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A B S T R A C T   

Injection mold requires a large weight, significant cost of material, safety management, and installation of 
auxiliary facilities. In this study, we realized a lightweight injection mold consisting of lattice structures through 
the additive manufacturing (AM) technology for overcoming these limitations. A compression test was conducted 
to understand the intrinsic mechanical properties of lattice structures according to density. Moreover, the 
external force applied to a mold using computer-aided engineering (CAE) was confirmed. Based on the results of 
the compression test of the lattice structure and CAE analysis for the mold, a lightweight injection mold was 
designed and fabricated to facilitate design for additive manufacturing. Furthermore, the lightweight injection 
mold was assembled into the injection machine and the injection test was performed. The weight and amount of 
material of the mold were reduced by ~79%, and the injection molding of 400 shots was successful using 
polyvinyl chloride (PVC) without damaging the mold.   

1. Introduction 

In various industries, the lightweightness is closely related to fuel 
efficiency improvement and low safety-related risks [1,2]. From this 
perspective, this study focuses on the mold-based industry. In particular, 
large molds are needed to manufacture parts in the automobile, aero-
space, ship and home appliances industries [3–7]. However, the large 
injection molds have issues associated with the weight and unit cost of 
mold material, the risk of safety management, and the demand for 
auxiliary facilities, due to repeated removal and movement of equip-
ment for design changes [8]. These issues can be overcome by using 
lightweight molds. In other words, if the interior of the mold manufac-
tured by the AM technology have a porous structure, the mold will be 
efficient in terms of being lightweight. 

To reduce the weight of the mold, a polymer rather than a metal is 
the preferred mold material. The early attempt of injection mold 

production via AM technology and polymer used the materials extrusion 
(ME) type because the AM type is easy to access and can utilize various 
thermoplastic materials. Approximately 40 shots were injected using 
acrylonitrile butadiene styrene (ABS) and low density polyethylene 
(LDPE) [9]. A mold was also fabricated using polyetheretherketone 
(PEEK), a super engineering plastic, and more than 110 shots were 
injected without damaging the PEEK molds [10]. However, because the 
ME type was used, the quality of the injection parts was low, and there 
was a risk of leakage due to the unique deposition mechanism (layer-by- 
layer) imparted during the ME [11,12]. Moreover, injection molds were 
prepared through vat photopolymerization (VP) 3D printing technolo-
gies such as digital light processing (DLP) and stereolithography (SLA). 
By exploiting the advantages of the VP-type polymer molds, micro- 
injection molding of thin cavities was implemented [13]. Attempts 
were also devoted toward the injection molding of polyethylene (PE) 
under 100 shots and polyoxymethylene (POM) under 55 shots [14]. 
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Although the VP-type polymer molds do not exhibit surface defect for-
mation and suffer from leakage unlike the ME-type polymer molds, they 
still have the disadvantage of low thermal properties [15–18]. Thus, for 
lightweight injection molds, polymer molds are ideal; however, they 
have limitations such as low thermal resistance. 

Polymer injection molds with low thermal resistance have been 
replaced by metal ones manufactured using lattice structures in 
attempting to increase the thermal property. The metal mold is fabri-
cated through a powder bed fusion (PBF) process, as this technique 
impart high thermal resistance [19,20]. In general, there are many 
processes such as design, milling, lathe, drilling, wire cutting, computer 
numerical control (CNC) machining, and assembly are needed to 
manufacture a traditional mold with skilled labor at all stages thereof, 
[21] while AM technology can simply reduce the process such as design, 
AM, and assembly. In this process, the costs of manufacturing can be 
saved, even material costs by using lattice structures. Using AM tech-
nologies, the previous researchers only investigated the maximum loads 
that the lattice can withstand and the formation of minimal surface 
structures through computer-aided engineering (CAE) for the fabrica-
tion of lightweight molds. There have also been a few studies on 
component-level applications [21,22]. In particular, it is difficult to find 
research for large-scale manufacturing fields, such as injection molding. 
Thus, comprehensive research is needed, including that based on the 
identification of the mechanical properties of lightweight structures as 
well as manufacture of lightweight molds via AM technology and their 
applicability for injection molding. 

