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Abstract: Metal additive manufacturing (AM) has several similarities to conventional metal manu-
facturing, such as welding and cladding. During the manufacturing process, both metal AM and
welding experience repeated partial melting and cooling, referred to as deposition. Owing to depo-
sition, metal AM and welded products often share common product quality issues, such as layer
misalignment, dimensional errors, and residual stress generation. This paper comprehensively
reviews the similarities in quality monitoring methods between metal AM and conventional metal
manufacturing. It was observed that a number of quality monitoring methods applied to metal AM
and welding are interrelated; therefore, they can be used complementarily with each other.

Keywords: metal additive manufacturing; welding; quality control; numerical model; monitoring

1. Introduction

Metal additive manufacturing (metal AM) produces three-dimensional metal objects
by repeatedly adding and solidifying metal materials layer by layer. Metal AM has four
standard categories: powder bed fusion (PBF), direct energy deposition (DED), binder
jetting, and sheet lamination [1]. PBF and DED produce 3D-shaped metal products directly
from metal materials through deposition. During the deposition process, powder or wire-
type metal materials are melted by concentrated energy sources, such as plasma arc, laser,
or electron beam. The molten metals are positioned on a substrate or an existing material
and cooled for solidification.

PBF and DED often experience common quality issues, such as layer misalignment,
dimensional errors, and residual stress generation, owing to repeated melting and cooling.
Such quality issues can also be found in welding, one of the conventional metal manufac-
turing processes that utilize deposition. For example, Varela et al. [2] analyzed the plasma
spectrum during welding to quantify the elemental composition of the welded area, and
Lednev et al. [3] used it to identify the elemental composition of DED products. They
showed that using the plasma spectrum, which can be observed during deposition, is
feasible for identifying the elemental composition of the product in real time during DED,
as well as welding. This example suggests that quality monitoring methods between metal
AM and other metal manufacturing, especially for DED and welding, can be interrelated
and adopted with each other.

This paper provides a comprehensive review of quality monitoring methods for metal
AM and welding and recommendations for possible directions in developing quality
monitoring methods for metal AM. Section 2 introduces metal AM and welding and
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highlights their similarities. Sections 3 and 4 present a summary and discussion of quality
monitoring studies for metal AM and welding from numerical and experimental points of
view, respectively. Section 5 provides the conclusions and recommendations.

2. Metal AM and Welding

This section introduces metal AM and welding processes to explain their principles
and their similarities.

2.1. Metal AM

Metal AM is popular in the aerospace and biomedical industries, which require final
products of complex shapes [4]. Two types of metal AM processes are commonly used,
depending on the deposition method: PBF and DED [5]. The PBF process spreads metal
powder as a thin layer, typically under 100 µm, and then selectively deposits the powders
as a 2D cross-sectional shape on a single layer. Metal powders are repeatedly spread
and deposited on top of the existing layers, and the deposited 2D cross-sections are also
embedded within each other to form a final 3D shape. The DED process works on a
similar depositing principle but directly melts and positions the powder or wire-type metal
material layer by layer using nozzles, instead of spreading metal powders in a layer [6].

Figure 1 shows a schematic diagram of a typical PBF process, which consists of the
following steps: a 3D digital model is introduced into the PBF software, and the process
parameters are determined in advance, for example, the layer thickness to separate the 3D
digital model into layers, with each layer being a 2D cross-section of the model; when the
process starts, a powder-leveling roller uniformly spreads metal powders onto the build
platform; the scanning mirror controls the laser or electron beam to selectively deposit
the spread powders following the 2D cross-sections of the digital model for each layer;
when the deposition for one layer is completed, the build platform is lowered and the feed
platform is elevated; the powder-leveling roller spreads the next powder layer upon the
deposited layer, and the deposition and spreading of powders for each layer are repeated
until the entire process is completed. During the process, the deposited 2D cross-sections of
the top layers are also partially remelted and solidified together with new layers, eventually
forming a 3D shape.
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Figure 1. Schematic diagram of the PBF process; (a) a schematic model and (b) a schematic side view of PBF process.

