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Featured Application: Automobile, DC motor.

Abstract: An accelerated degradation test (ADT) has become a popular method to accelerate degra-
dation mechanisms by stressing products beyond their normal use conditions. The components of
an automobile are degraded over time or cycle due to their constant exposure to friction or wear.
Sometimes, the performance degradation can be measured only by destructive inspection such as
operating torques of return-springs in a bi-functional DC motor system. Plastic deformation of the
return-spring causes the degradation of actuating forces for shield movement, resulting in deteriora-
tion of the shield moving speed in a headlight system. We suggest a step-by-step procedure for a
reliability analysis for a bi-functional DC motor in a headlight system, based mainly on accelerated
destructive degradation test (ADDT) data. We also propose nonlinear degradation models to describe
the ADDT data of the return-springs. Exposure effects of high temperatures on the return-springs are
quantitatively modeled through the ADDT models. We compare the estimation results from both
the closed-form expression and Monte Carlo simulation to predict the failure–time distribution at
normal use conditions, showing that the lifetime estimation results from the closed-form formulation
are more conservative.

Keywords: accelerated destructive degradation test; degradation model; fault tree analysis; Monte
Carlo simulation; reliability

1. Introduction

Due to increasing global competition, automobile manufacturers are requested to
evaluate the reliability of newly designed automobiles as quickly as possible using limited
resources before releasing them. The most common approach for this purpose is to use an
accelerated life test (ALT) which facilitates failure mechanisms by stressing the products
beyond their normal use conditions. Analogous to the ALT, an accelerated degradation
test (ADT) has recently replaced ALT when failure data are supplemented by degradation
data as measurements of product deterioration (e.g., the luminosity of a display device,
storage capacity of a rechargeable battery) available at one or more time-points during
the reliability test. Degradation mechanisms for the products (e.g., fatigue, crack growth,
electro-migration, oxidation) can be accelerated by increasing voltage, temperature, hu-
midity or other external factors. In some applications, the degradation level at a specific
time-point can be measured only by destructive inspection such as operating torques of
return-springs in a bi-functional DC motor system, as in this study. That is, testing units
are destroyed or physical characteristics are significantly changed after measuring the
performance degradation. In such a manner, only one measurement can be taken from one
unit. Along with accelerated variables to hasten degradation mechanisms, this form of
testing method is referred to as an accelerated destructive degradation test (ADDT).
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ADDT has been commonly employed in industrial practice to evaluate the long-term
material properties. Nelson [1] conducted ADDT to evaluate dielectric breakdown strength
of insulation specimens using accelerated temperatures. Escobar et al. [2] proposed a
parametric approach to ADDT for the adhesive bond B data. Li and Doganaksoy [3]
analyzed ADDT testing data of the seal strength at accelerated temperature conditions.
Recently, Xie et al. [4] proposed a semiparametric model to describe ADDT data of the
adhesive formulation K. In the literature, the analysis of the ADDT data involves a model
fitting to the degradation paths over time. Meanwhile, accelerated stress effects should be
explicitly incorporated into the ADDT model in a parametric manner. See Escobar et al. [2]
for more details on the models and data analyses of ADDT.

In the literature on reliability analyses in the field of automobiles, Pfeufer [5] proposed
a model-based fault detection method based on the parity-space and parameter estima-
tion approach for the reliability improvement of automotive actuators. Zhang et al. [6]
employed the reliability sensitivity analysis of design parameters to multiple case studies
including coil springs and composite springs in automobiles. Shin and Lee [7] proposed
the reliability analysis of small DC motors for automobiles with Accelerated Life Testing.
The application of the inverse-power law model indicates its main failure mechanism—
performance degradation by brush wear out. Liu et al. [8] also studied the reliability
analysis of automobile welding structures to analyze its strength degradation of key com-
ponents, to name a few.

