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Analytic simulation 
of thermophoretic second grade 
fluid flow past a vertical surface 
with variable fluid characteristics 
and convective heating
Nehad Ali Shah1, Se‑Jin Yook2* & Oreyeni Tosin3

The study considers the effect of thermophoresis particle deposition on the flow properties of second 
grade fluid with variable viscosity, variable thermal conductivity and variable concentration diffusivity 
subjected to a convective boundary condition. To further describe the transport phenomenon, 
the special case of assisting and opposing flows is explored. Using similarity transformations, the 
governing equations of the fluid model are transformed and parameterized into a system of nonlinear 
ordinary differential equations. The approximate analytic solution of a dimensionless system is 
obtained through the Optimal Homotopy Analysis Method (OHAM). It is observed that velocity 
and temperature distributions are decreasing functions of the second grade parameter for both 
assisting and opposing flows. When the thermophoretic parameter is increased, the concentration 
distributions at the first and fourth orders of chemical reaction decrease. For both opposing and 
assisting flows, velocity distributions are enhanced due to larger temperature-dependent viscous 
parameters.

The mode of heat transfer by which heat energy is transferred between a surface and a moving fluid at different 
temperature is known as convection. Convective heat transfer is referred to as dominant and special form of heat 
transfer in gases and liquids mainly because it involves the joint process of heat diffusion and heat transfer by 
bulk fluid flow. Depending on how the fluid flow is generated, convection can be classified as forced (assisted) or 
natural (free) convection. An external impetus, such as a fan, pump, or the wind, forces the fluid to flow across 
the surfaces in forced convection. On the other side convection is termed natural or free if the fluid motion is 
generated by buoyancy forces that are induced by density difference due to the temperature variation in the fluid. 
When the fluid is heated from lower layer during the boiling process, thermal expansion occurs and the hotter 
lower layer of the fluid becomes less dense. Because colder fluid is denser than hotter fluid, buoyancy causes 
the hotter, less dense part of the fluid to rise while the colder, denser part of the fluid descends and replaces the 
hotter fluid. When the bottom layer component of the fluid becomes heated and travels upward to be replaced 
by the cooler fluid, the convective cycle begins. Free convection heat transfer has a wide range of applications. It 
influences the operating temperatures of power generating and electronic devices, it is important in establishing 
temperature distributions within the building (Theodore et al.1). The Grashof number is a dimensionless param-
eter that regulates fluid flow in natural convection and is used in conjunction with heat and mass transfer. This 
dimensionless number is valuable because it represents the ratio of buoyancy force to fluid viscosity force exerted 
on a fluid (see1 for details). Furthermore, the Grashof number is crucial because buoyant forces are what causes 
natural convection as hot and cold fluids flow higher and downward and viscous force tries to halt it. Recently, 
Koriko et al.2 discussed free convection boundary layer flow of thixotropic fluid with special attention to active 
and passive controls of nanoparticles. They reported that Grashof number contributes to the augmentation of 
velocity of the fluid for both active and passive controls of nanoparticles. Likewise, Ramudu et al.3 studied free 
convective Casson nanofluid flow past a stretching sheet.
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The study of non-Newtonian fluid has captured the interest of numerous researchers because of its importance 
in industry and technology. The models are primarily characterized as rate, differential and integral type fluids. 
Owing to the complexities working with non-Newtonian fluid, several authors have student different non-New-
tonian fluid models under different perceptions. Hydromagnetic flow of Casson fluid with thermal radiation was 
presented by Ramudu et al. (2020)3. Kumar et al.4 discussed numerical approach of stream and energy transport 
in MHD dissipative hybrid ferrofluids. Sugunamma et al. examined MHD boundary layer flow of micropolar fluid 
across a coagulated sheet with non-Fourier heat flux model. Ramadevi et al.5 explored MHD mixed convective 
flow of micropolar fluid with modified Fourier’s heat flux model. Ferdows et al.6 considered boundary layer flow 
of hybrid nanofluid with exponential radiation and viscous dissipation effects. Recently, Mabood et al.7 reported 
approximate analytic solution of radiative reactive micropolar fluid flows towards moving flat plate. Rivlin and 
Ericksen8 introduced the Rivlin–Ericksen fluid of grade two or second grade which is capable of predicting typical 
stress effects and is an important class of non-Newtonian fluids. Shah et al.9 investigated the boundary layer flow 
of upper convected Maxwell fluid with nanoparticles along a vertical surface with magnetic field. Transient MHD 
double convection flow fractionalized second grade fluid was considered by Siddique et al.10. Ahamad et al.11 
analyzed heat and mass transfer in MHD boundary layer flow of a second-grade fluid past an infinite vertical 
permeable surface. A few representative studies involving the flow of second grade fluid have been extensively 
reported in the works of Idowu et al.12, Akinbola and Okoya13 and Olanrewaju and Abbas14.