Figure 2 presents a schematic of a typical DED process. The materials are supplied
by a coaxial or individual nozzle. The materials used for the DED process are in the
form of a metal powder or wire to be melted quickly [7]. The DED process proceeds as
follows. A 3D digital model of the product is introduced into the DED software, and the
process parameters such as energy source power, nozzle speed, material feeding rate, and
nozzle path settings are determined before starting. The nozzle moves through multiaxis
motions, following the deposition path settings, and deposits the layers until the process is
completed. During the process, the top of the predeposited part is remelted and solidified
together with the newly fed molten metal, eventually forming a 3D shape.
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Figure 2. Schematic diagram of the DED and welding processes using (a) a coaxial nozzle and (b) a
material feed nozzle.

2.2. Welding

Welding is used for joining or repairing metal parts using controlled equipment. There
are two welding joint methods: melting the base metal and depositing foreign material
on top of the base metals. In the first case, the base metals are partially melted for joining
or repairing. For welding with deposition, the foreign materials are supplied to the base
metals to be joined or repaired, and then beam-type energy sources are used to melt the
foreign materials by concentrating the heat in a small area. Similar to the DED process,
the material is supplied by a coaxial or individual nozzle in the form of a powder or wire.
Figure 2 shows a schematic of the welding process with deposition.

2.3. Similarities between Metal AM and Welding

Both metal AM and welding deposit metal, and the powder or wire-type metal
materials are repeatedly melted and solidified. Because the manufacturing principles are
similar, there are several studies reporting that the purpose of metal AM is similar to that of
welding and vice versa [8–10]. For example, Wahab et al. [8] mentioned that both PBF and
DED have the potential to repair and restore metal parts that have been damaged or are at
their end-of-life. Oh et al. [9] repaired damaged stainless steel parts using the DED process,
and Toyserkani et al. [10] reported that laser welding can be used to manufacture 3D metal
products, such as with rapid prototyping. Several studies have also been conducted to
develop hybrid metal manufacturing systems that can perform the roles of both metal AM
and welding simultaneously [11,12].

Another similarity between metal AM and welding can be found in the product quality
issue. During deposition, the metal experiences repetitive melting and cooling. Thus,
anomalies [13–16] such as melt pools, plumes, spatters, and keyholes, and defects [17–19]
such as pores, layer misalignment, dimensional errors, and residual stress generation, are
commonly found during metal AM and welding processes. Such anomalies are affected by
process parameters such as laser power, nozzle speed, cooling time, temperature, material
feeding rate, and laser spot size. Anomalies are often unpredictable, thus, they are usually
identified experimentally.

Figure 3 shows a conceptual representation of common anomalies and the defects
in metal AM and welding. The melt pool is a small pool of metallic liquids that can be
generated during deposition. A small melt pool can increase the process time, and a
large melt pool can cause vaporization of the material and increase the porosity of the
product [20]. A plume is a mixed fume of plasma and the vaporized metal. The spatters
are small splashes of molten metal or metal powders. During deposition, metal materials
are boiled by the high-energy input of the concentrated beam, and the boiled metal emits a
plume and spatter during the process [21]. Undesirable plume and spatter infusing into
the product often result in dimensional errors, undesirable surface quality, and a decrease
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in tensile properties. The keyholes are caused by vapor depression. A deep keyhole causes
excessive porosity and thus degrades the fatigue life of a product. The pore is a void inside
the product caused by the air trapped during deposition. Large and uneven pores inside a
product are known to cause cracks [22]. It was found that the major process parameters
affecting the anomaly occurrence are laser power, scan speed, cooling time, temperature,
material feeding rate, and laser spot size.
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welding.

3. Numerical Quality Monitoring Methods in Metal AM and Welding

This section reviews numerical quality monitoring methods related to metal AM
and welding. The purpose of numerical quality monitoring is to analytically identify
quality issues, such as dimensional errors and residual stress generation, using numerical
models. Numerical models are used to simulate the thermal, mechanical, and metallurgical
relationships of the process and product through a finite element analysis. Numerical
models can be used to predict future product quality and derive a combination of process
parameters to optimize process performance or product quality. The feasibility of numerical
models is validated with a variety of experiments conducted under controlled conditions.
Numerical quality monitoring methods have advantages over experimental methods in
simulating more process parameters within a relatively short time [23,24], while the use of
numerical methods may be limited by the complexity of the manufacturing process.

