
Citation: Ok, C.; Lee, G.; Lee, K.

Informative Language Encoding by

Variational Autoencoders Using

Transformer. Appl. Sci. 2022, 12, 7968.

https://doi.org/10.3390/app12167968

Academic Editor: Valentino

Santucci

Received: 15 March 2022

Accepted: 3 August 2022

Published: 9 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Informative Language Encoding by Variational Autoencoders
Using Transformer
Changwon Ok 1, Geonseok Lee 2 and Kichun Lee 2,*

1 KT Corporation, Seongnam 13606, Korea
2 Department of Industrial Engineering, Hanyang University, Seoul 04763, Korea
* Correspondence: skylee@hanyang.ac.kr

Abstract: In natural language processing (NLP), Transformer is widely used and has reached the state-
of-the-art level in numerous NLP tasks such as language modeling, summarization, and classification.
Moreover, a variational autoencoder (VAE) is an efficient generative model in representation learning,
combining deep learning with statistical inference in encoded representations. However, the use of
VAE in natural language processing often brings forth practical difficulties such as a posterior collapse,
also known as Kullback–Leibler (KL) vanishing. To mitigate this problem, while taking advantage of
the parallelization of language data processing, we propose a new language representation model as
the integration of two seemingly different deep learning models, which is a Transformer model solely
coupled with a variational autoencoder. We compare the proposed model with previous works, such
as a VAE connected with a recurrent neural network (RNN). Our experiments with four real-life
datasets show that implementation with KL annealing mitigates posterior collapses. The results
also show that the proposed Transformer model outperforms RNN-based models in reconstruction
and representation learning, and that the encoded representations of the proposed model are more
informative than other tested models.

Keywords: natural language processing; transformer; variational autoencoder; text mining

1. Introduction

A variational autoencoder (VAE) [1] has been applied in numerous NLP tasks, includ-
ing language modeling [2] and semi-supervised text classification [3]. The most prominent
component of a VAE in language modeling is the statistical use of latent representation,
which aims to contain holistic and informative features in texts such as styles, topics, and
semantic features. With this latent representation, samples from its prior distribution can
generate diverse and exquisite sentences [2].

Due to the inherent auto-regressive nature of texts, an auto-regressive decoder such
as a recurrent neural network (RNN) and a long short-term memory (LSTM) [4] are also
widely used, and a few integrated models with RNN and VAE have also been proposed [2].
Previous VAE-driven language modeling approaches use encoders and decoders in the
form of RNN [2] as well as the fusion of RNN and Transformer [5,6].

However, the mere use of such auto-regressive decoders, besides failing to include
informative latent encodings, induces a so-called posterior collapse that makes latent
representations useless [2,7]. To mitigate this problem, several techniques are proposed in
the literature, such as updating inference networks and generative networks in imbalanced
ways [7], refactoring loss functions [8], changing loss functions [9], and adopting Kullback–
Leibler (KL) annealing [2,10].

Transformer has produced state-of-the-art outcomes, becoming a default choice in
various natural language tasks, including generative language modeling [11] and discrim-
inative language understanding [12]. Its excellent performance is due to a self-attention
mechanism that captures contextual information from entire sequences. Thus, our view

Appl. Sci. 2022, 12, 7968. https://doi.org/10.3390/app12167968 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12167968
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-5184-7151
https://doi.org/10.3390/app12167968
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12167968?type=check_update&version=2

Appl. Sci. 2022, 12, 7968 2 of 16

is that the integration of Transformer with a variational autoencoder, which captures the
entire sequence and statistical inference, will be beneficial for various natural language
tasks.

To the best of our knowledge, no such models that make use of a Transformer archi-
tecture internally coupled with a VAE to build a new language modeling approach have
been proposed and tested. In addition, from a computational viewpoint, Transformer has
several benefits in comparison with RNNs, such as mitigating vanishing-gradient issues
and the ability to handle sequential operations and parallelization [13]. Thus, building a
language representation model in VAE solely with Transformer may capture the exquisite
holistic features of sentences with parallel computing. Furthermore, a careful adoption of
Transformer in our model may bring forth sufficient performance in various NLP tasks
without a severe adaptation of the model.

To sum up, this paper makes the following contributions: (1) We provide a novel
Transformer model inherently coupled with a variational autoencoder, which we call a
variational autoencoder Transformer (VAE-Transformer), for language modeling; (2) We
implement the VAE-Transformer model with KL annealing techniques and perform exper-
iments involving real-life datasets with different sentence lengths. With the results, we
verify that the model, which produces more informative embedding representations, is
better than previous RNN-based models in reconstruction and representation learning.

2. Preliminaries

In this section, we briefly explain the models of variational autoencoders and Trans-
former to propose a new integrated model that combines the two.

Variational Autoencoder . A VAE model is a deep generative model using latent
variables, as shown in Figure 1 [1]. VAE models assume that observable data derive from
latent (hidden) variables that follow a simple distribution, usually Gaussian.

Figure 1. Variational autoencoder.