Thermophoresis of particles is defined as the movement of tiny particles in the direction of a diminishing 
temperature gradient. In other words, particles in a heated environment move to a colder environment during the 
process. Tyndal15 noticed a particle-free zone surrounding a heated surface in dusty air. Aitken16 demonstrated 
that the effect was caused by a higher bombardment of particles from molecules in the heated zone compared to 
the cool region. The gas molecules migrating from the hot side of the particles have a higher velocity than those 
migrating from the cold side in this event. The particles clash with the molecules more strongly as they move 
quicker. According to Hayat and Qasim17, this phenomena has several applications in aerosol technology, silicon 
thin film deposition, and radioactive particle deposition in nuclear reactor safety simulations. Therefore, the 
velocity of particles is called thermophoretic velocity and the force experienced by suspended particles owing 
to the temperature gradient is called thermophoretic force with the force’s direction opposing the temperature 
gradient (Stanford18). Recently characteristics of thermophoresis and Brownian motion on radiative reactive 
micropolar fluid was explored by Mabood et al.7.

A chemical reaction occurs when one or more substances are transformed into other ones. Chemical reactions 
are an essential part of both technology and daily living. Chemical reaction-based processes include the combus-
tion of fuels, the production of glass, the brewing of beer, and the production of wine. In many cases, the rate of 
chemical reactions is determined by the concentration of the species itself, and the order of chemical reactions 
with respect to a given substance (such as a reactant, catalyst, or product) is known as the index or exponent to 
which the concentration term in the rate equation is raised, McNaught and Wilkinson19. The order of chemical 
reactions is known to be influenced by a variety of factors, the most basic of which is the first-order reaction, in 
which the rate of reaction is proportional to the concentration of species, Kundu et al.20. According to Themelis21, 
the majority of chemical reactions represented in applications are first-order when the reaction rate is dependent 
on a single component and the exponent value is one. Rahman and Uddin22 presented boundary layer flow of 
nanofluid with variable chemical reaction in a radiative vertical plate. Effects of thermal slip and chemical reac-
tion on free convective nanofluid from a horizontal plate was investigated by Alsenafi and Ferdows23. Panigrahi 
et al.24 discussed impact of chemical reaction on Mhd flow between vertical walls. Ferdows and Al-Mdallal25 
investigated the impact of chemical reaction on boundary layer flow with heat and mass transfer over a linearly 
stretched sheet. They reported that when the order of the chemical reaction rises, the flow profiles increase, and 
as the Schmidt number and chemical reaction parameter increase, the flow profiles decline.

It is a reality that a little rise in temperature boosts transport phenomena by lowering viscosity across the 
momentum boundary layer, therefore altering the heat transfer rate at the wall. The fluid properties that are more 
responsive to a rise in temperature are viscosity and thermal conductivity. Nima et al.26 studied bioconvection 
flow of non-Newtonian fluid embedded in porous medium with variable properties. Magnetized nanofluid 
flow of ferromagnetic nanoparticles from parallel stretchable rotating disk with fluid properties is explored by 
Shamshiddin and Mohamed27. Ferdows et al.6 deliberated a free convective power-law with variable viscosity 
and thermal conductivity. Mhd non-Newtonian fluid flow past an exponentially stretching surface with variable 
thermal conductivity was investigated by Anantha et al.28. Variable thermal conductivity and heat source/sink 
effects on mhd boundary layer flow past a linearly stretching sheet was studied by Sharma and Singh29. Omowaye 
and Animasaun30 reported upper-convected Maxwell fluid flow over a melting surface in a hot environment 
subject to thermal stratification with variable thermo-physical properties.