3.1. Numerical Quality Monitoring Methods in Metal AM

Several numerical quality monitoring methods in metal AM have focused on identi-
fying the cladding track geometry to predict the dimensional errors of the final products.
The cladding track is a trail of the deposited metal. Figure 4 shows a schematic of a single-
cladding track. El Cheikh et al. [25] quantified the cross-section of a single-cladding track
as a disk shape. Wang et al. [26] proposed a 3D powder-scale multiphysics model with
the finite volume method (FVM) to identify the single-cladding track geometry in the
DED process. The heat source, powder, and molten pool flow models were included as
submodels. Computational fluid dynamics (CFD) was applied to simulate the thermal
conditions of a real-scale laser cladding track. The influence of the laser power and DED
nozzle speed on the height and width of a single track was numerically quantified using
the model. In addition, the authors presented a Gaussian process regression model that
can precisely predict the laser cladding track geometry based on the proposed model. Wits
et al. [27] proposed a numerical model that considers energy densities to predict the shape
of a single-cladding track. The authors observed that a low energy density input to the
track caused a large porosity, and a high energy density input produced a wide track. Wirth
and Wegener [28] proposed a numerical model to predict both the height and width of a
cladding track in multiple overlapping situations. Abbes et al. [29] used a numerical model
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to simulate the multilayer stacking situation of cladding tracks. A finite pointset method
(FPM), which has the advantage of less calculation time because the FPM does not generate
mesh, was applied to simulate the situation. The model was based on mass, momentum,
and energy conservation equations. The relationship between the cladding angle and the
temperature distribution of the track was quantified. Additionally, the authors used the
model to optimize the laser power to improve the track geometry. The accuracy of the
proposed model was validated using a previous finite element method (FEM) model [30].
The authors suggested that the FPM would be a low-cost alternative in the numerical
monitoring method for metal AM, compared to the FEM.
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Various numerical studies have been conducted to identify the causes of residual
stress during the metal AM process. Residual stress in a product may result in distor-
tion, fatigue, creep, and corrosion [31]. Martínez et al. [32] investigated the major process
parameters related to geometrical distortion of PBF products. The distortion and the mis-
alignment of the PBF specimens produced with various parameter settings were evaluated
by coordinate-measuring machine (CMM). The authors noted that high thermal gradi-
ents could cause thermal residual stress and distortion. Based on both experimental and
numerical results, the authors reported that laser path and substrate thickness were the
major process parameters for residual stress generation and geometrical distortion. By
applying a 3D thermo-mechanical FE model, Lu et al. [33] reported that the complexity
of the DED product geometry significantly affected the residual stress generation, and
the spiral tool path generated less residual stress when a product had a complex shape.
Additionally, the authors reported that the heat input had a significant effect on residual
stress generation and distortion, while the powder feeding rate had less effect. Through
numerical modeling, Roberts et al. [34] simulated the temperature histories of a metal AM
product to identify the area under residual stress. The results showed that the deposited
area under the stacked layer underwent rapid temperature cycles, which could cause
residual stress. The residual stress in the metal AM product was numerically quantified
in a study conducted by Roberts et al. [35], and it was observed that increasing the layer
of track increased the average residual stress. Renken et al. [36] used a numerical model
to identify the influence of heat flow on the residual stress in a DED product. Through
the proposed model, the authors found that maintaining a constant laser power caused
residual stress in the complex-shaped product. Denlinger et al. [37] proposed a numerical
prediction model for the residual stress and distortion in multiple layers of cladding tracks,
observing that the newly deposited layer experienced the greatest amount of tensile stress,
while the layer below it was subjected to compressive stress.
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3.2. Numerical Quality Monitoring Methods in Welding

Numerical quality monitoring methods in welding have focused on reducing the resid-
ual stress in welded areas. It was found that a higher welding speed [12,38–41], shorter
cooling time [42], and substrate preheating at higher temperatures [43] can retard the
residual stress generation in the welded area. Ma et al. [41] designed a polynomial model
considering the laser beam power, scanning speed, and defocus parameters on dilution and
residual stress using response surface methodology. It was found that the defocus parame-
ter and scanning speed had a significant effect on dilution and residual stress. Additionally,
the authors applied a multiobjective quantum-behaved particle swarm optimization algo-
rithm to find parameters that minimize dilution and residual stress. Huang et al. [43] found
that the residual stress along the weld direction was much greater than that perpendicular
to the weld direction. Derakhshan et al. [42] used a numerical model to examine the
residual stress and distortion in thin welded plates and observed that concentrating the
energy could reduce the residual stress-generating area in thin plates. Nazemi et al. [44]
developed a simulation model based on the thermal–metallurgical–mechanical relationship
to simulate the microhardness and residual stress of cladded specimens. The effects of
various process parameter sets were studied, and the proposed model was utilized to
optimize the cladding process parameters to minimize the residual stress. Fang et al. [45]
proposed a numerical model considering the effect of phase transformation on the residual
stress during single-and multipass laser cladding processes.