Herein, a comprehensive study was performed, including compres-
sion tests of lattice structures, CAE analysis of molds for design for ad-
ditive manufacturing (DfAM), AM of lightweight molds, and feasibility 
test for injection molding. For stretch-and bending-dominant lattice 
structures, yield strength was first investigated in terms of the 
compression load applied to the injection mold. In addition, the stress 
distribution of the mold was confirmed through CAE analysis, consid-
ering the clamping force and pressure of the polymer material in the 
mold during injection. Based on compression test and CAE analysis, each 
lattice structure capable of resisting the load that occurred during in-
jection molding was appropriately placed inside the mold. Lightweight 
molds were additively fabricated using the Ti-6Al-4V which is required 
for polyvinyl chloride (PVC) or rubber injection; mold materials un-
dergo corrosion based on chloride and sulfur [23–25]. 

As a results, the weight was successfully reduced by ~79% compared 
to that of the solid mold, and 400 shots using PVC were injected in the 
lightweight molds without any damage, which confirmed the feasibility 
of the lightweight molds for injection molding. In other words, we 
demonstrated a lightweight mold with lattice structures that can be used 
in the field by applying AM technology with Ti-6Al-4V, which is well 
known for its excellent mechanical properties and lightness but is 
difficult to cut [26,27]. Thus, it is expected to contribute to expanding 
the application field using AM technologies in the mold industry 
including safety-related risks prevention and cost reduction. 

2. Experimental setup 

2.1. Materials and machine 

Ti-6Al-4V powder (LaserForm Ti Gr23, 3D Systems, USA) was used in 
a commercially available PBF system (DMP flex 350, 3D Systems, USA). 
The yield strength and elastic modulus in compression load of additively 
manufactured solid structure is 1563 MPa and 3.7 GPa. The morphology 
of the Ti-6Al-4V powder particles was measured through scanning 
electron microscopy (SEM; JSM-5800, JEOL, Japan). The Ti-6Al-4V 
powder was composed of titanium (Ti), aluminum (Al), and vanadium 
(V), which had a mean particle size of 33 μm, as measured using a laser 
scattering particle size distribution analyzer (Partica LA-960, Horiba, 
Japan). The morphology and, size distribution of the powder particles 
are shown in Fig. 1. The composition of powder and AM parts are shown 
in Table 1. Al, V, Fe, C and H had insignificant changing in powder and 
AM parts. The AM part reacted with O and N in the atmosphere during 
processing, increasing the composition. 

2.2. Design and identify mechanical properties of lattice structures 

The lattice structures are roughly classified into two types, according 
to Maxwell's stability criterion shown in Eq. (1) in three dimensional 
structures: [28]. 

M = b − 3j+ 6 (1) 

Where b is the number of struts and j is the joint. M ≥ 0 indicates a 
stretch-dominant lattice structure, whereas M < 0 represents a bending- 
dominant structure, as shown in Fig. 2 [29]. In this study, the lattice 
structures were used as octet-truss (OT) and diamond (DM), as shown 
Fig. 3(a), followed by ISO 13314: Mechanical testing of metals – 
Ductility testing – Compression test for porous and cellular metals [30]. 
OT was chosen as the stretch-dominant structure. The OT has the most 
struts in the unit cell compared to any other lattice structure [31]. DM 
was chosen as the bending-dominant structure, which has superior en-
ergy absorption upon the application of the compression load [32]. All 
lattice structures consist of OT and DM, according to density, such as 
10%, 30%, and 50%. In generally, the density is defined by Eq. (2): 

ρ = ρl/ρs (2) 

Fig. 1. (a) Powder morphology and (b) size distribution of Ti-6Al-4V powder.  

Table 1 
Composition of powder and AM part.  

