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Brain–computer interfaces (BCIs) based on electroencephalogram (EEG) have recently
attracted increasing attention in virtual reality (VR) applications as a promising tool for
controlling virtual objects or generating commands in a “hands-free” manner. Video-
oculography (VOG) has been frequently used as a tool to improve BCI performance
by identifying the gaze location on the screen, however, current VOG devices are
generally too expensive to be embedded in practical low-cost VR head-mounted
display (HMD) systems. In this study, we proposed a novel calibration-free hybrid
BCI system combining steady-state visual-evoked potential (SSVEP)-based BCI and
electrooculogram (EOG)-based eye tracking to increase the information transfer rate
(ITR) of a nine-target SSVEP-based BCI in VR environment. Experiments were repeated
on three different frequency configurations of pattern-reversal checkerboard stimuli
arranged in a 3 × 3 matrix. When a user was staring at one of the nine visual stimuli, the
column containing the target stimulus was first identified based on the user’s horizontal
eye movement direction (left, middle, or right) classified using horizontal EOG recorded
from a pair of electrodes that can be readily incorporated with any existing VR-HMD
systems. Note that the EOG can be recorded using the same amplifier for recording
SSVEP, unlike the VOG system. Then, the target visual stimulus was identified among
the three visual stimuli vertically arranged in the selected column using the extension
of multivariate synchronization index (EMSI) algorithm, one of the widely used SSVEP
detection algorithms. In our experiments with 20 participants wearing a commercial VR-
HMD system, it was shown that both the accuracy and ITR of the proposed hybrid BCI
were significantly increased compared to those of the traditional SSVEP-based BCI in
VR environment.

Keywords: brain-computer interface, electroencephalogram, electrooculogram, virtual reality, steady state visual
evoked potential
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INTRODUCTION

Brain–computer interface (BCI) is a technology that directly
translates brain activities into commands to provide users with a
new communication channel toward outside world (Vallabhaneni
et al., 2013). Although previous BCIs were mostly applied
to patients with severe paralyzes (Daly and Wolpaw, 2008),
their applications have been gradually expanded to the general
public in recent years, one of the representative example of
which includes hands-free operation of external devices (Coogan
and He, 2018) such as drones (Nourmohammadi et al., 2018),
robots (Liu et al., 2021), and game characters (Vasiljevic and
De Miranda, 2019). Recently, the rapid development of virtual
reality (VR) technology brought about the increasing demand
for new types of input devices for VR applications, other than
the conventional hand controllers, particularly for those who
cannot freely move their limbs due to severe paralyzes. For the
hands-free control of VR or augmented reality (AR) devices,
electroencephalography (EEG)-based BCIs have been intensively
studied because of its affordability, ease of use, and portability
(Park et al., 2019). Among the various EEG-based BCI paradigms
including motor imagery (MI), P300, and steady-state visual-
evoked potential (SSVEP) (Yin et al., 2015), SSVEP-based BCIs
have been successfully applied to VR applications as a new
hands-free communication tool, thanks to its high information
transfer rate (ITR) and no (or less) training requirement (Coogan
and He, 2018; Stawicki et al., 2018; Choi et al., 2019; Grichnik
et al., 2019; Monteiro et al., 2021). However, the number of
visual stimuli used for SSVEP-based BCIs in VR environment
was generally limited to four or five because of the relatively
poorer performance of the SSVEP-based BCIs implemented
using head-mounted displays (HMDs) than those implemented
with conventional liquid crystal displays (LCDs) (Chen et al.,
2015; Yao et al., 2018). As will be shown in the results of this study,
the increment of the number of visual stimuli (e.g., 9) greatly
degrades the overall classification accuracy compared to previous
studies because the SSVEP-based BCIs implemented with VR-
HMDs are more prone to be affected by the peripheral vision due
to the relatively short distance between the eyes and the display.

