

Table 5. Linear polarization resistance parameters of CS corrosion in 1.0 mol/L HCl solution in the
absence and presence of MeTZD/MeOTZD.

System

Linear Polarization Data

Concentration
(mol/L)

Rp

(Ω cm2)
ηLPR
(%)

HCl 1.0 28 ± 0.9 -

MeOTZD

5 × 10−3

1 × 10−3

5 × 10−4

1 × 10−4

731.0 ± 0.5
308.0 ± 0.8
202.1 ± 0.3
156.2 ± 1.6

96
91
86
82

MeTZD

5 × 10−3

1 × 10−3

5 × 10−4

1 × 10−4

242.8 ± 0.9
167.8 ± 1.1
134.4 ± 0.6
109.8 ± 1.4

88
83
79
75

3.4. Adsorption Isotherm Model

Figure 4a and Figure S4 show the outcomes of the Langmuir, Freundlich, Frumkin,
and Flory-Huggins adsorption isotherm models to determine which isotherms reflect the
adsorption behavior of the two studied inhibitors. For the MeOTZD inhibitor, isotherms
were plotted at different temperatures. Among tested models, the Langmuir adsorption
isotherm (Equation (8)) was found to be more appropriate, with R2 and slope close to 1.
The Langmuir model refers to monolayer adsorption onto surfaces containing a set number
of identical sites. The intercept at the origin of the linear curve Cinh/θ shown in Figure 4a is
used to estimate the adsorption equilibrium constant (Kads), which is then used to calculate
the standard free energy of adsorption. The standard free energy of adsorption varies as
a function of temperature, as shown graphically in Figure 4b, and this variability is used
to calculate the standard enthalpy of adsorption and the standard entropy of adsorption.
The kinetic adsorption characteristics for MeTZD and MeOTZD inhibitors at various
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temperatures are listed in Table 6. The following equations are used to mathematically
determine all of the above-mentioned characteristics [46]:
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Table 6. Thermodynamic parameters of CS corrosion in the presence of MeOTZD and MeTZD in
1.0 mol/L HCl solution.

Inhibitor Temperature
(K)

Kads
(L/mol) R2 ∆G

◦

ads
(KJ/mol)

∆H
◦

ads
(KJ/mol−1)

∆S
◦

ads
(J mol−1 K−1)

MeTZD 303 17,317 0.999 −34.70 - -

MeOTZD

303 34,450 0.999 −36.44

−69.56 99
313 17,335 0.999 −37.00
323 33,673 0.999 −37.58
333 36,948 0.999 −40.24

C
θ
=

1
Kads

+ C (8)

Kads =
1

55.5
× exp

(
−

∆G
◦
ads

RT

)
(9)

∆G
◦
ads = ∆H

◦
ads − T∆S

◦
ads (10)

where C denotes the concentration of compounds, Kads is the constant of adsorption equi-
librium, and θ refers to the surface coverage.

The adsorption process was spontaneous, and the adsorbed layer on the metal surface
was stable, as suggested by the negative ∆G

◦
ads values and high values of Kads [47–49]. It was

found that both inhibitors exhibit ∆G
◦
ads values that are higher than −20 kJ/mol but lower

than −40 kJ/mol. Additionally, the negative value of ∆H
◦
ads is found to be −69.56 kJ/mol,

which indicates that heat is released during the adsorption process (exothermic process).
All of these findings imply that physical and chemical interactions are involved in the
adsorption of inhibitors on the steel surface [50]. The value of ∆S

◦
ads was high and positive,

reflecting an increase in the disorder caused by the formation of the metal/adsorbed
species combination [51].
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3.5. Morphological Characterization by SEM

The impact of adding inhibitors to an HCl solution on the morphology of the CS surface
is examined via SEM analysis. Inhibitors are known to prevent metals from corrosion by
creating a protective barrier on their surface. Therefore, a comparison of the morphological
state of the protected and unprotected steel surfaces can provide additional proof of
the performance of selected compounds. Herein, given the similarity between tested
compounds and their highest efficiency, MeOTZD is chosen for SEM analysis. Figure 5
shows SEM images of the CS surface after 24 h of immersion in the blank and inhibited
solutions. Figure 5a depicts a heavily corroded and severely damaged metal surface.
Because the steel is unprotected, corrosive species can access its surface, resulting in a
deteriorated metal surface, as shown in Figure 5a. The addition of a higher concentration
of MeOTZD to the HCl solution can significantly reduce its aggressiveness and therefore
protect the metal from corrosion. Figure 5b demonstrates this, with a clean and smooth
morphology for the protected metal. This is largely due to the formation of a protective
layer on the electrode surface in contact with the inhibited corrosive solution. Hence,
through a physicochemical process, the studied inhibitors are attracted to the surface of the
steel to form this protective barrier.
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3.6. First-Principles DFT Evaluations
3.6.1. Adsorption Configuration and Interaction Energy