3.3. Discussion on Numerical Quality Monitoring Studies in Metal AM and Welding

Table 1 summarizes the numerical quality monitoring methods for metal AM and
welding. Based on the literature review, the numerical quality monitoring methods in
metal AM focused on analyzing the formation of the cladding track and identifying the
causes of residual stress. Multiple cladding tracks form a single 2D layer, and multiple 2D
layers are stacked to produce the final 3D-shaped product. Thus, the dimensional errors of
a single-cladding track may significantly affect the dimensions of the final product [46].

Table 1. Summary of numerical quality control studies of metal AM and welding.

Process Input Process Parameters Outcome References

Metal AM

- Laser power
- Nozzle speed
- Energy density
- Cladding temperature

- Identified the cross-section, width, and height of a
single-cladding track

- Identified the width and height formation of multiple
stacked cladding tracks

[25–29,39,40]

- Thermal flow
- Laser power
- Number of track layers

- Increasing the track layers can cause residual stress
- Identified the residual stress generation under

multilayer stacking situations
[32–37]

Welding

- Welding speed
- Cooling time
- Welding direction

- Identified the specific section of welded area
experiencing maximum residual stress and
deformation

- Identified the magnitude difference between the
longitudinal and transverse residual stresses

- Identified the influence of welding speed on the
residual stress generation

[12,38–41]

- Welding speed
- Cooling time
- Substrate preheating

temperature
- Welding temperature
- Laser spot size

- Reduced residual stress by concentrating the energy
beam and substrate preheating

- Reduced residual stress with faster welding speeds
- Optimized the welding power, welding speed, and

martensitic transformation temperature to reduce
residual stress

[12,38–45]
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Numerical studies in welding have focused on identifying and further reducing the
residual stress generation in welded areas. According to Table 1, the main purpose of
conducting numerical studies in welding is to ensure the durability and reliability of the
welded area, in that welding is generally used to join and repair metal parts.

It was found that the phenomenon of residual stress generation during the processes
was actively studied in both metal AM and welding. Numerical studies of residual stresses
in metal AM still focus on identifying the causes of residual stress generation due to the
complex design of the products. Due to the nature of metal AM, which deposits a number
of layers to realize complex 3D shapes, temperature profile during the process and residual
stress generation are affected by various process parameters. Several studies reported that
residual stress in metal AM products can be reduced through preheating the substrate, as
well as determining proper process parameters [32,33,47–49]. Numerical studies aiming to
find methods for reducing residual stress generation in welded areas are expected to be
promising for improving product quality in metal AM.

In welding, it is necessary to examine more numerical studies on the formation of
cladding tracks. Similar to the metal AM process, the dimensional error of cladding tracks
in welding affects the dimensions of the welded area. This can interfere with the formation
of smooth and precise welded surfaces, which are required in aerospace products to reduce
weight and drag [50], thus, introducing numerical studies on cladding track formation in
metal AM processes may be promising for welding.

4. Experimental Quality Monitoring Methods in Metal AM and Welding

This section reviews the experimental quality monitoring methods for metal AM and
welding. Experimental quality monitoring methods have been used to identify anomalies
during the process and to predict the final product quality [51]. Experimental quality
monitoring can be conducted in a destructive or nondestructive way. For example, X-
ray computed tomography (X-ray CT) has attracted attention as a nondestructive quality
monitoring method for metal AM [52–54]. X-ray CT forms a 3D model of the product by
capturing and reconstructing a number of X-ray images around the axis of rotation [55].
The 3D CT model can be used for the visualization, geometry or porosity measurement, and
reverse engineering of metal AM products [56]. Recently, experimental quality monitoring
has often been conducted using nondestructive means by implementing in situ monitoring.
In situ monitoring allows the nondestructive identification of anomalies in advance and
helps in decision making on interventions for quality issues in a short time. As a repre-
sentative anomaly during deposition, melt pool behavior is related to both metal AM and
welding. The melt pool behavior varied according to the process parameter settings. Melt
pool monitoring allows the process engineer to adjust the values of the process parameters
to control the melt pool behavior [57,58].