The current work considers the analysis of the flow of a chemically reacting boundary layer fluid in a ther-
mophoretic second-grade fluid with variable viscosity, variable thermal conductivity, and variable concentra-
tion diffusivity embedded in a porous medium. The approximate analytic solution is obtained through Optimal 
Homotopy Analysis Method. The effects of embedded flow controlling parameters on fluid velocity, temperature, 
concentration, and shear stress were shown and analyzed graphically.

Mathematical formulation
The introduction of Second grade fluid is to illustrate certain nonlinear effects that cannot be explained by the 
classical theory of Navier–Stokes for Newtonian fluids (see Truesdel and Noll31, Dunn and Fosdick32. The con-
stitutive law of incompressible homogeneous fluids of degree 2 is given by
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where σ is the Cauchy tensor, p is the pressure, ϑ is the viscosity α1,α2 are the normal stress modulli, A1 and A2 
are the first two Rivlin-Ericksen tensors defined as

is the material derivative.
Dunn and Fosdick32 established that

Writing the equation DuDt = ut + u.∇u = divσ , one obtains the second grade fluid.
The problem under discussion with the Cartessian coordinates (x, y, z) , we assume the flow is steady, incom-

pressible, 2-dimensional. The velocity takes the form

The flow is taken along x-axis vertical and y-axis normal to it, as revealed by Fig. 1. It is assumed that the sheet 
is stretched with the linear velocity u(x) = ax , where a > 0 is constant. The flow is subjected to convective heating 
process at its lower surface, which is characterized by a temperature Tf  and hf  as a heat transfer coefficient and 
convective concentration near the surface is Cf  . We assume Cw is taken as the concentration at the surface, the 
nth order homogeneous chemical reaction with a rate constant. The temperature and concentration at the free 
stream are T∞ and C∞ respectively. The uniform magnetic field of magnitude Bo is applied normal to the plate.

The continuity, momentum, energy, and concentration equations can be simplified using the usual boundary 
layer theory approximations for an incompressible fluid obeying the second grade fluid model with temperature 
dependent dynamic viscosity and thermal conductivity, as well as concentration dependent diffusivity following13

Here the temperature dependent viscosity dynamical (µ) of the fluid can be expressed in the form Layek et al.33
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Figure 1.   Physical model of the flow over a vertical surface.
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The basic boundary layer equation for the system of heat transfer in the presence of temperature dependent 
thermal conductivity exponential and space dependent heat source is expressed as

The mathematical model of temperature dependent thermal conductivity model of Charraudeau34, Salem 
and Fathy35 as

The boundary layer equation in conformity to the mass transfer in the occurrence of thermophoresis and 
chemical reaction is obtained in form36

It will be valid to consider the model of variable concentration diffusivity given by the linear relation37,38

The thermophoretic velocity VT in Eq. (11) can be written in the form Talbot et al.39 as,

where κϑ represents the thermophoretic diffusivity, κ is the thermophoretic coefficient which ranges in value 
from 0.2 to 1.2 as indicated by Batchelor and Shen40 and is defined from the theory of Talbot et al.39 which is 
given by

Here, C1,C2,C3,Cm,CsandCt are constants, � and �p are the thermal conductivities of the fluid and dif-
fused particles respectively and Kn is the Knudsen number. A thermophoretic parameter τ can be defined (see 
Refs.41,36) as,

Equations (6), (7), (9) and (11) are subject to the following boundary conditions

where u and v are the velocity in x and y directions respectively, µ∗ is the constant value of the coefficient, κ∗ is 
the coefficient thermal conductivity, D∗ is the coefficient concentration diffusivity,  κ is the thermal conductivity, 
ρ is the density of the fluid second grade fluid. ϑ is the kinematic viscosity, µ = ϑρ is the dynamic viscosity, T is 
the fluid temperature in the boundary layer, C is the concentration of the species diffusion, D is the diffusion 
coefficient of the diffusing species, α = κ

ρCp
 is the thermal diffusivity.