Suppose that an observed data point x is a high-dimensional random vector, and that
latent variable z is in a relatively small dimensional space. The log-likelihood of data x can
be expressed as follows:

log pθ(x) = log
∫

z
pθ(x, z)dz ≥

∫
z

qφ(z|x) log
pθ(x, z)
qφ(z|x)

dz

=
∫

z
qφ(z|x) log(

pθ(x|z)p(z)
qφ(z|x)

)dz (1)

= Ez∼qφ(z|x)[log(pθ(x|z))]− KL(qφ(z|x)||p(z)) := ELBO,

where pθ(·) and qφ(·) are the probability density functions of x and z, respectively, and

the Kullback–Leibler divergence is KL(p||q) = ∑x p(x) log(p(x)
q(x)). The right-hand side of

the equation above is the lower bound of the log-likelihood of data x, which is called
an evidence lower bound (ELBO). Noticeably, by including inference model qφ(z|x) and

Appl. Sci. 2022, 12, 7968 3 of 16

generative model pθ(x, z), ELBO can be expressed as the sum of two terms by encoder
qφ(z|x) and decoder pθ(x|z), as shown in Equation (2) and Figure 1. Typically, we assume
that qφ(z|x) is Gaussian, N(µ, σ2 I), with dimension k, and that p(z) is also Gaussian,
N(0, I), with dimension k. Under this assumption, we can rewrite ELBO as follows:

Ez∼qφ(z|x)[log(pθ(x|z))] + 1
2

log(|σ2 I|) + k
2
− 1

2
Tr(σ2 I)− 1

2
µTµ. (2)

Using a neural network model of parameters φ and θ, we estimate the parameters by
maximizing ELBO, which is equivalent to maximizing the log-likelihood. The VA model
can be applied to language modeling for text generation and text embeddings. To generate
a sentence, x, of length T, a language model generates each token, xt, t ≥ 1, conditioned on
the previous tokens:

p(x) =
T

∏
t=1

p(xt|x<t), (3)

where xt represents the word (or unit) token at position t, and x<t represents word tokens
before position t. In other words, x<t means x1, x2, . . . , xt−1 for t > 1 and a given fixed
token, <BOS>, for t = 1, with p(x1|x<1) = p(x1). Using the auto-regressive characteristics
of Equation (3), we express ELBO as follows:

Ez∼qφ(z|x)[
T

∑
t=1

log(pθ(xt|z, x<t))] +
1
2

log(|σ2 I|) + k
2
− 1

2
Tr(σ2 I)− 1

2
µTµ (4)

In a variational autoencoder for language modeling, both an encoder and a decoder
use auto-regressive models such as LSTM [4] and GRU [14]. As depicted in Figure 2,
decoders are conditioned on latent variables designed to capture global features such as
style, topic, and high-level syntactic features [2].

Figure 2. Illustration of a variational autoencoder for language modeling. <BOS> is the beginning of
string tokens, and <EOS> is the end of string tokens

However, a variational autoencoder model using an auto-regressive decoder easily
falls into local optima, which is called a posterior collapse or KL vanishing [2,7]. This
phenomenon occurs because the model training implemented to maximize ELBO often
finishes at an early step, with latent variables z failing to contain meaningful information
about input sequences and the KL divergence term falling to zero. When reconstructing
xt with the latent variable z from such a training process, the model just relies on x<t, as
depicted in Figure 3 by the red line [7].

Figure 3. Illustration of a posterior collapse.

Appl. Sci. 2022, 12, 7968 4 of 16

To alleviate this phenomenon, numerous techniques such as updating inference net-
works and generative networks in imbalanced ways [7], refactoring loss functions [8],
changing loss functions [9], and KL annealing [2,10] have been proposed. Because of its fast
convergence coupled with low hardware capacity, we adhere to KL annealing techniques
for our experiment in this research work [2,10].

Transformer. Transformer is a sequence-to-sequence model that removes recurrence
and adopts self-attention [13]. Transformer architectures have become the state of the art
in various NLP tasks such as translation, summarization, and classification. Moreover,
the architecture is used in various pre-trained language models such as BERT [12] and
GPT [11], which have accomplished top performance in numerous NLP tasks.

Self-attention and its multi-head version are crucial in Transformer. When a sentence is
injected into the Transformer architecture and then subsequently passed to the embedding
layer, it is summed with positional encoding, which gives position information to the
output of the embedding layer. Next, the output is projected to multiple sets of query, key,
and value.

Attention includes a mapping from a query (Q), along with a key (K) and a value (V),
to an output as a weighted sum of values in which the weight, also called the attention
score, is the similarity between query and key. The similarity is a scaled dot product
between query and key, normalized by the dimension of key, dk, as in Equation (5), where
Q ∈ Rs1×dq , K ∈ Rs2×dk , V ∈ Rs2×dv , s1 and s2 are the lengths of the sequence in query
and key (or value), respectively, and dq, dk, and dv are the dimensions of query, key, and
value, respectively:

Attention(Q, K, V) = So f tmax(QKT/
√

dk)V. (5)

As an extension of attention, self-attention is an attention mechanism in which the
query, key, and value are from same source.

In addition, the Transformer mechanism adopts a multi-head attention, a mechanism
which projects query, key, and value into multiple and different spaces and applies attention
functions, as shown in Figure 4. Equation (6) shows its process as a concatenation of
multiple attention outputs, in which the linear projections are WQ

i ∈ Rdmodel×dq , WK
i ∈

Rdmodel×dk , WV
i ∈ Rdmodel×dv , and Wo ∈ Rhdv×dmodel , where dmodel is the dimension of the

model and h is the number of heads. Multi-head attention brings forth various views of
query, key, and value. The total number of heads, which is a hyperparameter, is often set in
practice by an associated performance measure.

Figure 4. Illustration of multi-head attention.

Multi-Head(Q, K, V) = Concat(head(1), . . . , head(h))Wo,
headi = Attention(QWQ

i , KWK
i , VWV

i).
(6)

The architecture includes an encoder composed of two sub-layers, a multi-head self-
attention layer, and a feed-forward neural network layer. It also has a decoder composed
of three sub-layers, a masked multi-head self-attention layer, an encoder-decoder attention
layer, and a feed-forward neural network layer. The masked multi-head self-attention layer
contains masks used in preventing the current token xt from attending the next tokens.

Appl. Sci. 2022, 12, 7968 5 of 16

When predicting the current token xt, the model can see the current token xt and previous
tokens x<t.