To effectively increase the number of target visual stimuli
and/or elevate the overall performance of BCIs, a variety of
hybrid BCIs combining EEG with other physiological signals,
including video-oculography (VOG) (Hong and Khan, 2017;
Stawicki et al., 2017; Ma et al., 2018; Yao et al., 2018)
and electrooculogram (EOG) (Saravanakumar and Ramasubba
Reddy, 2019, 2020), have been developed. VOG is a non-invasive,
video-based method to measure the movements of the eyes and
is known to provide a high-precision estimate of the absolute
coordinates of the eye gaze. However, because the amount of
light inside the VR-HMDs is often too limited to track the pupil
of the eyes, most VOG-based eye trackers embedded into VR-
HMDs are implemented with infrared wide-angle cameras (Clay
et al., 2019; Sipatchin et al., 2021), which leads to a rise in
the total device cost (Ivanchenko et al., 2021; Modi and Singh,
2021). On the contrary, the eye trackers based on EOG can be
implemented at a much lower cost than VOG-based eye trackers
(Chang, 2019). Moreover, the EOG signals can be recorded
using the same amplifier for recording EEG, whereas the VOG

systems are totally independent from the EEG systems, which
increases the overall expense of the system. Specifically, VIVE
Pro Eye, a commercialized VR-HMD combined with a camera-
based eye tracker, costs about 1,500 USD.1 Because the VR-HMD
costs approximately 700 USD per device, it can be said that
adding a VOG device costs approximately 800 USD. On the
contrary, as the EOG shares the same amplifier with EEG, just
adding two EOG electrodes would cost less than 100 USD, far
lower price than VOG.

However, in most hybrid BCIs that simultaneously used EOG
and EEG, EOG was employed just as an auxiliary tool to switch
on/off SSVEP-based BCIs by identifying the eye blinks of the
users (Park et al., 2019; Saravanakumar and Ramasubba Reddy,
2019; Zhou et al., 2020; Zhu et al., 2020). There was only one
previous study that used EOG-based eye tracking to select a
group of targets in an SSVEP-based BCI (Saravanakumar and
Ramasubba Reddy, 2020) although the study used an LCD for
the rendering device. Their system consisted of two sequential
steps: (i) eye movements or blinks detected from EOG were used
to select one of the nine target groups, and then, (ii) SSVEP was
used for detecting a target among four visual stimuli included in
the group. Because the system did not simultaneously use EOG
with EEG, it is not only questionable whether their system can be
classified as a hybrid BCI system, but also the time required for a
single selection process was relatively long compared to the other
hybrid BCI systems owing to the two-step selection process.

In this study, we proposed a novel hybrid BCI system that
simultaneously use EOG-based eye tracking with SSVEP-based
BCIs with the aim to improve the BCI performance of a nine-
target SSVEP-based BCI in VR-HMD environment. Inspired by
the fact that horizontal EOG (hEOG) recorded from a pair of
electrodes attached to outer canthi of both eyes can be classified
with a high classification accuracy, one of the three columns
in a 3 × 3 matrix was first identified based on the user’s
horizontal eye movement direction (left, middle, or right). Note
that vertical EOG (vEOG) was not employed in our study because
the estimation of eye gaze using vEOG is generally known to be
less accurate than that using hEOG (Chang et al., 2016; Lee et al.,
2017). Then, the target visual stimulus was identified among the
three pattern-reversal checkerboard stimuli vertically arranged in
the selected column based on the SSVEP-based BCI. Unlike the
previous study by Saravanakumar and Ramasubba Reddy (2020),
we used the EOG and EEG signals simultaneously to select a
single target among nine visual stimuli. Through experiments
with 20 participants wearing a commercial VR-HMD system, it
was investigated whether the BCI performance of the proposed
hybrid BCI could be significantly enhanced compared to that of
the conventional SSVEP-based BCI in VR environment.

MATERIALS AND METHODS

Participants
A total of 20 healthy volunteers (16 men and 4 women, 25 ± 3.4
years) with normal or corrected-to-normal vision participated in
the experiment. None of the participants reported a history of

1https://www.vive.com/uk/product/vive-pro-eye/overview/
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FIGURE 1 | The configurations of the electrodes: (A) locations of EEG electrodes and (B) EOG electrodes.

neurological or psychiatric disorders that might have influenced
the experimental results. However, the data of two participants
were excluded owing to the nonexistence of spectral peaks
in the recorded EEG; thereby, data of 18 participants were
analyzed in the further analyses. This so-called BCI-illiteracy
is a well-reported issue in the EEG-based BCIs (Allison et al.,
2010). All participants were given monetary compensation for
their participation in the experiments. The study protocol was
approved by the Institutional Review Board (IRB) of Hanyang
University, South Korea (IRB no. HYI-14-167-13).

Apparatus
The EEG and EOG data were recorded from four electrodes
attached to the scalp (Cz, O1, Oz, and O2) (Figure 1A)
and two electrodes attached to the outer canthi of both
eyes (see Figure 1B), respectively, using a multichannel
biosignal recording system (BioSemi ActiveTwo, Amsterdam,
the Netherlands) at a sampling rate of 2,048 Hz. A common
mode sense electrode and a driven right leg electrode were
placed at left and right mastoids, respectively. Participants were
asked to refrain from any voluntary movement during the
entire experiment.