4.1. Experimental Quality Monitoring Methods in Metal AM

Image monitoring is a common experimental quality monitoring method for anomaly
detection in metal AM. Optical [59–61], X-ray [62,63] and thermal [64–68] image sensors
have been utilized to capture the images with anomalies. It was experimentally observed
that anomalies, such as the melt pool [36,65,69–71], plume and spatter [59,60,71,72], and
keyhole [62,63], can cause porosity, residual stress, and dimensional errors in both PBF
and DED products. Yakout et al. [67] comprehensively monitored the shape, size, and
number of spatters during the metal PBF process using a high-speed infrared camera.
It was observed that the number and the size of the spatters are affected by the laser
power and build rate. During deposition, the spatter particles scattered to the surface of
each layer and agglomerated with each other on the surface, causing layer delamination.
Especially, large spatter particles caused crack and separation at the edge of the product.
Ye et al. [59] applied a high-speed near-infrared (NIR) camera to capture optical images of
plume and spatter. The authors applied improved deep belief network (DBN) to recognize
the captured images. Because the proposed DBN does not need a feature extraction stage, it
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has potential to implement in situ plume and spatter monitoring for PBF processes. It was
observed that the proposed DBN showed 83.40% accuracy in recognizing plume and spatter
images in real time. Liu et al. [60] quantified the plume and spatter sizes through optical
images and found that the tensile properties of the product decreased when the plume
and spatter were mixed into the product during the process. Lott et al. [61] integrated an
additional illumination source for a high-speed complementary metal-oxide semiconductor
(CMOS) camera to capture melt pool images at high sampling rates. Clijsters et al. [66]
connected a high-speed infrared camera to a field-programmable gate array (FPGA) to
implement a high-speed data acquisition system. Additionally, a feedback closed-loop
system was designed to control process parameters such as laser power, scan speed, and
single-cladding track height [73]. Cunningham et al. [62] applied high-speed X-ray image
sensors to capture the keyhole phenomenon during a DED process and experimentally
found that the laser power was dominant around the keyhole depth. Across the monitoring
studies, it was found that melt pool, plume, spatter, and keyhole occur together during
deposition. Other studies showed that applying image sensors is also feasible in identifying
dimensional errors during metal AM [74–76]. By monitoring and characterizing the optical
images of a single deposited layer in real time, Caltanissetta et al. [74] identified the
dimensional errors of each layer during a PBF process and predicted the dimensional error
of the final products.

Some experimental studies have reported that the plasma spectrum and acoustic
signals can also be used for monitoring metal AM processes. The width of the cladding
track [77] and elemental composition [3,78] of the product can be identified from the
plasma spectrum. Zhang et al. [77] focused on using optical emission spectroscopy (OES)
for single-cladding track monitoring during the DED process. The authors focused on
the spectral intensity and electron density of the plasma spectrum, which can indicate the
width of a single-cladding track. A spectrometer with a wavelength range of 200–950 nm
was applied to the DED machine, off-axial to the arc torch, and the iterative discrete wavelet
transform was selected to denoise the spectrum data of the arc [79]. It was observed that the
plasma spectrum can be used for in situ geometry monitoring. Song et al. [78] applied laser-
induced OES to predict the binary alloy composition during the DED process. Support
vector regression (SVR) was used to recognize the pattern between the plasma spectrum
and elemental composition in real time. The proposed method showed more accuracy and
robustness over a wider concentration range than did previous methods. Shevchik [80]
demonstrated the feasibility of using acoustic signals for porosity prediction. Taheri [81]
also focused on acoustic signals for metal AM monitoring and suggested the possibility
that acoustic signals can be used to recognize the thermal properties of the product, such as
conductivity, heat capacity, and coefficient of thermal expansion. Based on these existing
studies, Koester et al. [82] and Hossain and Taheri [83] noted the possibility of real-time
monitoring systems using acoustic signatures for metal AM.

Other experimental studies have focused on the implementation of multisensor mon-
itoring systems [64,67,68,84–86]. Renken et al. [64] proposed a multisensor monitoring
concept with lower monitoring errors to identify the melt pool for real-time monitoring.
The thermal image, laser wavelength, and melt pool depth were collected simultaneously.
Stutzman et al. [86] proposed a multisensor monitoring system that includes optical emis-
sions and image sensors to identify plume characteristics. The relationship between the
plasma emission of the plume and the plume area was quantified using the proposed
monitoring system. The relationship showed that strong plume plasma emissions resulted
in an increased plume area. Additionally, the authors demonstrated that the plasma emis-
sion of the plume can be used to evaluate the buildup quality of the DED process. Tian
et al. [68] used two distinctive thermal and image data of the melt pool to predict the
internal porosity in a metal AM product with high accuracy. The authors noted that the
infrared image of the melt pool can have some associations with porosity, and thus can be
used for porosity prediction. The thermal data collected by pyrometer was trained using
CNN and the images collected by infrared camera were trained using long-term recurrent
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convolutional networks. The authors fused two models, which showed better prediction
accuracy than the individual models.