The physical and chemical adsorption process was highlighted as the main corrosion
inhibition mechanism by experimental results and related analyses. This conclusion can be
subjected to more investigation by modeling the interactions between inhibitor molecules
and iron surfaces using first-principles DFT calculations. In comparison to widely reported
quantum chemical calculations that rely on comparing some global reactivity descriptors
without taking the metal into account, first-principle DFT calculations have emerged as
a robust approach to obtaining physical insights that experiments and other theoretical
techniques cannot provide [52]. Figure 6 shows the most stable adsorption geometries of
the evaluated molecules on the Fe(110) surface. Because large-sized organic molecules
typically assume a parallel arrangement on metal surfaces, only the parallel adsorption
mode has been taken into consideration.
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obtained via first-principles DFT calculations. Optimized bond lengths are in Å.

From a careful inspection of Figure 6, one can observe that both molecules have a nearly
flat disposition over the Fe(110) surface. In this geometry, molecules bond to Fe-atoms
through the oxygen of the carbonyl group and sulfur atoms. The other parts, especially the
phenyl rings, are parallelly adsorbed but without bond formation. The distance lengths of
the formed bonds are in the order of 2.10 and 2.23 Å. The thiazolidinedione moiety is very
rich in electrons with available free electron pairs on heteroatoms, so it is expected to build
a strong affinity towards iron atoms. In general, the covalent radii sum of Fe-S (rS + rFe)
and Fe-O (rO + rFe) is 2.37 Å and 1.98 Å, respectively [53]. This signifies that formed bonds
between S and O atoms and the iron surface are within the sum of the covalent radii.
Thus, it is possible to infer that both molecules are chemically adsorbed over the surface
of Fe(110).

However, insights about the adsorption strength of each molecule cannot be obtained
via visual inspection. Thus, the interaction energies of each adsorption system are calculated
to determine which molecule has a strong adsorption power. The interaction energies for
MeOTZD-Fe(110) and MeTZD-Fe(110) were −1.11 and −1.04 eV, respectively. This means
that both molecules have favorable adsorption ability; however, MeOTZD outperforms
MeTZD by −0.07 eV [24]. This is, as stated before, mostly due to the high electron-donating
power of the methoxyphenyl group compared to the methylphenyl group. Still, despite this
difference, it is fair to say that both molecules have excellent adsorption properties thanks
to the presence of several active sites in the thiazolidinedione moiety. Such functional
groups can significantly improve the adsorption capacity of inhibitor molecules [54].

3.6.2. Projected Density of States (PDOS)

The adsorption systems discussed in the previous section can be well interpreted
by analyzing the projected density of states of interacted atoms in isolated and adsorbed
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forms. This is especially helpful in identifying the mechanism by which molecules interact
with the metal surface [55]. Therefore, the density of states analysis is carried out for the
investigated molecules. Figure 7 (MeTZD) and Figure 8 (MeOTZD) show the results of
PDOS calculations for iron, isolated molecules, and adsorbed inhibitor molecules.
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Figure 7. PDOS for MeTZD molecules adsorbed on Fe(110) surface and the Fe atoms beneath them.
(a,b) isolated inhibitor molecule 7 Å above iron surface and (c,d) optimized adsorption geometry
of molecule.