Composition Powder (%) AM part (%) 

Aluminum (Al)  6.48  6.47 
Vanadium (V)  3.87  3.94 
Iron (Fe)  0.19  0.20 
Carbon (C)  0.02  0.03 
Oxygen (O)  0.11  0.13 
Nitrogen (N)  0.001  0.008 
Hydrogen (H)  0.002  0.003  
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where ρl is the density of the lattice structures and ρs that of the solid of 
which it is made [33]. In this study, the density was designated as a set 
value in the software. Thus, the density is controlled by the thickness of 
the struts in unit cells of the same size. A solid with a thickness of 3 mm 
was fabricated on the top and bottom of the lattice structures because 
our application, the mold, is a solid shape on the surface for the quality 
of injection parts, as shown Fig. 3(b). The lattice structures were 
designed using 3DXpert (3D systems, U. S. A.), and consisted of a 1 × 1 
× 1 mm unit cell in the compression specimens. The laser power, scan 
speed, layer thickness, and hatching distance for fabricating the lattice 
and solid structures were set according to the manufacturer’s recom-
mended values listed in Table 2. 

The compression specimens were set on a universal testing machine 
(AGS-X 300kN, Shimadzu, Japan). The compression test was performed 
at a crosshead speed of 2 mm/min. All tests were performed by applying 
lubricants at top and bottom to minimize friction and on three speci-
mens. All quantitative results, such as yield strength and energy ab-
sorption during the compression test, are displayed as the mean ±
standard deviation. 

2.3. CAE analysis 

The structural analysis was performed to confirm the stress distri-
bution of unit cells of lattice structures in compression load according to 
density and mold during injection molding using software of ANSYS 
(ANSYS Inc., USA) static structural. In case of structural analysis of the 
unit cell, the mesh size was set to 0.2 mm. The displacement of 0.01 mm 
was applied as a boundary condition at the top of the unit cell model to 
assume the load under compression. The injection mold carried out a 
structural analysis to design the inside of the mold as lattice structures 
according to the stress distribution. In the mold analysis, the mesh size 
was performed as a value of default. The boundary condition in the mold 
was set to 50 MPa for the part filled with material and 37.5 kN for the 
other part. 

2.4. Injection molding test 

To verify the feasibility of the additively manufactured lightweight 
mold with the Ti-6Al-4V lattice structure, the mold set was equipped 
with an injection molding machine (MJ5700, Dongsin, Republic of 
Korea). The PVC melt was injected into a lightweight mold. The injec-
tion nozzle temperature, screw speed, packing pressure, and cooling 
time were set to 250 ◦C, 20 mm/s, 22 MPa, and 15 s, respectively. The 
molds were designed with a pair of ring shapes. The injection molding 
test was conducted repeatedly until injection cycles reached 400 shot. 

3. Results and discussion 

3.1. Compression behavior of lattice structures 

Fig. 4(a) represents the photographs of whole and optical microscope 
image of a part for specimens. The strut diameter of OT has approxi-
mately 0.15, 0.21, and 0.28 mm when the density is 10, 30, and 50%, 
respectively. The DM's strut diameter has approximately 0.3, 0.4, and 
0.5 mm when the density is 10, 30, and 50%, respectively. Fig. 4(c) 
shows the specimens after the compression tests. All compression 
specimens were fractured with a slip plane inclined by 45◦ with respect 
to the horizontal plane, as shown in Fig. 4(b). These failure modes 
occurred at the macro level because the maximum shear stress was 
applied at 45◦ in the compression load direction [34]. This macro-level 
failure mode has been reported in the literature [35]. Fig. 4(c) shows the 
stress–strain curve for the compression tests of OT and DM lattice 
structures with densities of 10%, 30%, and 50%. In general, the stretch- 
dominant lattice structures show the oscillation behavior after achieving 

Fig. 2. (a) Stretch-dominant structure having M ≥ 0 and (b) bending dominant 
structure having M < 0. 

Fig. 3. Design of lattice structures for (a) a unit cell and (b) compression specimens.  

Table 2 
Fabrication conditions of the lattice and solid structures.  