4.2. Experimental Quality Monitoring Methods in Welding

Several experimental studies have been conducted on welding to identify anomalies
using image data. Similar to metal AM, the keyhole [87,88], melt pool [89,90], and distor-
tion [87,91] were identified as welding anomalies by image monitoring. Heigel et al. [91]
proposed a thermal image monitoring system to identify the distortion of the cladding
track during the laser cladding process. The results show that the distortion of the cladding
track is directly related to the clad heat. Calleja et al. [57] observed that the materials were
excessively deposited to the corners of the product due to the nonuniform powder feed rate
during the laser cladding process. As the geometry of the product became more complex,
the excessive material deposition increased, which led to a geometrical error. Based on
the monitoring result, the authors developed a real-time feed rate control algorithm to
optimize the process. The manufacturing test result showed that the excessive material
deposition was eliminated by applying the algorithm. Examples can also be found in
monitoring common anomalies.

The plasma spectrum was also utilized to monitor anomalies during the welding
process. Shevchik et al. [92] characterized keyholes using plasma emission monitoring.
Three optical sensors covering different wavelength ranges were applied to increase the
possibility of collecting keyhole features. The authors proposed another monitoring system
in a subsequent study [93], which reduced the keyhole identification time for real-time
spectral emission monitoring. Wang et al. [89] demonstrated that analyzing the plasma
spectrum from the melt pool can be a potential method for monitoring the melt pool
properties in laser welding.

There were experimental studies focused on utilizing acoustic signals to monitor the
welding. Zhu et al. [94] characterized keyhole shapes using acoustic signals. Wu et al. [95]
noted that acoustic signals from a keyhole contain dynamic change information of the
keyhole to predict the keyhole geometry. Shelyagin et al. [96] predicted the welding
temperature using an acoustic signal. Wasmer et al. [54] applied acoustic signals for
keyhole and spatter monitoring. Zhang et al. [97] evaluated the changes in the weld size
and localized discontinuities of the welded area through acoustic signals. He et al. [98]
found that the use of acoustic signals for welding could identify deformation and cracks
during welding.

Several experimental studies applying multisensors for laser welding have been
reported. Liu et al. [88] applied multisensors in order to identify the interactions between
the laser beam and the preheated filler wire in a laser hot-wire welding process. By applying
a high-speed optical camera, the authors found that preheating the wire reduced the
heat input during welding and laser beam power consumption and produced a deeper
penetration. Additionally, by applying a spectrometer, the authors observed that the
electron temperature of the plasma could be used for real-time monitoring of the variation
of the welded area features and the formation of weld defects. Liu et al. [90] applied a
multisensor monitoring system to investigate the influence of the process parameters on
the melt pool behavior during laser powder welding. An infrared camera was used to
study the temperature distribution, size, and cooling rate of the melt pool. Additionally, a
pyrometer was used to measure the variation in the brightness temperature of the melt pool,
observing that the laser power and carrier-gas flow rate were dominant in the melt pool
behavior. Some studies focusing on the use of acoustic signals have also applied additional
image sensors to ensure the accuracy and detectability of the monitoring system [54,94,95].

4.3. Discussion on Experimental Quality Monitoring Methods in Metal AM and Welding

Table 2 summarizes the classification of the experimental quality monitoring methods
of metal AM and welding. Various data types have been used, such as images, plasma
spectra, and acoustic signals for metal AM monitoring. Throughout the review, note
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that image data are commonly used for experimental quality monitoring in metal AM.
Because the metal AM process involves the gradual addition of thin metal layers during
manufacturing, the images of each layer or cladding track geometry provide intuitive
information for quality monitoring. By collecting and analyzing images from the process,
anomalies, such as melt pool, plume, spatter, and keyhole, can be identified, and quality-
related features can be extracted from the anomalies. Plasma spectra are commonly used
to quantify the elemental compositions during the metal AM process and sometimes to
identify the cladding track formation in the DED process [86]. Acoustic signals have
also been used for detecting anomalies, however, few cases have been reported in metal
AM processes.