Given that all of the Fe 3d states are included within this energy range, the chemical
states are examined in the region of −5 to 5 eV [56,57]. The chemical states of adsorbed
S and O atoms are considered for a precise interpretation of the results. The molecular
states of the S and O atoms, which are located in the s and p orbitals, are displayed in the
top panels of Figures 7 and 8. In both cases, molecular states are in the form of sharper,
well-structured peaks. As these peaks are located in the same energy range as Fe 3d bands,
they are expected to hybridize during adsorption on the iron surface. In fact, this is the
case when we observe PDOS results in the bottom panel of Figures 7 and 8. In contrast to
their states in isolated forms, the results demonstrate that the peaks in question become
unstructured and significantly decrease. This means that S and O atoms participate in
strong charge transfers and binding with vacant d-orbitals of iron [24]. In this scenario,
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given the fact that chemisorption is the strongest adsorption mechanism, these atoms are
the most responsible for the adsorption of molecules on the steel surface, thus improving
corrosion inhibition performance. Thanks to the free electron pairs on these atoms, a charge
transfer with the vacant d-orbitals of iron is likely to happen easily when interacting with
the iron surface. In addition, structural differences are confirmed to be responsible for the
adsorption strength of selected molecules, since their adsorption geometries are similar.
The additional electron-donating methoxyphenyl group increases the interactive power of
MeOTZD, and therefore its corrosion inhibition performance.
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Figure 8. PDOS for MeOTZD molecules adsorbed on Fe(110) surface and the Fe atoms beneath them.
(a,b) isolated inhibitor molecule 7 Å above iron surface and (c,d) optimized adsorption geometry
of molecule.

3.7. Adsorption Mechanism of Adsorbed Molecules

Based on experimental and theoretical insights, the adsorption mechanism of the
interaction between selected molecules and the iron surface can be proposed, as shown
in Figure 9. It has generally been reported that organic molecules having heteroatoms in
their molecular structures are protonated easily when immersed in 1.0 mol/L HCl [58,59].
On the other hand, the steel surface was found to have a positive charge in similar
conditions [58,59]. In this situation, and due to the electrostatic repulsion, molecules can
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only be adsorbed through pre-adsorbed chlorine ions, which change steel’s interfacial
charge to negative. This step is necessary for a successful corrosion inhibition process
by organic molecules, and it is called the physisorption process. Chemical bonding and
charge transfer of free electron pairs on O and S atoms to unoccupied d-orbitals of iron are
strongly anticipated as molecules approach the steel surface. This is the main adsorption
step that is believed to be responsible for the effectiveness of an organic corrosion inhibitor.
In addition, the accumulation of charges on the CS surface can prevent the transfer of
charges from the steel surface to the inhibitor molecules’ anti-bonding orbitals, which
is called the retro-donation process. These conclusions seem reasonable considering the
experimental and theoretical results, which both suggest the adsorption of molecules on
the steel surface through physical and chemical interactions and considering previously
published results [60–62].
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4. Conclusions

In the present study, the electrochemical behavior and adsorption properties of two
thiazolidinedione derivatives were evaluated to explore their ability to prevent corrosion
of carbon steel in HCl solution. An experimental investigation was carried out by elec-
trochemical techniques along with weight loss tests, while useful physical insights about
inhibitors’ adsorption were obtained by first-principles DFT calculations. Considering
both experimental and theoretical evaluations, MeOTZD and MeTZD were found effec-
tive against steel corrosion in the HCl medium. With increasing inhibitor concentration,
the inhibition performance of the two studied inhibitors improves, showing exceptional
protective properties (the maximum performance of MeOTZD and MeTZD is 96% and
88% at 5 × 10−3 mol/L, respectively). The two tested inhibitors had a mixed inhibitory
effect, blocking both anodic and cathodic corrosion reactions and reducing the corrosion
current density compared to the blank solution. Electrochemical data revealed that thiazo-
lidinedione derivatives significantly improved the polarization resistance and modified
the double-layer behavior due to their adsorption on the steel surface. The adsorption
was found to follow the Langmuir isotherm model. Furthermore, SEM analysis showed
that inhibitors’ addition to the HCl solution created a protective layer that prevented the
CS surface from corrosion. First-principles DFT calculations revealed the formation of
covalent bonds between S and O atoms of molecules and Fe-atoms, which was confirmed
by PDOS results. The findings of the present work can shed more light on the application
of thiazolidinedione derivatives in the corrosion protection of metals.



Metals 2022, 12, 1598 17 of 19

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/met12101598/s1, Figure S1: The variation of open circuit potential
as function of time of MeOTZD (a) and MeTZD (b), Figure S2: Arrhenius (a) and transition state (b)
plots for corrosion inhibition of carbon steel in absence and presence of different concentrations of
MeOTZD in 1.0 M HCl, Figure S3: Equivalent circuit model applied to fit and simulate the impedance
data, Figure S4: Isotherm plots for carbon steel in 1.0 M HCl medium at 303 K containing different
concentrations of MeOTZD and MeTZD. Table S1: MeOTZD activation parameters.