Transformer is equipped with an encoder-decoder structure in the decoder part, as
shown in Figure 5. The encoder-decoder attention layer calculates attention scores with the
encoder output and the decoder input, where query is the output of the masked multi-head
self-attention layer, and both key and value are the output of the encoder. We mention that
the encoder-decoder structure is essentially the connection that links the encoder part to
the decoder part in Transformer, which we will relate to the use of a VAE.

Figure 5. Illustration of the Transformer architecture.

The Transformer model is superior to existing RNN-based models in two aspects:
preventing a posterior collapse and enabling parallel computing. The issue of long-term
dependence occurs when recurrent models have back-propagated gradients gradually
decreasing to near-zero, causing latent variable z to rarely be updated in training, which
will result in a posterior collapse with useless latent variable z [7]. On the contrary, by
computing all input elements equally, the Transformer model is able to capture long-term
dependence and prevent posterior collapses. Preventing posterior collapses results in useful
latent variables generating sentences. In addition, the Transformer model is equipped with
parallel computing. Unlike Transformer, RNN-based models predict tokens in a recurrent
manner so that parallel computing is impossible. Transformer, by simultaneously treating
all input elements as a matrix form, enables parallel processing.

To the best of our knowledge, previous models of variational autoencoders with
Transformer in language modeling use a mixed version of Transformer and RNN [5,6], in
which Transformer serves as the encoder and RNNs as the decoder. With this structure,
because of the auto-regressive property of RNNs, the models hardly take full advantage
of Transformer. Thus, we will tightly couple VAE and Transformer, which can prevent
posterior collapses and enhance parallel computing. With these ideas, we propose a VAE
plugged into Transformer, which we call a VAE-Transformer model, so that the VAE can
connect the output of Transformer’s encoder with the input of Transformer’s decoder
while utilizing the ability of statistical inference via VAE in Transformer. Indeed, some
Transformer-based VAE models exist in the literature. Conditional generation models with

Appl. Sci. 2022, 12, 7968 6 of 16

VAE and Transformer [15,16] simply focus on predicting the next tokens of the decoder
such as in a machine translation problem, where the inputs of the encoder are different
from those of the decoder. The primary use of the models excludes sentence representation,
which our model focuses on. Moreover, the pre-trained models coupled with VAE by [5,17]
are different from our model in that they adopt pre-trained models inside. Furthermore,
they fail to compare theirs with RNN-based models and only perform comparisons with
other pre-trained models. Arroyo et al. [18] proposed a VAE-based Transformer model
for layout generation. The previous models just used the variational autoencoder in a
structural term, which did not alleviate posterior collapse. Our model’s novelty is its use of
VAE with Transformer in language modeling, which is applicable to conditional generation
and pre-trained models. In addition, our model alleviates posterior collapse by creating
a strong connection with the decoder and the encoder. We will explain our model in the
following section.

3. The Proposed Model, VAE-Transformer

The proposed VAE-Transformer model combines Transformer with a variational
autoencoder for both the encoder and the decoder, as shown in Figure 6. This model
remains mostly the same as the original Transformer. However, the proposed model differs
from the original model in that a variational autoencoder is plugged in to connect its
encoder output with its encoder-decoder structure so as to apply and adjust variational
effects in the decoding process. It is worth comparing the VAE-based Transformer with the
original Transformer and VAE-equipped RNNs. In addition, we believe that the embedding
by the VAE-based Transformer will be diverse while maintaining an effective representation
of input texts, such that the proposed model may be potentially useful in further NLP tasks
such as summarization, machine translation, among others.

Figure 6. Illustration of a Transformer-based variational autoencoder. O is the output of the encoder
layer, and the subscripts correspond with the input sentences. The latent-decoder attention layer is
indicated with a red line. The latent variable z from < CLS > is indicated by the blue line.

The encoder remains the same as in Transformer, except for the connection of the
encoder output to the decoder by VAE. hlIn order to create a latent variable z, we attach an
additional neural network after the last layer of the encoder. This involves µ and σ, which
are the distribution parameters of the latent variable z, which is the same as in [1] and

Appl. Sci. 2022, 12, 7968 7 of 16

shown as a blue box in Figure 6. In addition, we revise the encoder-decoder attention in
the Transformer decoder so that the latent variable z, instead of the output of the encoder,
feeds the attention module. The rationale of this structure is that it is quite close to the
encoder-decoder attention in Transformer, therefore allowing us to take advantage of the
original Transformer decoder structure. Thus, by removing the previous encoder-decoder
attention, we provide more attention to the latent variable and the output of the decoder.
We denote this structure as a latent-decoder attention after the feed-forward network,
displayed as the red box in Figure 6.

We define the abbreviations for the tokens in use: token < CLS > means the beginning
of a sentence, and token < SEP > means the end of a sentence. Using the encoder, we
generate the output of the input sequence X = [< CLS >, x1, x2, . . . , xn], in which the
output of < CLS > represents the summary of X, which is similar to BERT [12]. Using a
neural network, as the blue box shows in Figure 6, we convert the output of < CLS > in
the encoder into its stochastically sampled representation, z′, by a Gaussian distribution,
with the mean µz and variance σz of the latent variable z. Because of the indifferentiable
sampling process, we use a reparametrization trick that outsources the sampling process to
the additional variable, whose distribution is N(0, I):

z′ = µz + σz � ε, ε ∼ N(0, I),

where � is the element-wise product [1]. Using the decoder, we generate the embeddings,
z′, of the input sequence, Y = [< CLS >, x1, x2, . . . , xn], and process them in the masked
self-attention layer. We process the samples of latent variable z and the output of the
masked self-attention layer in the latent-decoder attention layer, similar to the process
performed in the encoder-decoder attention layer of the original Transformer decoder.
Lastly, we predict the token xt based on x<t and z. We obtain the loss of the entire output
sequence by fitting it onto [x1, x2, . . . , xn,< SEP >].