In this work, we provide a step-by-step procedure of the reliability analysis for bi-
functional DC motor systems, based mainly on ADDT data. We also propose nonlinear
degradation models to describe the ADDT data of the return-springs in a bi-functional DC
motor system. To derive the failure-time distribution from the ADDT data, both the closed-
form formulation approach and Monte Carlo simulation were conducted. The DC motors
are replacing solenoid motors which have been widely used in various industry areas. In
particular, DC motors have garnered more attention for its effective usage, due to its limited
dimension and weight, for electronic devices in automobiles. A number of studies on the
reliability analysis regarding DC motors have been performed up to this point. Moseler
and Isermann [9] conducted fault detections based on the mathematical modeling of each
electrical and mathematical subsystem. Kara and Eker [10] proposed a nonlinear modeling
for DC motor rotation dynamics. Shin and Lee [11] studied degradation mechanisms
of brushes for automotive small brush-type DC motors. Shin et al. [12] investigated the
effects of the wear behavior of copper-graphite brushes to predict the lifetime of small
brush-type DC motors. General approaches to predict the lifetime of the DC motor system
are provided by Flickinger et al. [13]. To our best knowledge, however, the reliability
evaluation for DC motor systems using ADDT is not abundant. Some components such as
the return-spring in automobiles have performance degradation patterns with a destructive
nature. While many components of automobile are influenced by the constant contact and
friction caused by service, some components are affected by temperature as well.

Figure 1 shows a bi-functional DC motor system for an automobile. The general
objective of the bi-functional DC motor system is to control the function of the headlight
beam. Despite its importance for the driver’s safety, claims about its functional faults
are constantly increasing. In particular, main complaints from users come from the in-
completeness of the on-off switching of headlights (see Figure 2). It is mainly induced by
the malfunction of the return-spring due to degradation of their elastic restoring forces.
Reliability analysis of DC motor return-springs becomes a major issue in mechanical engi-
neering. However, there is still a limitation on collecting enough reliability information
about them because their elastic restoring forces can be measured only via destructive
tests. We found through ADDT that the degradation paths of operating torques of the
return-springs in a bi-functional DC motor system are of nonlinear form. We proposed a
nonlinear degradation model to describe the ADDT data of the return-springs.
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Figure 1. Bi-functional DC motor system in an automobile.

Figure 2. Fault phenomenon of a headlight system.

Figure 3 briefly summarizes the overall ADDT approach and its data analysis proce-
dure for return-springs in the bi-functional DC motor system. After investigating major
degradation mechanisms and identifying critical components of the bi-functional DC mo-
tor system via the fault tree analysis (FTA), ADDT is conducted based on the conditions
derived from the preliminary test. For the ADDT data, a variety of candidate degradation
models are fitted and the best model is selected according to model evaluation criteria.
Finally, lifetime distribution and reliability measures at normal operating conditions are
estimated from the selected degradation model.

Figure 3. A flow diagram for the accelerated destructive degradation test (ADDT) and data analysis
procedure.

The remainder of this paper is organized as follows. Section 2 presents degradation
mechanisms of return-springs in a bi-functional DC motor system. Section 3 illustrates the
experimental setup of the ADDT and ADDT model for return-springs in the bi-functional
DC motor systems. Then, reliability prediction at normal use conditions is performed
based on the ADDT model constructed at higher stress levels. Section 4 concludes this
paper and states possible future research directions.

2. Degradation Mechanisms of Bi-Functional DC Motors

Fault tree analysis (FTA) was first conducted to identify critical components in a bi-
functional DC motor system. Figure 4 presents FTA for the bi-functional DC motor system,
showing that a return-spring is one of critical components for the failure of on-off switching
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of highlight beams. It has been proved that the return-spring has the shortest lifetimes in
an FTA performed by reliability engineers. The spring is supposed to play a major role in
maintaining and restoring the moving shield. However, plastic deformation or breakdown
of the return-spring can cause the malfunction of shield movement, eventually resulting
in the failure of the headlight system. Plastic deformation of the return-spring causes the
degradation of actuating forces for shield movement, resulting in the deterioration of shield
moving speed. A failed return-spring is shown in Figure 5. From preliminary investigation
and an expert’s knowledge in the field, the primary reason of its failure may be the constant
exposure to high temperatures released from headlight beams; as a result, the operating
strength of the return-spring will deteriorate as time goes on.