Table 2. Classification for experimental quality control studies of metal AM and welding by utilized data.

Process Data Types Outcome Reference

Metal AM

Image
- Identified the melt pool, plume, spatter, and keyhole
- Extracted quality-related features from image data
- Identified dimensional errors of each layer

[59–72,74–76,86]

Plasma spectrum
- Quantified the elemental composition
- Identified the width of cladding tracks
- Developed spectrum data acquisition system with

wider concentration range

[3,77–79,84,86]

Acoustic signal - Identified the thermal properties of the product
- Predicted porosity

[80–83]

Welding

Image - Identified the melt pool and keyhole
- Identified distortion of the cladding track

[54,87–91,94,95]

Plasma spectrum - Quantified the elemental composition
- Identified the keyhole occurrence

[2,89,90,92,93]

Acoustic signal
- Identified the keyhole and spatter
- Monitored the process temperature
- Identified deformation, crack, and discontinuities

[54,94–98]

In welding, similar to metal AM, images, plasma spectra, and acoustic signals have
been introduced for experimental quality monitoring. Anomalies such as melt pool, key-
hole, and distortion were identified through the images. Plasma spectra were also used to
quantify the elemental composition of the welded area and identify the keyhole occurrences.
Unlike metal AM, it was noted that acoustic signals were actively utilized for monitoring
the welding process. By utilizing acoustic signals for the welding process, researchers can
identify anomalies, defects in the welded area, and process temperatures.

Several experimental quality monitoring methods for welding have the potential to
be introduced to metal AM. For example, Hossain and Taheri [83] examined the possibility
of using acoustic signals for both PBF and DED defect monitoring. The authors found that
other types of metal manufacturing, such as machining and welding, have used acoustic
signals for defect monitoring. Based on the review of these existing cases, the authors
recommended that applying acoustic techniques for the real-time and nondestructive
monitoring of metal AM can show promising results.

It was found that several quality monitoring methods in welding can be directly applied
to the DED process with some adjustment [3,52,55,77,79]. For example, Lednev et al. [3]
focused on the possibility of using the plasma spectrum for real-time monitoring in the
DED process. The applicability of using the plasma spectrum to quantify the elemental
composition of metal alloys has already been demonstrated in welding [2]. To apply
real-time spectrum monitoring to the DED process, the authors concentrated mainly on
developing a compact coaxial spectrum sensor that can be attached to the nozzle. The
results showed that using a spectrum sensor is also feasible for identifying the elemental
compositions of DED products in real time.
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In general, existing experimental studies on both metal AM and welding have focused
mainly on integrating multiple sensors to improve the detection accuracy. Anomalies and
defects can be detected by various types of monitoring data, thus, integrating multiple
sensors can lead to robust quality monitoring. Several studies on metal AM have reported
monitoring systems that integrate spectrum sensors and image sensors, however, few
cases of integrating acoustic sensors have been reported. Because acoustic signals have
a better penetration capability than do optical or spectrum signals, they are appropriate
for finding internal defects in the product [99]. Incorporating acoustic signals into an
integrated monitoring system can be a promising experimental quality monitoring method
for metal AM.

5. Conclusions

This paper comprehensively reviewed the similarities between metal AM and welding
based on their principles, quality issues, and quality monitoring methods. Metal AM and
welding are directly related in terms of their fabrication principles. Similar quality issues
are found in both metal AM and welding owing to deposition. Additionally, both numerical
and experimental quality monitoring methods of metal AM and welding processes were
summarized and discussed to highlight the interrelationship between them. Several quality
monitoring methods applied to welding, such as acoustic and spectrum monitoring, are
currently being introduced to metal AM, and they can be applied complementarily to
each other.

Several metal manufacturing processes can be interrelated to metal AM. For example,
the path control of concentrated energy sources in both DED and PBF can be related to
tool path control of CNC machining, as well as residual stress reduction [100]. Thus, the
authors expect that continuous investigations of quality monitoring methods, which can
be complementarily adopted between metal AM and conventional metal manufacturing,
can lead to the simultaneous improvement of the process and product quality for both
processes. To this end, in-depth and practical investigations, including data acquisition
and process control, are required for each quality monitoring method between metal AM
and other conventional metal manufacturing methods.
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