4. Experiments

First, we compare the proposed method with a few existing methods in language
modeling. In this work, we consider three baseline models: (1) LSTM with a variational
autoencoder [2], denoted by VAE-LSTM, which uses a variational autoencoder where both
the encoder and decoder are LSTM; (2) an LSTM language model, denoted by LSTM, which
uses an LSTM for the prediction of next tokens by previous tokens; (3) Transformer lan-
guage modeling, denoted by Transformer-Decoder, which uses only the Transformer
decoder without an encoder-decoder attention layer in the same way as [11]. We denote the
proposed method as VAE-Transformer. We also utilize the variational autoencoder with
the pre-trained model GPT2 [16] to see how a pre-trained model works in a variational
autoencoder in terms of language modeling. The encoder and the decoder of this model
are the Transformer encoder and pre-trained model GPT2, respectively. This model is used
for conditional story generation in language modeling, and we give the same inputs to the
encoder and the decoder as those used in our model. We denote this model as VAE-GPT. We
show the parameter settings for the tested models in Table 1.

For the comparison, we used four datasets, which are publicly available and widely
adopted as benchmark datasets in language modeling: Pen Tree Bank (PTB) [19], Stanford
Sentiment Treebank (SST2) [20], Twitter US Airline Sentiment (AIR), and WikiText2.
In short, PTB is a dataset for part-of-speech tagging in NLP, selected from Wall Street
Journal. SST2 is a collection of movie reviews with two labels (positive, negative). AIR
consists of tweets for US airlines with three labels (positive, neutral, negative). We, however,
just use two labels (positive, negative) in the following experiments. Lastly, WikiText2 is a
subset of wikipedia data, commonly used for language modeling.

To evaluate the performance of language modeling, we adopt two evaluation ap-
proaches: intrinsic and extrinsic. The intrinsic evaluation considers two aspects of the
generated sentences, which are the output of the decoder. The first one is reconstruction,
which refers to how well the generated sentences are reconstructed compared with the

Appl. Sci. 2022, 12, 7968 8 of 16

input sentences. We represent the ability of reconstruction as a perplexity measure [2]. The
definition of perplexity (PPL), shown in Equation (7), is related to a measure of how well
the probability distribution of a language model predicts a text sequence as reciprocal to the
averaged log probability of words. Thus, the smaller the perplexity measure for a language
model, the better the model:

PPL(x) = P(x1x2 . . . xN)
− 1

N = exp−l ,
where l = 1

N log P(x1x2 . . . xN).
(7)

Table 1. Parameter settings for the tested models.

Model Parameters Value

VAE-Transformer

model dim 128
hidden dim 512

heads 2
layers 2

dropout 0.1
activation function GeLU

number of parameters 12,763,706

VAE-LSTM

model dim 128
layers 2

encoder bidirectional TRUE
dropout 0.1

number of parameters 12,526,010

VAE-GRU

model dim 128
layers 2

encoder bidirectional TRUE
dropout 0.1

number of parameters 12,756,922

Transformer-Decoder

model dim 128
hidden dim 512

heads 2
layers 2

dropout 0.1
activation function GeLU

number of parameters 8,272,186

LSTM

model dim 128
layers 2

dropout 0.1
number of parameters 8,108,346

GRU

model dim 128
layers 2

dropout 0.1
number of parameters 8,042,298

VAE-GPT

model dim 768
encoder layers 2
decoder layers 12

dropout 0.1
number of parameters 207,349,971

The second aspect considered by the intrinsic evaluation is how well representation
learning is accomplished on the basis of a KL divergence measure since the performance
of representation learning [2]. Kullback-Leibler divergence (KL) in Equation (2), being
a statistical distance, is a measure of how one probability distribution is different from
another reference probability distribution. In particular, if a language model produces a
low reconstruction error and a high KL divergence, it means that the latent variable, z,

Appl. Sci. 2022, 12, 7968 9 of 16

represents the sentence data quite well while possibly well reflecting informative features
such as topics or styles from the input sentences. Furthermore, to specify how the latent
variables of a language model represent data, we also include mutual information (MI) [21].
Mutual information is a measure of how much two random variables are related. We
calculate the mutual information with latent variable z and input variable x.

When KL divergence and mutual information are close to zero, it means that the latent
variable z, unable to contain valuable information from input sentences, causes the model
to degenerate as conventional language modeling does. Encoders that bring forth latent
variable z with useful information from input sentences will have non-zero KL divergence
and mutual information. [2] In addition, we include the extrinsic evaluation as an extension
of intrinsic evaluation, especially for representation learning. If representation learning
works well, the latent variable z contains an ample amount of useful information for the
input sentences. To implement the usefulness of z in representation learning, we use a
sentiment classification task with z for the SST2 and AIR datasets. As the classification in
previous language models [11,12] proceeds with pre-training and fine-tuning after training
a model for language modeling with input data, we similarly fine-tune the model for
classification with the same input data, following the idea of transfer learning. For a fair
comparison, we update linear classifier module parameters in the classification model,
excluding VAE encoder parameters. We use latent variable z for classification, following the
idea of transfer learning. Figure 7 illustrates the adopted procedure of extrinsic evaluation
in classification.

Figure 7. Procedure of extrinsic evaluation in classification.

For pre-processing input texts in the experiments, we use a sentence-piece tokenizer
with a vocabulary size of 30,522, similar to the procedure used for BERT [22]. For VAE-GPT,
however, we use a byte pair encoding tokenizer that is used in GPT2. We use a fixed
sequence length (including < BOS > and < EOS > tokens). When an input sentence is
larger than the fixed length, it is truncated. When it is less than the length, it is zero-padded.
We use a fixed sequence length of 64 for the PTB, SST2, and AIR datasets and 256 for the
Wikitext2 dataset.