Visual stimuli were presented in a VR environment using
a commercial VR-HMD (VIVETM; HTC Co. Ltd., NewTaipei
City, Taiwan), whose refresh rate was set to 90 Hz. To keep
the constancy of the relative position between the participant
and the visual stimuli, the screen on the VR-HMD was set
to follow the head movement of the participant. In other
words, the screen presented in the front of the participant in
VR environment remained the same regardless of the user’s
head movement. The wearing angle of the VR-HMD and its
interpupillary distance (IPD) was adjusted for each participant
before the main experiment.

Experiment Paradigm
A schematic diagram of the proposed hybrid BCI system is
presented in Figure 2. The visual stimuli were presented to the
user via a VR-HMD, which was controlled by Unity software in a
PC. The EEG signals were measured from the user by a biosignal
amplifier (BioSemi ActiveTwo).

Each trial consisted of rest (5 s), fixation (1 s), instruction
(1 s), and stimulus (4 s) periods (see Figure 3). After the
rest period, the participants were instructed to stare at the
fixation cross on the center of the HMD screen (denoted by
the fixation period), followed by the instruction period when
one visual stimulus among the nine stimuli was highlighted
with a red rectangular boundary to let the participant know
the location of the target visual stimulus to stare at during
the stimulus period. The participants were asked to restrain
from eye blinking during the fixation, instruction, and stimulus
periods, but they could blink their eyes during the rest period.
The experiment paradigm was developed using Unity 3D (Unity
Technologies ApS, San Francisco, CA, United States) and was
presented on the VR-HMD.

In the stimulus period, a 3 × 3 array of pattern-reversal
checkerboard (PRC) stimuli was used to elicit SSVEP responses.
The visual stimuli presented on the VR-HMD are shown in
Figure 4A. Total nine checkerboard stimuli reversing at different

FIGURE 2 | A schematic diagram of the proposed hybrid BCI system. The
visual stimuli were presented to the user via a VR-HMD, which was controlled
by Unity software in a PC. The EEG signals were measured from a user by a
biosignal amplifier (BioSemi ActiveTwo).
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FIGURE 3 | Schematic diagram of a single trial in the experimental paradigm.

FIGURE 4 | (A) Nine visual stimuli presented on the screen, (B) the three directions classified using EOG: left, middle, and right, (C) three different configurations of
pattern-reversing frequencies. Numbers represent the stimulus numbers listed in Table 1. C1, C2, and C3 represent the three configurations of visual stimuli tested
in the experiments.

frequencies were presented, whose reversing frequencies are
listed in Table 1. The frequencies were determined by dividing the
refreshing rate of VR-HMD (90 Hz) by natural numbers ranging
from 7 to 15. The distance between the eye and the stimuli was set
to 60 cm in the virtual environment. Therefore, the visual angle
of each stimulus was set to 5◦ (5.24 cm), and the visual angle
between two adjacent stimuli was set to 7◦ (7.34 cm). Each of
the nine visual stimuli was repeatedly selected three times in a
randomized order for each participant; therefore, total 27 trials
were performed for each session. Three different configurations
of the nine visual stimuli were tested to rule out the variation of
classification accuracy according to the stimuli arrangements (see
Figure 4C, where the three configurations are denoted by C1, C2,
and C3 and the number in each element of the matrix indicates
the stimulus number in Table 1). Each stimulus configuration was
made according to a rule that stimuli with similar frequencies
or overlapping harmonic components should not be placed
closely with each other. To rule out the potential influence of
the experimental order, the three different configurations were
presented in a randomized order for each participant.

Preprocessing of Electroencephalogram
and Electrooculogram Signals
The recorded EEG and EOG data were downsampled from 2,048
to 512 Hz to reduce the computational cost. The EEG data were
bandpass filtered with 2 and 54 Hz cutoff frequencies, using a

sixth order zero-phase Butterworth filter, to remove power-line
noise (60 Hz) and low-frequency fluctuations. The filtered EEG
data were then rereferenced with respect to Cz, by subtracting the
EEG data of Cz from the EEG data of O1, Oz, and O2, respectively
(Lai et al., 2011; Park et al., 2019). As for the EOG data, hEOG
signal was extracted by subtracting the EOG signal of the left
electrode from that of the right electrode. Then, the hEOG was
lowpass filtered with a 10 Hz cutoff frequency, using a sixth-order
zero-phase Butterworth filter. MATLAB R2020b (MathWorks;
Natick, MA, United States) was used for the preprocessing of the
recorded EEG and EOG data.