Process parameter Lattice structures Solid structures 

Laser power (W)  125  145 
Laser scan speed (mm/s)  2800  1000 
Layer thickness (μm)  30  30 
Hatching distance (μm)  110  82  
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the required yield strength because the struts break one by one under a 
compression load [32,36,37]. In contrast, the bending-dominant lattice 
structures show a long plateau stress behavior after achieving the 
required yield strength because the struts hold up without breaking 
under a compression load [38]. In this study, at all densities, the DM 
showed a longer plateau stress behavior than the OT because the DM has 
bending-dominant lattice structures. However, although the OT is a 
stretch-dominant lattice structure, it showed oscillation behavior after 
achieving the required yield strength at a density of only 30%. In 
particular, a high initial stress at the 250 MPa level was followed by an 
abrupt stress drop after achieving the required yield strength. The OT 
can carry high stress at small deformations owing to the fully con-
strained geometry, which leads to a higher modulus than that of DM. In 
the case of 50% density, it is similar to the behavior of a solid specimen 
rather than that of the lattice structures [39,40]. This is because the 
higher the density, the earlier the densification occurs, which induced 
that specimens had become more brittle alike solid [41]. When the 
density is 10%, because of the strut thickness, the OT cannot withstand 

the compression load, and brittle fracture occurs collectively. 

3.2. Comparison of compression test results 

Generally, in the case of the compression tests, the ultimate 
compression strength is not clear because of the presence of densifica-
tion in the ductility materials; therefore, it is often expressed in terms of 
yield strength [42]. Fig. 5(a) and (b) represent the yield strength and 
energy absorption for OT and DM with varying densities. The yield 
strength is determined from the stress-strain curve depending on the 
method of 0.2% offset [43]. The energy absorption or toughness is 
calculated according to Eq. (3): 

W =

∫ εm

0
σdε (3)  

where σ is the stress and ε is the strain. The energy absorption or 
toughness can be calculated by integrating the area under the stress- 
strain curve per unit volume for a specimen, up to a strain εm [44]. 

Fig. 4. (a) Photographs and optical microscope image of specimens. (b) Photographs of specimens after the compression test. (c) Stress–strain curve based on 
compression test results according to density. 
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When the density is 10%, the OT and DM show similar yield strengths 
because fracture occurs before appearing the characteristics of stretch 
and bending dominant. The stretching and bending characteristics 
appeared at a density of 30%. The OT exhibits high resistance under the 
compression load, especially because of the interaction among many 
struts [36,45,46] In contrast, the DM is vulnerable to compression load 
because of its bending-dominant structures [47,48]. However, when the 
density was 50%, the DM exhibited the highest yield strength because 
the number of struts was small and the thickness of the struts was higher 
than that in the OT structures. This performance is attributed to the 
linear increase in the OT (yield strength = 7.3775 × density – 5.725 with 
R2 = 0.96) and a quadratic increase in the DM yield strength (yield 
strength = 0.232 × density2–5.585 × density + 92.45 with R2 = 1) based 
on the following relationship between the elastic modulus and density as 
shown Eq. (4): [49]. 

(E/Es) = C (ρ/ρs)
n (4)  

where E and Es are the elastic modulus of the lattice structure and solid 
structure, respectively. The elastic modulus calculated from the linear 
region in resulting stress-strain curve before yield. The stretch- and 
bending-dominant structures generally have n values close to 1 and 2, 
respectively [50,51]. To demonstrate these experimental results in terms 
of yield strength, structural analysis was carried out at densities of 10%, 
30%, and 50%. Fig. 5(c) and (d) show the structural analysis results 
according to the density of the unit cell of the OT and DM, respectively. 
Based on these structural analyses, the maximum stress of each result for 
the OT and DM is shown in Fig. 5(e) and (f). For the OT, the yield 
strength increased marginally from 30% to 50% density, whereas for the 

DM, the yield strength increased significantly. The tendencies observed 
through the experimental and structural analyses of the compression 
results were similar. The yield strength of the stretch-dominant struc-
tures (OT) increases linearly, whereas that of the bending-dominant 
structures (DM) exhibits a quadratic increase with density. In terms of 
energy absorption, the OT and DM show a quadratic increase with 
density, as shown in Fig. 5(b). The DM exhibits a higher energy ab-
sorption than the OT because bending-dominant structures have a su-
perior strain, owing to a long plateau stress. The yield strength and 
energy absorption can be controlled over 50.3–393.2 MPa and 
1.7–139.0 J/m3, respectively. 