The continuity Eq. (1) is satisfied by introducing a stream function ψ such that

The Eqs. (7), (9), (11), (16) and (17) becomes
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Subject to

The momentum, energy and concentration equations can be transformed into corresponding ordinary dif-
ferential equations by the following transformations

Thus, u and v are given by u = ax
df
dη , v = −a

1
2 ϑ

1
2 f (η), substituting (24) into Eqs. (19–23), we obtain

The corresponding boundary conditions take the form

In the equations above η is the independent dimensionless similarity variable, A and B are the heat source 
parameters,  K =

α1a
ρϑ

 is the second grade parameter, M =
σB2o
ρa  is the magnetic field parameter, Pr = ϑ

α
 is the 

Prandtl number, Ps = ϑ
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 is modified thermal Grashof number, 
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 is modified solutal Grashof number, ξ = b(Tf − T∞) is the temperature-dependent vis-

cous parameter, ε = δ(Tf − T∞) is the temperature dependent variable thermal conductivity parameter, 
w = q(Cw − C∞) is the variable concentration diffusivity, � =

kn(Cw−C∞)n−1

a  is the dimensionless chemical 
reaction parameter, Sc = ϑ

D is the Schimdt number.

Optimal homotopy analysis solution
Invoking the rule of solution expressions above for fo(η), θo(η) and φo(η) on (25–27) together with boundary 
conditions (28) and (29), the initial guesses fo(η) , θo(η) and φo(η) which satisfies both the initial and the bound-
ary conditions (28) and (29)
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The operators Lf , LpandLθ have the following properties

In which C1,C2 , C3 , C4 , C5 , C6 and C7 are arbitrary constants.
If q ∈ [0, 1] denotes an embedding parameter, ℏf , ℏθ and ℏφ the non-zero auxiliary parameters then, the zeroth 

order of deformation problems are constructed as

Subject to boundary conditions

where the nonlinear operators are defined as
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= [1+ ωφ
(

η; q)
]∂2φ

(

η; q
)

∂η2
+ ω

∂φ
(

η; q
)

∂η

∂φ
(

η; q
)

∂η

+ Scf
(

η; q
)∂φ

(

η; q
)

∂η
− Scτ

(

∂θ
(

η; q
)

∂η

∂φ
(

η; q
)

∂η
+ φ

(

η; q
)∂2φ

(

η; q
)

∂η2

)

− Sc�φ
(

η; q
)n
,

f (η; 0) = fo(η), θ(η; 0) = θo(η),φ(η; 0) = φo(η)and

(43)f (η; 1) = fo(η), θ(η; 1) = θo(η),φ(η; 1) = φo(η)

(44)f
(

η; q
)

= fo(η)+

∞
∑

m=1

fm(η)q
m,
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Clearly, the convergence of series Eqs. (35–37) is closely associated with ℏf , ℏθ and ℏφ .  The auxiliary parameter 
ℏf , ℏθ and ℏφ are chosen such that the series Eqs. (35–37) converge at q = 1 . Hence,

If we denote the special solution f ∗m, θ∗m and φ∗
m then the general solutions fm, θm and φm are.