Data Analysis
Electrooculogram Analysis
Horizontal EOG was used to classify three directions of the
eye movement: left, middle, and right (Figure 4B). A simple
algorithm was developed to classify the eye movement directions
with a high classification accuracy without a need for individual
calibration sessions. First of all, baseline correction was

TABLE 1 | Pattern-reversing frequencies used for the experiments.

Stimulus number 1 2 3 4 5 6 7 8 9

Freq (Hz) 12.86 11.25 10.00 9.00 8.18 7.50 6.92 6.43 6.00

The stimulus numbers (1–9) correspond to the numbers in the stimulus
configurations depicted in Figure 4C.
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performed by subtracting the median of the hEOG recorded
during the fixation period from the hEOG data recorded during
the stimulus period. The median value was used owing to its
superior performance of preserving edge steepness of saccadic
eye movements (Bulling et al., 2011). The median of hEOG
during the first 1 s of the stimulus period (hereafter denoted by
M) was then evaluated for each trial. If the M-value dropped
below −65 µV, the eye movement during the stimulus period
was classified as “left,” whereas the eye movement was classified
as “right” if the M-value exceeded 75 µV. Otherwise, the eye
movement was classified as “middle.” The positive and negative
threshold values (-65 and 75 µV, respectively) were determined
using preliminary experiments with three participants and were
applied to all the participants without any individual calibration
process. Please note that these threshold values should be
differently set if the experimental environments (e.g., recording
device and visual angles between stimuli) are changed.

Electroencephalogram Analysis
After the classification of three directions, SSVEP responses
were classified to one of the three PRC stimuli in the selected
direction using the extension of multivariate synchronization
index (EMSI) with no training (Zhang et al., 2017). Multivariate
synchronization index (MSI) is an algorithm that finds
the specific stimulation frequency that maximizes the
synchronization index, by calculating the synchronization
between a given EEG signal and reference signals generated
with the stimulation frequencies and their harmonics. EMSI
is an extended version of MSI to improve the performance of
MSI by incorporating the first-order time-delayed version of
the EEG data. In this study, two harmonic frequencies were
taken into account, and none of the subharmonic components
was considered. For the classification of SSVEP responses, three
channels (O1, Oz, and O2) located in the occipital area were used.

Performance Evaluation
The performance of the proposed hybrid BCI system was
evaluated by comparing the BCI system simultaneously using
SSVEP and EOG (hereafter denoted by the “SSVEP+EOG”
case) with the BCI system using SSVEP responses only
(hereafter denoted by the “SSVEP-only” case). To compare
the performances for SSVEP+EOG with SSVEP-only cases,
classification accuracy and ITR were evaluated for all three
configurations (C1, C2, and C3) with respect to different analysis
window sizes. The formula to calculate the ITR is given as follows:

ITR =
60
T

(
log2N + Plog2P (1−P) log2

(
1−P
N−1

))
, (1)

where T represents the window size, N represents the number
of possible targets, and P denotes the classification accuracy
(Wolpaw et al., 1998). In addition, confusion matrices were
computed to investigate the origin of the misclassification.
To compare the difference in classification accuracies of
SSVEP+EOG and SSVEP-only cases for different window
sizes, statistical analyses were conducted using the Bonferroni-
corrected Wilcoxon signed-rank test. Wilcoxon signed-rank

test was employed as the classification accuracy, and ITR did
not follow a normal distribution for both SSVEP-only and
SSVEP+EOG cases.

RESULTS

We first investigated whether the accuracy of classifying three
directions (left, middle, and right) using hEOG was high
enough to be employed for our hybrid BCI system (see
Figure 5). The average classification accuracy was reported to be
97.74 ± 3.89%. Particularly, the classification accuracies for 11
out of 18 participants were 100%. These results suggest that the
reliability of the hEOG-based eye tracking is high enough to be
employed as a reliable tool for the recognition of horizontal eye
movement directions.

The comparison among all three frequency configurations
(i.e., C1, C2, and C3 in Figure 4C) is presented in Supplementary
Figure 1. As seen in the figures, no distinct trend was found across
the results for three different frequency configurations. The same
results were visualized in a different manner in Figure 6, where
the mean classification accuracies and averaged ITR values were
depicted as a function of analysis window sizes for SSVEP-only
and SSVEP+EOG cases for each of three configurations. For
all three configurations, the proposed hybrid BCI outperformed
the conventional SSVEP-based BCI in terms of both the mean
classification accuracy and ITR.