Figure 4. Fault tree analysis (FTA) of a bi-functional DC motor system in an automobile.

Figure 5. Breakdown of a return-spring in a bi-functional DC motor.

3. ADDT Analysis
3.1. Experimental Setup

Before performing the ADDT, a preliminary test was executed to determine accelerated
stress conditions for selecting the highest stress level. A temperature acceleration test was
performed to examine whether test units fail under identical degradation mechanisms at
five temperature levels above 300 ◦C. The return-springs were firmly fixed to jigs on the
plate shown, then put in a chamber for high-temperature exposure (see Figure 6). From
this preliminary test, extremely high temperatures (e.g., 400 ◦C, 600 ◦C) caused quite severe
distortions of the return-spring shape (see Figure 7). To secure failures of return-springs
from similar degradation mechanisms at a real operating condition (230 ◦C) for the ADDT,
we selected two temperature levels lower than 400 ◦C: 300 ◦C and 325 ◦C, considering the
test chamber capacity. We measured actuating forces of return-spring A in terms of high
angle torque at the two accelerated temperature levels. Initially, 60 samples were put on
the ADDT at each temperature level, then 3 samples were randomly chosen to measure
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their high angle torques per every inspection point. The torques of the return-springs were
measured using a sensor-based machine in Figure 8. The machine rotated an arm after
fixing the other arm, then measured the actuating forces as T = L× F, where L is a length of
the arm (unit: mm) and F is the actuating force (unit: kgf). Strictly speaking, the arm length
denotes the distance from the spring center to the device rotating the arm. Note that the
arm angle of the return-spring is 130◦ at low-beam rotation and 170◦ at high-beam rotation.

Figure 6. The jig plate (left) and a zig shape firmly fixing a return-spring (right).

Figure 7. Degradation shapes of test samples at each temperature condition.

Figure 8. A sensor-based machine measuring the actuating force of a return-spring.
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3.2. ADDT Model

Notation

i The number of stress levels
j The number of testing units

ni The number of samples in the i-th stress level.
t Measurement time
xi i-th stress level.
θ Parameter vector for degradation path

yij(t) Degradation result of j-th testing unit at i-th stress level.
εij(t) Normal error term to describe unit-to-unit variability
D(·) Mean degradation path
FY(·) Cumulative distribution function for degradation y
Φ(·) Cumulative distribution of standard normal distribution

β0, β1 Parameters for the degradation model
Ea Activation energy
D f Pre-determined failure threshold level
N Th number of simulation iterations
θ̂ Vector of estimated parameters in ADDT model

Σ̂θ̂ Covariance matrix for estimated parameter θ̂

Suppose that the ADDT of a return-spring is conducted at two higher stress levels:
x0 ≤ x1 ≤ x2, where x0 is the normal use stress, that is, 230 ◦C in a bi-functional DC motor
system. The observed sample degradation path at measurement time t on the jth testing
unit under stress level xi is given by

yij(t) = D(t; xi, θ) + εij(t) i = 1, 2, j = 1, . . . , ni, t = 1, . . . , lij, (1)

where D(t; xi, θ) is the mean degradation path at time t under stress level xi, and ni is the
number of samples measured at the ith stress level. D(·) is assumed to be a monotonic
decreasing function of time t and the parameter vector θ; it is also a twice differentiable
continuous function. εij(t) is a normal error term describing unit-to-unit variability as
N
(
0,σ2).