The parameters of the tested models are shown in Table 1. For fair testing, we make
the total number of parameters for the VAE-Transformer and VAE-LSTM models as close as
possible. We also make those for the Transformer-Decoder and LSTM as close as possible.
We notice that the parameters of the Transformer-Decoder and LSTM without VAEs are
smaller than those of the VAE-Transformer and VAE-LSTM with VAEs. As it is a pre-trained
model, VAE-GPT is the largest model of all, and a direct model comparison is fair. However,
we can check the effect of a pre-trained model in the variational autoencoder.

The model dimension of the encoder and decoder of the Transformer model is 128, and
its hidden dimension is 512. Furthermore, we use two multi-head attention mechanisms,
the GeLU activation function from Ref. [23] in each layer, and the dimension of 64 for
the latent variables. We set the encoder of the VAE-GPT model to be the same as the
VAE-Transformer encoder and the decoder of the VAE-GPT model the same as in [16].

We set the encoder of the LSTM model to be bidirectional and the decoder to be
unidirectional. We set the hidden dimension as 128, and 2 hidden layers for both the
encoder and the decoder. The hidden dimension of the LSTM language modeling is set at
128, and the two hidden layers are set to be the same as the VAE-LSTM. Moreover, we use
the same settings as that used with the VAE-Transformer for the Transformer-Decoder.

Appl. Sci. 2022, 12, 7968 10 of 16

We optimize the models by the AdamW optimizer [24] with cosine annealing [25] for a
varying learning rate. We use an initial learning rate of 1 × 10−3 for the PTB and Wikitext2
datasets and 1 × 10−4 for the SST2 and AIR datasets. The final learning rate of 1 × 10−7 is
used, which restarts every 10 epochs for all datasets. We set the momentum parameters at
0.9 and 0.999, and the weight decay as 0.1. The batch size is 32, and our model is trained in
50 epochs.

To prevent KL vanishing, we use linear annealing [2] and cyclical annealing [10].
With the annealing techniques, the objectives of the model (ELBO) are rewritten as in
Equation (8). Notice that α(t) represents a learning rate that varies with iteration t.

ELBO = Ez qφ(z|x)[log(pθ(x|z))]− α(t)KL(qφ(z|x)||p(z)) (8)

For linear annealing, α(t) starts at 0 and reaches 1 at a certain step, after which we
set α(t) at 1. For cyclic annealing, α(t) is the same as in linear annealing, except that after
reaching 1, it resets to 0 and repeats this several times, as shown in Equation (9). Figure 8
shows the comparison between linear annealing and cyclic annealing scheduling according
to iteration t.

α(t) =

{
f (τ), τ ≤ R,

1, τ > R,

τ = mod (t,dT/Me)
T/M ,

(9)

where T is the total number of training steps, f is a monotonically increasing function, M is
the number of cycles, and R is the proportion used to increase α(t) within a cycle. We set R
at 0.5 and M at 5 for 50 training epochs, in the same way as [10].

Figure 8. Comparison between linear annealing and cyclic annealing scheduling.

4.1. Results
4.1.1. Intrinsic Evaluation

As described in the previous section, we compared our model, the VAE-Transformer,
with VAE-LSTM, LSTM LM, Transformer Decoder, and VAE-GPT using intrinsic evaluation.

Table 2 shows that the VAE-Transformer outperforms the LSTM-based variational
autoencoder, LSTM language modeling, and Transformer Decoder in terms of recon-
struction and representation learning. It can be observed that the proposed model, the
VAE-Transformer, is better than VAE-LSTM regardless of the KL annealing strategy. Table 2
also shows that using a pre-trained model with VAE improves the performance of a lan-
guage model. This is because of the knowledge transfer and the size of the pre-trained
model. To illustrate the training performance, we show the learning curves of cross entropy
and KL divergence according to epochs for VAE-Transformer and VAE-LSTM in the training
session of PTB, as shown in Figure 9. In terms of cross entropy, the VAE-Transformer
is much lower than the LSTM. Moreover, it converges faster than LSTM. In each of the KL

Appl. Sci. 2022, 12, 7968 11 of 16

annealing strategies, the KL divergence of the VAE-Transformer was larger than that of
VAE-LSTM.

Table 2. Language modeling evaluation in terms of perplexity (PPL), KL divergence (KL), and
mutual information (MI). Linear means KL annealing with a linear function, and Cycle means KL
annealing with a cyclic function. Bold-faced numbers and italic ones represent the best and the
second best, respectively.

PTB Wikitext2 SST2 AIR

Model PPL KL MI PPL KL MI PPL KL MI PPL KL MI

VAE+ Transformer+Cycle 75.65 4.40 2.45 121.71 4.27 1.96 411.40 0.21 0.11 83.70 0.70 0.62

VAE+Transformer+Linear 82.01 2.50 1.54 120.16 5.29 2.26 408.62 0.18 0.08 85.92 0.01 0.01

VAE+Transformer 91.52 0.00 0.00 128.25 0.16 0.09 413.77 0.06 0.02 88.65 0.00 0.00

Transformer Decoder 118.69 170.42 456.60 100.90

VAE+LSTM+Cycle 88.64 0.90 0.81 133.81 0.55 0.38 659.85 0.00 0.00 142.72 0.01 0.01

VAE+LSTM+Linear 92.08 0.01 0.01 134.61 0.01 0.01 629.05 0.00 0.00 137.53 0.00 0.00

VAE+LSTM 92.04 0.00 0.00 132.23 0.03 0.02 656.12 0.00 0.00 147.00 0.00 0.00

LSTM LM 102.44 151.86 646.63 152.25

VAE+GPT 54.23 0.01 0.00 79.10 0.02 0.01 358.90 1.57 0.74 83.44 0.86 0.52

The experimental results indicate that the latent variables of our model contain more
useful information from input sentences than the VAE-LSTM. Furthermore, in comparison
with LSTM-LM and Transformer Decoder in reconstruction measurement (PPL), the pro-
posed model predicts the next word better than the compared models. This indicates the
informative representation z of the proposed model. In PTB and Wikitext2, VAE-GPT has
the best results for reconstruction measurement (PPL), while its KL divergence and MI are
low. This implies that posterior collapse happens naturally in those cases because of the
complexity and power of the used pre-trained model. Taking advantage of pre-trained
knowledge, the pre-trained model is able to reproduce outputs without relying on latent
variables. On the contrary, the results of SST2 and AIR, which consist of a small amount
of data, are quite different, and the decoder of the variational autoencoder has to rely on
latent variables in reproducing the sentences.