Statistical analyses also confirmed the superiority of the
proposed hybrid BCI to the conventional SSVEP-based BCI. The
SSVEP+EOG case outperformed the SSVEP-only case in the
classification accuracy in (i) C1 for all window sizes except 3.5
and 4 s (Figure 6A: 1 s: p < 0.01; 1.5 s: p < 0.01; 2 s: p < 0.01; 2.5
s: p < 0.05; 3 s: p < 0.005; 3.5 s: p = 0.164; 4 s: p = 0.123), (ii) C2
for all window sizes (Figure 6C: 1 s: p < 0.01; 1.5 s: p < 0.05; 2 s:
p < 0.05; 2.5 s: p < 0.05; 3 s: p < 0.05; 3.5 s: p < 0.05; 4 s: p < 0.01),
and (iii) C3 for all window sizes (Figure 6E: 1 s: p < 0.01; 1.5 s:
p < 0.01; 2 s: p < 0.01; 2.5 s: p < 0.05; 3 s: p < 0.005; 3.5 s: p < 0.05;
4 s: p < 0.05). As for the ITR, statistical significance was found in
all three configurations except for the 3.5 and 4 s for window sizes
in the C1 configuration (Figures 6B,D,F).

DISCUSSION

In this study, we proposed a new hybrid BCI system combining
SSVEP-based BCI and EOG-based eye tracking to effectively
improve the BCI performance in VR environment. Since only
a single amplifier system is sufficient to record both EEG and
EOG signals, the proposed hybrid BCI system can be made
more concisely and economically compared to the conventional
hybrid BCI systems combining EEG and VOG. Experiments
were performed with three different frequency configurations
of pattern-reversal checkerboard stimuli arranged in a 3 × 3
matrix displayed using a commercial VR-HMD. First, the column
containing the target stimulus was identified based on the
user’s horizontal eye movement direction (left, middle, or right)
identified using horizontal EOG. The target visual stimulus was
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FIGURE 5 | Accuracy of classifying three directions (left, middle, and right) using hEOG for each participant. The grand averaged classification accuracy was
97.74 ± 3.89% (denoted by “Mean” in the graph).

then identified among the three stimuli vertically arranged in the
selected column using the EMSI algorithm. Our experimental
results demonstrated that the proposed hybrid BCI could exhibit
significantly higher classification accuracy and ITR than the
conventional BCI that used SSVEP only. It is noteworthy that
the proposed system does not require any calibration session
or a trained classifier. To the best of our knowledge, this
is the first study that implemented a hybrid BCI system by
combining SSVEP and EOG without any additional tasks or
training sessions. The results of experiments with 18 participants
suggest that the proposed system has the potential to be used as a
practical hands-free control tool for VR applications, particularly
for those who cannot freely move their limbs.

To further investigate the origin of errors in the BCI
systems tested in our experiments, confusion matrices were
evaluated for the SSVEP-only case (Supplementary Figure 2)
and also the SSVEP+EOG case (Supplementary Figure 3). As
shown in the confusion matrix for the SSVEP-only case, the
misclassification occurred most frequently between the frequency
of 12.86 Hz and 6.43 Hz, which can be observed in (1, 7),
(7, 3), and (2, 6) elements of C1, C2, and C3 confusion
matrices, respectively, in the Supplementary Figure 2. These
misclassifications occurred because these two frequencies share
some harmonic frequency components. However, when these
two frequencies were placed in different columns (C2 and C3
configurations), the employment of the proposed hybrid BCI
method could dramatically prevent the misclassification between
these two frequencies (13.2%→ 0% in C2-2s case; 20.0%→ 0%
in C2-4s case; 26.5%→ 0% in C3-2s case; and 26.7%→ 0% in
C3-4s case) (see Supplementary Figure 3). It is interesting to
note that the misclassification rate for these two frequencies was
still high in the case of C1 configuration where both frequencies
were placed in the same column. These results suggest that an
appropriate arrangement of the stimulation frequencies would

help to increase the overall classification accuracy of the hybrid
BCI system. Indeed, as seen from Supplementary Figure 1, the
configuration C1 did not show the best performances among the
three configurations for any window sizes in the SSVEP+EOG
case. In contrast, C2 showed the best performances among
the three, by avoiding the frequencies that have overlapping
harmonic components.