For temperature–acceleration processes, the Arrhenius model is often used to represent
the relationship between the degradation process and temperature as

xi = h(Tempi) = −
11, 605

Tempi + 273.15
, (2)

Here, Tempi is in degrees Celsius, and the value 11,605 is the reciprocal of Boltzmann’s
constant in units of electron volts per Kelvin (eV/K). The value of 273.15 in the denominator
is used to convert to the absolute Kelvin temperature scale. Note that the transformed
function h(·) is of the exponential form for the Arrhenius model, that is, h(·) ≡ exp(·).

With respect to the ADDT model in Equation (1), the regression based general path
models have been widely applied in many applications, e.g., (transformed) linear path
model [14] and nonlinear path model [15]. Recently, a semiparametric model has been
suggested by Xie et al. [4]. For a given time and accelerated variable level, the cumulative
distribution function (CDF) for the degradation y is

FY(y; t, x) = Pr(Y ≤ y; t, x) = Φ
[

y−D(t; x, θ)

σ

]
, (3)

where Φ(·) is the CDF of a standard normal distribution. For the mean degradation path,
four popular degradation models are employed; exponential, power, logarithmic, and
logistic models. Table 1 lists the formulas of the four models and plots the outlined features
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under specified values of their parameters with β1 < 0. For example, the exponential
ADDT model with the Arrhenius relationship at temperature level xi is given by

yij(t) = β0· exp
{

β1· exp
(

Ea ×
(

11.605
Tempu + 273.16

− 11.605
Tempi + 273.16

))
·t
}
+ εij(t), (4)

for i = 1, 2, j = 1, . . . , ni, t = 1, . . . , lij, and θ ≡ (β0, β1, Ea). Here, Tempu denotes the
normal use temperature level and Ea is the activation energy of the return-spring. Under
the parametric specification, the parameters can be estimated by using the maximum
likelihood (ML) method or least-squares (LS) approach. In this work, we use the ML
method since the ML method is more efficient in the nonlinear degradation model and
we can easily quantify uncertainty through asymptotic normality for the ML estimator or
its function.

Table 1. Mean degradation path models applied to ADDT of springs.

Model Exponential Logarithmic Power Logistic

Mean
degradation D = β0exp(β1t) D =

β0 + β1ln(t) D = β0·tβ1 D = 1
1+exp(β)·t

Degradation
over time

To derive the failure–time distribution from the ADDT model in Equation (1), the
failure-time T is defined as the first crossing time that the actual degradation path D(t; x, θ)
reaches the pre-determined threshold level D f . Along with a decreasing degradation path,
failure-time T being less than t is equivalent to an observed degradation being less than
D f at time t; that is,

FT(t; x) ≡ Pr(T ≤ t) = Pr
(

Y ≤ D f

)
= Φ

[D f −D(t; x, θ)

σ

]
, t ≥ 0. (5)

Figure 9 shows the ADDT data of return-spring samples in bi-functional DC motors
at 300 ◦C and 325 ◦C. Note that the degradation of the operating force for the return-
spring is of nonlinear form and the force degradations at 325 ◦C are steeper than those
at 300 ◦C. We seek a model for relative operating force by dividing each measurement
of the operating force by the initial value to easily derive the failure-time of the return-
spring, where the failure is defined at the time when the relative operating force falls below
1.23 kgF/1.42 kgF = 86.89%. The values of 1.23 kgF and 1.42 kgF were derived from the
preliminary experiment of users’ cognitive speed for return-spring resilience. We fitted
the four models, including one linear model, to the ADDT data, but we re-parameterized
the exponential model to fit the relative actuating forces and to present the decreasing
degradation rate as

yij(t) = exp
{
− exp(β)· exp

(
Ea ×

(
11,605

Tempu+273.16 −
11,605

Tempi+273.16

))
·t
}
+ εij(t). (6)

In addition, we also modified the logarithmic model and the power model to fit the
relative actuating forces as

yij(t) = 1− β· exp
(

Ea ×
(

11, 605
Tempu + 273.16

− 11, 605
Tempi + 273.16

))
· ln(t + 1) + εij(t), (7)
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and
yij(t) = (t + 1)

β· exp (Ea×( 11,605
Tempu+273.16−

11,605
Tempi+273.16 ))

+ εij(t), (8)

respectively.