Figure 9. Learning curves in training the PTB dataset.

4.1.2. Extrinsic Evaluation

In the SST2 dataset, the VAE-Transformer using linear annealing yielded the best
result, but in order to achieve consistency with the results of [2,10], we used cyclic annealing
models for extrinsic evaluation. Similarly, in pre-trained models, we fine-tuned just the
encoder part of the variational autoencoders in the pre-trained language model and chose

Appl. Sci. 2022, 12, 7968 12 of 16

the best model using the validation data. The model was optimized by the AdamW
optimizer [24] with cosine annealing [25]. We used an initial learning rate of 1 × 10−4, with
a final learning rate of 1 × 10−7 that restarted every 10 epochs for all datasets. We set the
momentum parameters at 0.9 and 0.999 and the weight decay at 0.1. The batch size was 32,
and we trained the classification model for extrinsic evaluation in 20 epochs. The result
is shown in Table 3. For all the datasets, it can be seen that the proposed model shows
better performance than VAE-LSTM in cross entropy. This result demonstrates that the latent
variable of the proposed model is more informative and fit for classification tasks than that
of VAE-LSTM. In addition, we can observe that VAE-GPT has the largest cross entropy, which
implies that with the powerful and complex decoder, the latent variables have low sentence
representation capability because of posterior collapse.

With intrinsic evaluation and extrinsic evaluation, our model surpassed the other
tested models. Overall, the experimental results show that the Transformer-based models
are better than RNN-based model in reconstruction and representation learning, and better
at avoiding posterior collapse than the RNN-based models.

Table 3. The results of classification of the SST2 and AIR datasets. BCE represents binary cross
entropy, and Acc represents accuracy.

Model

SST2 AIR

Train Validation Test Train Validation Test

BCE Acc BCE Acc BCE Acc BCE Acc BCE Acc BCE Acc

VAE+ Transformer+Cycle 0.630 0.689 0.641 0.661 0.618 0.700 0.492 0.793 0.459 0.797 0.483 0.800

VAE+LSTM+Cycle 0.638 0.682 0.649 0.652 0.631 0.694 0.547 0.794 0.543 0.800 0.542 0.801

VAE+GPT 0.634 0.670 0.650 0.646 0.633 0.677 0.522 0.787 0.517 0.789 0.525 0.798

4.1.3. Ablation Study

We also checked the consistency of the proposed model by performing experiments
with different latent dimensions in intrinsic evaluation. We show the results in Table 4
for latent dimension 32. The results for latent dimension 32 are similar with the results
for latent dimension 64 in language modeling and representation learning. Because of
the size of the model, practical scores are different. However, both results show that the
variational autoencoder for Transformer reached the best results in every dataset. These
results show that our proposed model is superior to the other models in language modeling
and representation learning.

Table 4. Language modeling evaluation. These models have a latent variable whose dimension is 32.
Bold-faced and italic numbers represent the best and the second best, respectively.

PTB Wikitext2 SST2 AIR

Model PPL KL MI PPL KL MI PPL KL MI PPL KL MI

VAE+ Transformer+Cycle 75.17 4.78 2.58 125.78 3.67 1.73 301.83 1.02 0.90 71.40 2.64 2.14

VAE+Transformer+Linear 81.49 2.70 1.65 122.17 5.48 2.33 312.05 0.01 0.01 77.95 0.33 0.30

VAE+Transformer 92.23 0.00 0.00 128.46 1.28 0.68 321.14 0.01 0.00 80.23 0.00 0.00

Transformer Decoder 96.79 160.97 358.63 79.08

VAE+LSTM+Cycle 88.31 0.91 0.82 131.67 1.38 0.82 504.19 0.00 0.00 118.02 0.03 0.03

VAE+LSTM+Linear 90.81 0.01 0.00 136.60 0.00 0.00 503.56 0.00 0.00 115.16 0.00 0.00

VAE+LSTM 92.79 0.00 0.00 134.02 0.00 0.00 547.01 0.00 0.00 121.89 0.00 0.00

LSTM LM 93.30 141.90 486.67 123.43

Appl. Sci. 2022, 12, 7968 13 of 16

Moreover, we can see the effect of LSTM in the model by replacing it with GRU. We
show the results in Tables 5 and 6, with the proposed model evaluated by VAE-GRU.

Table 5. Language modeling evaluation. These models have a latent variable whose dimension is 32.
Bold-faced and italic numbers represent the best and the second best, respectively.