3.3. CAE analysis for DfAM of injection mold 

The yield strength of each lattice structure according to density is 
identified in Section 3.2. For placing the lattice structures inside the 
mold, DfAM was carried out to calculate the clamping force applied to 
the mold through CAE. The clamping force is expressed as the product of 
the projected area and the mean pressure of materials the inner mold 
[52]. PVC was selected as the injection material in this study. PVC have 
mean pressure of 50 MPa inner mold when injected [53]. The projected 
area in this mold was approximately 750 mm2, as shown in Fig. 6(a). 
Thus, a maximum clamping force of 37.5 kN. Fig. 6(b) and (c) represent 
the boundary conditions for the PVC-filled areas and the other parts 
investigated in the structural analysis. In order to inject the shape 
selected in this study, the PVC-filled part is subjected to a maximum 
pressure of ~86.2 MPa, and the part that has to withstand the clamping 
force is subjected to a maximum pressure of ~10 MPa, as shown in Fig. 6 
(d). Therefore, without considering the safety factor, it is concluded that 

Fig. 5. Experimental results for (a) yield strength and (b) energy absorption with varying density for the compression tests of the OT and DM (mean ± standard 
deviation, n = 3). Results of structural analysis of the unit cell for the (c) OT at 10% (left), 30% (middle) and 50% (right) densities and (d) DM at 10% (left), 30% 
(middle) and 50% (right) densities. Maximum stress of the (e) OT and (f) DM in the structural analysis result as a function of density. 
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the PVC-filled part and other part require a lattice structure with yield 
strengths of ≥86.2 MPa and ≥10 MPa, respectively. 

3.4. AM of injection mold 

Based on the results of the compression test and DfAM through CAE, 
the mold was additively manufactured as shown Fig. 7(a) by applying a 
safety factor of ≥2. Thus, the PVC-filled and other parts were designed 
and fabricated with 50% DM and10% OT, respectively, as shown in 
Fig. 7(b). In particular, the part of the PVC-filled area is designed as the 
bending-dominant structure having high energy absorption to easily 
absorb pressure of materials. The other part was designed as the stretch- 
dominant structure with a high elastic modulus to resist clamping force 
during the injection cycle. The top surface of mold was fabricated the 
solid. The solid and lattice molds in this study show a definite difference 

in terms of the mold weight. The lightweight mold fabricated in this 
study exhibited reduction in the weight and amount of materials of 
~79% compared to the Ti-6Al-4V solid mold, as shown in Fig. 7(b). 

3.5. Injection molding test of lightweight mold 

If injection molding is not possible, it is not worth conducting for the 
fabrication of a lightweight injection mold. Therefore, to verify the 
applicability of lightweight molds, PVC was injected at a nozzle tem-
perature of 250 ◦C into a lightweight mold via an injection machine, as 
shown in Fig. 8(a). As a result, the lightweight mold endured the 
clamping force and injection pressure applied during the injection cycle, 
including that the mold surface was clean as shown in Fig. 8(b), and 400 
shots could be injected without damaging the lightweight mold, as 
shown in Fig. 8(c). The feasibility test results suggests that the 

Fig. 6. (a) CAD modeling of the injection mold. Boundary conditions for (b) PVC-filled and (c) other part. (d) Results of structural analysis for stress distribution 
under injection condition. 

Fig. 7. (a) Photographs of additively manufactured mold. (b) Sectional view of step height the fabricated mold (along line A-A' and B-B' in (a)). (c) Comparison of 
weight between Ti-6Al-4V sold and lightweight molds. 
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lightweight molds could potentially be used in the large mold industry. 

4. Conclusions 

In various industries, lattice structures have been extensively used as 
lightweight materials that can be easily fabricated via AM rather than 
subtractive manufacturing. To exploit the benefits of the lattice structure 
lighter than solid within same volume, herein, the verification of the 
compression behavior of lattice structures such as OT and DM, structural 
analysis of target application, injection molding via CAE, 3D printing of 
the lightweight mold with placement of lattice structures, and injection 
testing for verifying feasibility of the lightweight mold were conducted. 
Approximately 79% reduction in the weight of the lightweight mold 
having lattice structures was successfully achieved, and 400 shots of 
PVC could be injected without any damage to the lightweight mold. 
Thus, the feasibility of the as-prepared lightweight mold for injection 
molding was confirmed. Thus, this study is believed to be an effective 
technology for many 3D printing or mold users. 
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