Figure 9. Degradation paths of actuating forces for return-springs at 300 ◦C and 325 ◦C.

Figure 10 presents the fitting results of the mean degradation path from four can-
didate models, along with the estimated degradation path at the normal use condition
(230 ◦C). The horizontal dashed line represents the failure threshold. We computed the
log-likelihood, Akaike information criterion (AIC) [16], and Bayesian information criterion
(BIC) [17] to support the best model selection procedure. The AIC is a general-purpose
criterion which is defined as: AIC = −2l

(
θ̂
)
+ k, where l

(
θ̂
)

is the log-likelihood for
the ML estimates θ̂ and k is the dimension of θ, that is, the number of parameters to
be estimated. The BIC is defined as: BIC = −2l

(
θ̂
)
+ klog(n), where n is the number

of observations for the ADDT. The intention of these two information criteria is to help
us find the simpler model by assigning the penalty for increasing the complexity of an
assumed model. If we are using the log-likelihood, we prefer the model with the larger
log-likelihood, while we prefer the model with the lower AIC, or lower BIC to compare
several models for the same data. Table 2 summarizes the statistics from the best model
selection procedure. All the results advocate the power model as the best model for the
ADDT data of return-springs. The parameters of the power model were estimated as:
β̂ = −0.0114, Êa = 0.2571, and σ̂2 = 0.01682. Using the asymptotic normality for the
MLEs, the variance-covariance matrix of θ̂ =

(
β̂, Êa

)
was obtained by the inverse of Fisher-

information matrix as:
^
Σθ̂=[1.02× 10−6, 2.65× 10−5; 2.65× 10−5, 6.98× 10−4]. Finally, the

mean degradation model at the normal use condition is

yij(t) = (t + 1)−0.0114, (9)

and its path was plotted as the dashed line in Figure 10c.
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Figure 10. Fitting results of the ADDT data from the four candidate models.

Table 2. Stress condition for the failure mechanism.

ADDT Model Log-Likelihood AIC BIC

Exponential 222.54 −439.08 −430.25
Logarithmic 373.49 −740.99 −732.16

Power 374.53 −743.07 −734.24
Logistic 230.38 −454.75 −445.93

3.3. Failure-Time Analysis

To derive the failure-time distribution in normal use conditions, we used two methods;
closed-form expression and the Monte Carlo simulation, based on the estimated parameters
for the power degradation model selected as the best for the ADDT experiment data. Using
the variance-covariance matrix of estimated parameters, 100,000 degradation paths were
simulated from the Monte Carlo simulation. The pseudo-failure is determined at the time
that the degradation path reaches the given failure threshold (86.89%).

Suppose that a specified model for degradation path D(t) and the failure-time distri-
bution can be derived by the function of the degradation model parameters. Assume that a
unit fails at given time t for the degradation path to reach a given criterion D f

Pr(T ≤ t) = Fy(t; x, θ) = Pr
[
D(t; x, θ) ≤ D f

]
. (10)

For a given D f , the distribution of T depends on the distribution of the degradation
model parameters θ. In general, a closed-form expression exists and the life estimators can
be calculated based on the nonlinear D(t) with the MLE θ̂. The pth quantile of the lifetime
distribution is derived using the relationship

D
(
tp; x, θ̂

)
= D f − σ̂·Φ−1(p), (11)

and by solving the power model in terms of tp.
In addition to the lifetime estimation using the closed-form equation, a numerical

method was applied to compare the precision of the estimated results. A Monte Carlo
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simulation can be an effective approach for the evaluation of Fy(t; x, θ) by the large number
of random sample paths generated with the assumed model. The procedure of the lifetime
estimation based on the simulation algorithm is given as follows.