PTB Wikitext2 SST2 AIR

Model PPL KL MI PPL KL MI PPL KL MI PPL KL MI

VAE+ Transformer+Cycle 75.17 4.78 2.58 125.78 3.67 1.73 301.83 1.02 0.90 71.40 2.64 2.14

VAE+Transformer+Linear 81.49 2.70 1.65 122.17 5.48 2.33 312.05 0.01 0.01 77.95 0.33 0.30

VAE+Transformer 92.23 0.00 0.00 128.46 1.28 0.68 321.14 0.01 0.00 80.23 0.00 0.00

Transformer Decoder 96.79 160.97 358.63 79.08

VAE+LSTM+Cycle 88.31 0.91 0.82 131.67 1.38 0.82 504.19 0.00 0.00 118.02 0.03 0.03

VAE+LSTM+Linear 90.81 0.01 0.00 136.60 0.00 0.00 503.56 0.00 0.00 115.16 0.00 0.00

VAE+LSTM 92.79 0.00 0.00 134.02 0.00 0.00 547.01 0.00 0.00 121.89 0.00 0.00

LSTM LM 93.30 141.90 486.67 123.43

VAE+GRU+Cycle 69.88 5.99 2.94 110.96 9.34 2.88 381.45 0.09 0.08 99.00 0.29 0.24

VAE+GRU+Linear 76.33 3.57 2.07 110.15 9.08 2.87 394.33 0.00 0.00 102.11 0.03 0.02

VAE+GRU 86.74 0.70 0.46 123.66 0.68 0.23 376.84 0.00 0.00 95.96 0.00 0.00

GRU LM 89.92 123.56 376.72 96.60

Table 6. The results of the classification of the SST2 and AIR datasets. BCE represents binary cross
entropy, and Acc represents accuracy. These models have a latent variable whose dimension is 64.

Model

SST2 AIR

Train Validation Test Train Validation Test

BCE Acc BCE Acc BCE Acc BCE Acc BCE Acc BCE Acc

VAE+ Transformer+Cycle 0.630 0.689 0.641 0.661 0.618 0.700 0.492 0.793 0.459 0.797 0.483 0.800

VAE+LSTM+Cycle 0.638 0.682 0.649 0.652 0.631 0.694 0.547 0.794 0.543 0.800 0.542 0.801

VAE+GRU+Cycle 0.630 0.689 0.643 0.661 0.619 0.700 0.535 0.794 0.528 0.800 0.590 0.801

The results show that VAE without annealing produces a score of almost zero in KL
divergence and Mutual information. This is because of posterior collapse, after which
the latent variable becomes a useless representation. It can be observed that the GRU-
based model achieved the best performance in the PTB and Wikitext2 datasets, while
the Transformer-based model was the best in the SST2 and AIR datasets in the language
modeling task.

As for the model’s computation time, we measured the time required to calculate
forward passes in training the data, which is shown in Table 7. We conducted the experi-
ments on both PTB and WikiText2, whose volumes were substantially large. To check the
parallelization of the model, we sized up the model in terms of the parameters. As shown
in Table 7, when the model’s dimension is 128, the differences between VAE-Transformer,
VAE-LSTM, and VAE-GRU are indiscernible even though VAE-GRU is the fastest. However,
when the dimension is 1024, the differences between VAE-Transformer, VAE-LSTM, and
VAE-GRU become discernible. Even though VAE-Transformer has the largest number of
parameters, as shown in Table 8, VAE-Transformer is the fastest. It shows that Transformer-
based variational autoencoders possess great parallelization as compared to RNN-based
variational autoencoders.

Appl. Sci. 2022, 12, 7968 14 of 16

Table 7. The results for the language modeling computation time (in seconds) in the PTB and
Wikitext2 datasets.

Data PTB Wiktext2

Model’s dimension 128 1024 128 1024

VAE+Transformer 14.51 85.84 23.12 142.48

VAE+ LSTM 12.64 137.36 19.05 227.65

VAE+GRU 11.29 109.78 16.44 182.79

Transformer 11.39 63.09 19.84 106.70

LSTM 9.89 74.37 15.14 119.79

GRU 9.44 60.44 14.81 104.28

Table 8. The number of parameters in Table 7.

Model’s Dimension Number of Parameters

VAE+Transformer
128 12,763,706

1024 118,395,834

VAE+LSTM
128 12,756,922

1024 87,515,578

VAE+GRU
128 12,526,010

1024 75,575,738

Transformer
128 8,272,186

1024 71,461,690

LSTM
128 8,108,346

1024 48,315,450

GRU
128 8,042,298

1024 45,034,554

In the classification task, the GRU-based model achieved the best results in terms
of computational time. One needs to be wary of concluding that the proposed model is
inferior to the GRU-based models. Naturally, the size of a GRU-based model is smaller
than Transformer- and LSTM-based models. For example, the GRU-based model, which
converges faster than the other models, has 12,526,010 parameters, while the Transformer-
based model and the LSTM-based model have 12,763,706 and 12,756,922, respectively. We
recommend that future research should study the effect of LSTM variants with a similar
size and compare them to adequately fit datasets.

5. Conclusions

This paper introduced the use of a Transformer-based variational autoencoder for
sentences. We compared the model with an RNN-based variational autoencoder, Trans-
former decoder, and LSTM. Our model trained input datasets faster than the RNN-based
model, and our model was better than the RNN-based model in terms of reconstruction
and representation learning. Furthermore, we used our model in a classification task. The
results show that the latent variables of our model exceeded those of the RNN-based model,
which implies the ability of the model to learn the holistic features of input sentences. More-
over, we also infer that with a strong and complex decoder such as the pre-trained model
GPT, posterior collapse might occur. In future work, we hope to combine our model of
state-of-the-art pre-trained word embeddings such as GPT [11], BERT [12], and BART [26]
with techniques that reduce posterior collapse. In this work, we used the traditional loss
function and its KL annealing-equipped version in a variational autoencoder to address

Appl. Sci. 2022, 12, 7968 15 of 16

the issue of posterior collapse. We also aimed to compare various techniques, including
other loss functions, to alleviate posterior collapse in further studies.

Author Contributions: Investigation, C.O.; Resources, G.L.; Supervision, K.L. All authors have read
and agreed to the published version of the manuscript.

Funding: This work was supported by the Ministry of Education of the Republic of Korea and the
National Research Foundation of Korea (NRF-2020R1F1A1076278). This work was also supported
by ‘Human Resources Program in Energy Technology’ of the Korea Institute of Energy Technology
Evaluation and Planning (KETEP), granted financial resource from the Ministry of Trade, Industry &
Energy, Republic of Korea (No. 20204010600090).