Here, f ∗m(η), θ∗m(η) and φ∗
m(η) are the particular solutions of Eqs. (47–49). Following the rule of expression, 

the rule of coefficient ergodicity and the rule of solution existence as discussed in Liao42 we choose auxiliary 
functions as

Convergence of the optimal homotopy solutions
It is obvious that the series (44–46) consist of the non-zero auxiliary parameters ℏf , ℏθ and ℏφ which can adjust 
and control the convergence. The interval on ℏ-curve becomes parallel to the ℏ-axis is recognized as the set of 
admissible values of ℏf , ℏθ and ℏφ for which the solutions series converges. In Figs. 16, 17 and 18, the range of the 
acceptable values of ℏf , ℏθ and ℏφ are −0.75 ≤ ℏf − 0.35 , −3.50 ≤ ℏθ − 1.50 and −0.80 ≤ ℏf − 0.40 . Obviously, 
from the ℏ-curves for this problem, we obtained the approximate optimal values of ℏf , ℏθ and ℏφ at 10th-order 
of approximations as −1.2564,−0.3507 and −1.0344

Results and discussion
Computations were conducted using the approximate analytic method described above for various values of 
the second grade parameter K , temperature dependent viscosity ξ parameter, temperature dependent thermal 
conductivity ε , concentration dependent diffusivity parameter ω , Biot number γ , thermophoretic parameter 
τ , modified buoyancy parameters Gr ,Gc , and chemical reaction � . Table 1 reveals the numerical values of skin 
friction coefficients, reduced Nusselt number and reduced Sherwood number of ξ when other parameters are 
fixed. It is observed that for the first two entries of ξ there is a slight decrease in skin friction coefficients and for 
the last two entries of ξ there is a significant decrease in the skin friction coefficients while there is increase in 
reduced Nusselt number for all entries of ξ . Also, for the first two and last two entries of ξ there is decrease in 
the reduced Sherwood number. Table 2 depicts the numerical values of skin friction coefficients, reduced Nus-
selt number and reduced Sherwood number of ε when other parameters are fixed. For the first two entries of 
ε there is increase in coefficient of skin friction and likewise for the last two entries of ε there is increase in the 

(45)θ
(

η; q
)

= θo(η)+

∞
∑

m=1

θm(η)q
m,

(46)φ
(

η; q
)

= φo(η)+

∞
∑

m=1

φm(η)q
m.

(47)f
(

η; q
)

= fo(η)+

∞
∑

m=1

fm(η)q
m,

(48)θ
(

η; q
)

= θo(η)+

∞
∑

m=1

θm(η)q
m,

(49)φ
(

η; q
)

= φo(η)+

∞
∑

m=1

φm(η)q
m.

(50)fm(η) = f ∗m(η)+ C1 + C2exp(η)+ C3exp(−η),

(51)θm(η) = θ∗m(η)+ C4 + C5exp(η)+ C6exp(−η),

(52)φm(η) = φ∗
m(η)+ C7exp(η)+ C8exp(−η).

(53)Hf = Hθ = Hφ = 1.

Table 1.   Numerical values of skin friction coefficients for various values of ξ.

ξ Pr K ε = ω −f
′ ′

(0) −θ ′(0) −φ′(0)

0.1 0.7 0.3 0.2 0.7987 0.5701 1.0509

0.3 0.7 0.3 0.2 0.7940 0.5728 1.0430

0.5 0.7 0.3 0.2 2.2959 0.9100 1.5870

0.7 0.7 0.3 0.2 1.8654 2.0338 1.0499
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skin friction coefficients. Also, there is increase in values of reduced Nusselt number for the first two and last 
two entries of ε. Furthermore, it is revealed that there is decrease in reduced Sherwood number for the first two 
entries of ε while there is increase in the reduced Sherwood number for the last two entries of ε . Table 3 shows 
the numerical values of skin friction coefficients, reduced Nusselt number and reduced Sherwood number of ω 
when other parameters are fixed. It is observed that the skin friction coefficient is an increasing function of ω , 
while both the reduced Nusselt number and reduced Sherwood number are decreasing functions of ω . Solutions 
have been obtained for both assisting flow Gr = Gc > 0 and opposing flow Gr = Gc < 0 . In order to illustrate 
the results graphically, the numerical values are plotted in Figs. 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 
and 18. The effect of the second grade parameter K are presented in Figs. 2, 3, 4 and 5.