• Step I: Generate N (large number: e.g., N = 100, 000) simulated degradation paths us-

ing the estimators
(

β̂(1), Êa(1)

)
, . . . ,

(
β̂(N), Êa(N)

)
of
(

β̂, Êa
)

from a multivariate nor-

mal distribution with mean θ̂ =
(

β̂, Êa
)
= (−0.0114, 0.2571) and variance-covariance

matrix
^
Σθ̂, where we used the variance-covariance matrix of θ̂ ≡

(
β̂, Êa

)
to simulate

the random sample path.
• Step II: Compute N pseudo-failure times corresponding to the N realizations of(

β̂(1), Êa(1)

)
, . . . ,

(
β̂(N), Êa(N)

)
, where the pseudo-failure time is defined as the point

where the degradation path intersects with the failure threshold.
• Step III: For any desired values of t, use the following function for evaluation of F(t)

as
F(t) ≈ # o f simulated intersecting time ≤ t

N
.

As the value of N increases, the precision of the estimation will improve. Using the
Monte Carlo simulation, the simulated degradation paths with the given failure criterion
and resulting failure-time distribution is given in Figure 11.

Figure 11. Simulated degradation paths and failure-time distribution at normal use conditions from
the ADDT data.

The results of the lifetime estimation using both the closed-form equation and Monte
Carlo simulation are compared in Table 3, where the years of use were calculated according
to the average usage rate of the vehicle at 4 h per day. As described in the table, the overall
lifetimes based on the closed-form equation become conservative since this method does
not consider the variability of the parameters and directly estimates the constant value of
the independent parameter set, θ̂ ≡

(
β̂, Êa

)
. On the other hand, the numerical method

provides a more centralized lifetime distribution, where the generated degradation paths
are spread around the original path through the closed-form equation.

Table 3. Percentile estimation of the return-spring at normal use conditions.

Estimation
Method Percentile 1 5 10 20 30 40 50

Closed-form
equation

Hour 4,694 14,256 25,925 53,775 91,351 144,033 220,914
(Year) (3.22) (9.76) (17.76) (36.83) (62.57) (98.65) (151.31)

Monte Carlo
simulation

Hour 18,061 29,356 38,593 94,050 127,629 168,546 220,311
(Year) (12.37) (20.11) (26.43) (64.42) (87.42) (115.44) (150.90)
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4. Conclusions

The ADDT is a useful tool for making reliability inferences and predictions of products
with limited testing times and resources by employing accelerated stress conditions. We
proposed the step-by-step procedure of an ADDT analysis for the return-springs in a
bi-functional DC motor system in this work. From the ADDT, return-springs were tested
for 1000 h at 300 ◦C and 325 ◦C. Four nonlinear degradation models were applied to the
ADDT data and from the comparative study among the four models, a power model was
selected as the best, based on the log-likelihood, AIC, and BIC. From both the closed-form
expression and the Monte Carlo simulation, using the estimates of the parameters in the
assumed model, failure-time distribution at normal use conditions and reliability measures
of interest were derived.

In this work, we only considered one degradation mechanism. However, there may
be more than one degradation mechanism, which can cause the observations to be right-
censored. For future research, the application of the Bayesian method and the consideration
of several accelerated variables can be beneficial for various practices in the automobile
and other industries. If prior information about degradation mechanisms is available,
Bayesian methods incorporating the priors into the ADDT model parameters can be useful
in improving the precision of reliability or other specified quantities of interest at normal
use conditions. Sometimes, several accelerated variables (e.g., accelerated temperatures
and humidity levels, accelerated temperatures and voltages) are involved in ADDTs. The
optimal experimental design for an ADDT with several accelerated variables can be devised
for testing cost minimization or precision maximization.
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