Author Contributions: Conceptualization, methodology, writing—original draft, A.C., M.C. and
H.L.; formal analysis, A.H.A.-M.; data curation, F.Z.T.; investigation and resources, R.S., K.K., K.B.
and I.H.A.; visualization and editing, Y.G.K. and H.L. All authors have read and agreed to the
published version of the manuscript.

Funding: This work was supported by the Fundamental-Core National Project of the National Research
Foundation (NRF) funded by the Ministry of Science and ICT, Republic of Korea (2022R1F1A1072739).
The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University
for funding this work through the research groups program under grant number R.G.P.2/84/43.

Data Availability Statement: Raw data used for this work is part of ongoing works and cannot be
shared at this time.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Aboelnga, M.M.; Awad, M.K.; Gauld, J.W.; Mustafa, M.R. An assessment to evaluate the validity of different methods for the

description of some corrosion inhibitors. J. Mol. Model. 2014, 20, 1–17. [CrossRef] [PubMed]
2. Sanaei, Z.; Ramezanzadeh, M.; Bahlakeh, G.; Ramezanzadeh, B. Use of Rosa canina fruit extract as a green corrosion inhibitor

for mild steel in 1M HCl solution: A complementary experimental, molecular dynamics and quantum mechanics investigation.
J. Ind. Eng. Chem. 2019, 69, 18–31. [CrossRef]

3. Ramezanzadeh, M.; Bahlakeh, G.; Sanaei, Z.; Ramezanzadeh, B. Corrosion inhibition of mild steel in 1 M HCl solution by
ethanolic extract of eco-friendly Mangifera indica (mango) leaves: Electrochemical, molecular dynamics, Monte Carlo and ab
initio study. Appl. Surf. Sci. 2019, 463, 1058–1077. [CrossRef]

4. Nikoo, S.Z.; Shockravi, A.; Ghartavol, H.M.; Halimehjani, A.Z.; Ostadrahimi, M.; Mirhosseini, S.M.; Behzadi, H.; Ghorbani,
M. A study of glycine-based dithiocarbamates as effective corrosion inhibitors for cold rolled carbon steel in HCl solutions.
Surf. Interfaces 2020, 21, 100751. [CrossRef]

5. Tiwari, N.; Mitra, R.K.; Yadav, M. Corrosion protection of petroleum oil well/tubing steel using thiadiazolines as efficient
corrosion inhibitor: Experimental and theoretical investigation. Surf. Interfaces 2021, 22, 100770. [CrossRef]

6. Jafarpour, H.; Aghaei, H.; Litvin, V.; Ashena, R. Experimental optimization of a recently developed matrix acid stimulation
technology in heterogeneous carbonate reservoirs. J. Pet. Sci. Eng. 2021, 196, 108100. [CrossRef]

7. Solomon, M.M.; Umoren, S.A.; Quraishi, M.A.; Tripathy, D.B.; Abai, E.J. Effect of akyl chain length, flow, and temperature on the
corrosion inhibition of carbon steel in a simulated acidizing environment by an imidazoline-based inhibitor. J. Pet. Sci. Eng. 2020,
187, 106801. [CrossRef]

8. Hajjaji, F.E.; Salim, R.; Taleb, M.; Benhiba, F.; Rezki, N.; Chauhan, D.S.; Quraishi, M.A. Pyridinium-based ionic liquids as novel
eco-friendly corrosion inhibitors for mild steel in molar hydrochloric acid: Experimental & computational approach. Surf.
Interfaces 2021, 22, 100881. [CrossRef]

9. Fernandes, C.M.; Faro, L.V.; Pina, V.G.S.S.; de Souza, M.C.B.V.; Boechat, F.C.S.; de Souza, M.C.; Briganti, M.; Totti, F.; Ponzio, E.A.
Study of three new halogenated oxoquinolinecarbohydrazide N-phosphonate derivatives as corrosion inhibitor for mild steel in
acid environment. Surf. Interfaces 2020, 21, 100773. [CrossRef]

10. Damej, M.; Kaya, S.; Ibrahimi, B.E.; Lee, H.-S.; Molhi, A.; Serdaroğlu, G.; Benmessaoud, M.; Ali, I.H.; Hajjaji, S.E.; Lgaz, H. The
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