In this study, only hEOG was used to classify the horizontal
eye movement directions: left, middle, and right. vEOG was not
employed in this study owing to its instability. vEOG is known
to be easily biased by sweat-oriented noises in the forehead
or facial asymmetry (Chang et al., 2016), which was the main
reason why we excluded vEOG in this study. As demonstrated in
our experimental results, the hEOG could be used to determine
the eye movement directions with a high accuracy without an
individual calibration session. This aspect is meaningful in that
VOG-based eye trackers commonly employ 5-point calibration
as a standard, which takes approximately 19 s (Saha et al., 2021).
It is obviously a cumbersome task for the users to conduct the
calibration every time they use the device.

However, there still remains an issue to be addressed in
implementing the practical EOG-based eye-tracking systems: To
obtain a stable hEOG signal to precisely estimate the horizontal
eye movement directions, an hEOG signal recorded for a short
period of time before the main execution period might be
necessary for the baseline correction process. This implies that
the users of the hybrid BCI system should always keep their eye
gaze to the center of the screen for a short period of time before
every trial onset. This baseline correction process is necessary
because there can be a low-frequency fluctuation in the EOG
signal, particularly by the sweat noise (Lee et al., 2017), which
depends on the recording environment. Nevertheless, starting
eye gazing from the center of the screen itself is not a task
to increase the user’s fatigue; therefore, it does not seem to be

Frontiers in Neuroinformatics | www.frontiersin.org 6 February 2022 | Volume 16 | Article 758537

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroinformatics#articles


fninf-16-758537 February 19, 2022 Time: 15:24 # 7

Ha et al. Hybrid SSVEP BCI for VR

FIGURE 6 | Comparison of the mean classification accuracies and information transfer rates (ITRs) for SSVEP-only and SSVEP+EOG cases with respect to different
window sizes. Light gray and dark gray bars indicate SSVEP-only and SSVEP+EOG cases, respectively. Error bars indicate the standard deviation across the
participants. (A) the accuracy of the C1, (B) the ITR of C1, (C) the accuracy of C2, (D) the ITR of C2, (E) the accuracy of C3, (F) the ITR of C3. (*p < 0.05,
**p < 0.01, ***p < 0.005, Wilcoxon signed rank test, Bonferroni-corrected).

a critical problem. In our future study, we would consider an
extended version of real-time hybrid BCIs by measuring vEOG
channels to detect eye blinks that would be used to call the initial

screen. This process would not only work as an on/off switch
of the SSVEP-based BCIs, but also would eliminate the baseline
correction process.
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In this study, we used a commercial high-end EEG recording
device to record both EEG and EOG signals, which could
provide high-quality signals but generally too expensive to
be used for general consumers. With the recent advancement
of portable EEG technology (Casson, 2019), dry EEG and/or
EOG electrodes are integrated with VR-HMD (Cattan et al.,
2020). Indeed, some commercial VR-HMD systems with
EEG and/or EOG recording modules are already available
in market (e.g., Looxid Labs Inc.).2 Additionally, a recently
developed wearable EEG device named NextMindTM,3 which
can record SSVEP responses with dry electrodes attached
to the occipital area, also showed a potential to be readily
incorporated with existing VR-HMDs. We expect that our
proposed hybrid BCI system can be implemented with a wearable
biosignal recording system incorporated with commercial VR-
HMD systems, in the near future. In addition, although we
rereferenced EEG data with respect to Cz, other studies applied
different bipolar settings to get an improved performance
of the SSVEP-based BCIs (Diez et al., 2010; Müller et al.,
2015). In our future study, we will try to increase the overall
performance of the proposed system by employing various
bipolar settings.

With the recent development of emerging metaverse
technologies, the application fields of VR have been expanding
rapidly. Nowadays, BCI technologies are actively studied as a
new modality of communication in various VR applications
(Coogan and He, 2018), including rehabilitation (Karamians
et al., 2020), medical training (Singh et al., 2020), entertainment
(Liu et al., 2020), and education (Sundaram et al., 2020).
Our proposed hybrid BCI technology that outperformed
the conventional SSVEP-based BCI in terms of classification
accuracy and ITR is expected to be used as an important tool
for hands-free controlling of VR environments especially for
those who cannot freely move their limbs. Furthermore, this
work also suggests its potential impact on neuro-rehabilitation
by allowing at-home use.
2 https://looxidlabs.com/looxidlink
3 https://www.next-mind.com
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