Conflicts of Interest: The authors declare that there are no conflict of interest regarding publication
of this paper.

References
1. Kingma, D.P.; Welling, M. Auto-encoding variational bayes. arXiv 2013, arXiv:1312.6114.
2. Bowman, S.R.; Vilnis, L.; Vinyals, O.; Dai, A.M.; Jozefowicz, R.; Bengio, S. Generating sentences from a continuous space. arXiv

2015, arXiv:1511.06349.
3. Xu, W.; Sun, H.; Deng, C.; Tan, Y. Variational autoencoder for semi-supervised text classification. In Proceedings of the AAAI

Conference on Artificial Intelligence, San Francisco, CA, USA, 4–9 February 2017; p. 31.
4. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef] [PubMed]
5. Liu, D.; Liu, G. A transformer-based variational autoencoder for sentence generation. In Proceedings of the 2019 International

Joint Conference on Neural Networks (IJCNN), Budapest, Hungary, 14–19 July 2019; pp. 1–7.
6. Duan, Y.; Xu, C.; Pei, J.; Han, J.; Li, C. Pre-train and plug-in: Flexible conditional text generation with variational auto-encoders.

arXiv 2019, arXiv:1911.03882.
7. He, J.; Spokoyny, D.; Neubig, G.; Berg-Kirkpatrick, T. Lagging inference networks and posterior collapse in variational autoen-

coders. arXiv 2019, arXiv:1901.05534.
8. Zhao, S.; Song, J.; Ermon, S. Infovae: Information maximizing variational autoencoders. arXiv 2017, arXiv:1706.02262.
9. Arjovsky, M.; Chintala, S.; Bottou, L. Wasserstein generative adversarial networks. Int. Conf. Mach. Learn. 2017, 70, 214–223.
10. Fu, H.; Li, C.; Liu, X.; Gao, J.; Celikyilmaz, A.; Carin, L. Cyclical annealing schedule: A simple approach to mitigating kl vanishing.

arXiv 2019, arXiv:1903.10145.
11. Radford, A.; Narasimhan, K.; Salimans, T.; Sutskever, I. Improving language understanding by generative pre-training. Preprint

2018, in press.
12. Devlin, J.; Chang, M.; Lee, K.; Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding.

arXiv 2018, arXiv:1810.04805.
13. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.; Kaiser, L.; Polosukhin, I. Attention is all you need. In

Proceedings of the Advances in Neural Information Processing Systems 30 (NIPS 2017), Long Beach, CA, USA, 4–9 December
2017; Volume 30.

14. Chung, J.; Gulcehre, C.; Cho, K.; Bengio, Y. Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv
2014, arXiv:1412.3555.

15. Wang, T.; Wan, X. T-CVAE: Transformer-Based Conditioned Variational Autoencoder for Story Completion. In Proceedings of the
Twenty-Eighth International Joint Conference on Artificial Intelligence, Macao, China, 10–16 August 2019.

16. Fang, L.; Zeng, T.; Liu, C.; Bo, L.; Dong, W.; Chen, C. Transformer-based Conditional Variational Autoencoder for Controllable
Story Generation. arXiv 2021, arXiv:2101.00828.

17. Park, S.; Lee, J. Finetuning Pretrained Transformers into Variational Autoencoders. arXiv 2021, arXiv:2108.02446.
18. Arroyo, D.M.; Postels, J.; Tombari, F. Variational transformer networks for layout generation. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 13642–13652.
19. Marcus, M.; Santorini, B.; Marcinkiewicz, M. Building a large annotated corpus of English: The Penn Treebank. Comput. Linguist.

1993, 19, 313–330.
20. Socher, R.; Perelygin, A.; Wu, J.; Chuang, J.; Manning, C.D.; Ng, A.Y.; Potts, C. Recursive deep models for semantic compositional-

ity over a sentiment treebank. In Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing,
Seattle, WA, USA, 18–21 October 2013; pp. 1631–1642.

21. Hoffman, M.D.; Johnson, M.J. Elbo surgery: Yet another way to carve up the variational evidence lower bound. In Proceedings of
the Workshop in Advances in Approximate Bayesian Inference, NIPS, Barcelona, Spain, 9 December 2016; Volume 1.

22. Taku, K.; John, R. SentencePiece: A simple and language independent subword tokenizer and detokenizer for Neural Text
Processing. In Proceedings of the International Conference on Learning Representations, Vancouver, BC, Canada, 30 April–3
May 2018.

23. Hendrycks, D.; Gimpel, K. Gaussian error linear units (gelus). arXiv 2016, arXiv:1606.08415.
24. Loshchilov, I.; Hutter, F. Decoupled weight decay regularization. arXiv 2017, arXiv:1711.05101.

http://doi.org/10.1162/neco.1997.9.8.1735
http://www.ncbi.nlm.nih.gov/pubmed/9377276

Appl. Sci. 2022, 12, 7968 16 of 16

25. Loshchilov, I.; Hutter, F. Sgdr: Stochastic gradient descent with warm restarts. In Proceedings of the International Conference on
Learning Representations, San Juan, Puerto Rico, 2–4 May 2016.

26. Lewis, M.; Liu, Y.; Goyal, N.; Ghazvininejad, M.; Mohamed, A.; Levy, O.; Stoyanov, V.; Zettlemoyer, L. Bart: Denoising sequence-
to-sequence pre-training for natural language generation, translation, and comprehension. In Proceedings of the International
Conference on Learning Representations, New Orleans, LA, USA, 6–9 May 2019.

	Introduction
	Preliminaries
	The Proposed Model, VAE-Transformer
	Experiments
	Results
	Intrinsic Evaluation
	Extrinsic Evaluation
	Ablation Study

	Conclusions
	References