In Fig. 2, it is observed that as K increases from 0, 0.3 through 0.7 to 1.0 when Gr = Gc > 0 (assisting flow), the 
velocity of the second grade fluid decreases within the domain 0 ≤ η ≤ 3.64 . At the specific region of η = 3.68 
all curves merge and decay far away from the heated vertical wall. From Fig. 3, it is observed that incremental 
values of K correspond to decrease in the temperature of the fluid for the case of assisting flow.

Likewise, from Fig. 4 when Gr = Gc < 0 (opposing flow), it is observed that increase in the values of K corre-
spond to decline in the velocity profile near the wall. In Fig. 5, it noticed that the temperature profile decreases as 
K is increased. The influence of temperature dependent viscous parameter ξ on velocity profile when Gr = Gc > 0  
is illustrated in Fig. 6. It is clearly observed that the magnitude of the vertical velocity component increases 
significantly as ξ increases, the velocity boundary layer is developed as the fluid flows over the surface when 
modified buoyancy parameters Gr = Gc > 0 . Physically, this observation connotes that in free convection flows 
bounded by a surface within boundary layer formation on a heated vertical plate, the fluid far from the wall is 
quite denser than the fluid close to the wall making it possible for the fluid close to the wall which appears lighter 

Table 2.   Numerical values of reduced Nusselt numbers for various values of ε.

ε Pr K ξ = ω −f
′ ′

(0) −θ ′(0) −φ′(0)

0.1 1.0 0.4 0.2 3.5899 1.3649 1.0509

0.4 1.0 0.4 0.2 3.6302 1.4030 1.0430

0.7 1.0 0.4 0.2 1.050 0.7630 1.5870

1.0 1.0 0.4 0.2 1.6208 1.4064 1.1940

Table 3.   Numerical values of Sherwood numbers for various values of ω.

ω Pr K ξ = ε −f
′ ′

(0) −θ ′(0) −φ′(0)

0.1 1.2 0.7 0.4 0.9910 0.8378 1.1883

0.4 1.2 0.7 0.4 1.0433 0.8306 0.8548

0.7 1.2 0.7 0.4 1.0718 0.8242 0.6753

1.0 1.2 0.7 0.4 1.0902 0.8210 0.5605

Figure 2.   Effect of K on velocity profile when Gr = Gc = 0.5.
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to flow at an increased velocity upward towards the quiescent region. Due to this fact, buoyancy forces stimulate a 
natural convection boundary layer in which the heated fluid rises vertically and it is able to surmount the impact 
of viscosity. The effect of increasing ξ on wall shear stress is elucidated in Fig. 7. It is seen from the figure that as 
ξ increases, the wall shear stress also increases. Figure 8 depicts the influence of ξ on velocity profile when the 
modified buoyancy parameters Gr = Gc < 0 . The detailed examination shows that as ξ = b

(

Tf − T∞

)

 increases 
from 0, 2.0 through 4.0 to 6.0 , when the modified buoyancy parameters take negative value i.e. Gr ,Gc < 0 , the 
velocity profile increases for larger values of ξ = b

(

Tf − T∞

)

 . Physically, the observed trend is owing to the fact 
that there is enough energy necessary to break down the strong intermolecular bonds in the fluid boundary and 
the viscosity’s retarding impact is reduced causing the fluid’s velocity to increase.

Figure 9 represents the velocity profile for various temperature dependent thermal conductivity parameter 
ε when modified buoyancy term Gr = Gc > 0 . It is observed that increase in ε corresponds to increase in the 
velocity profile. Physically, the heated vertical plate transfers heat energy to the fluid layer very close to the wall 
thereby causing the fluid velocity to be augmented. Likewise, incremental values of ε result to enhancement of 
the temperature of the fluid as revealed in Fig. 10. The effect of variable concentration diffusivity parameter ω 
on velocity profile when Gr = Gc > 0 is described in Fig. 11. It is observed that as ω increases, there is a slight 
increase in the velocity profile. Likewise, from Fig. 12, increase in ω leads to significant increase in the concen-
tration profile. Figure 13 illustrates the effect of Biot number γ on the temperature profile. It noticed that the 
temperature profile reduces as γ increases. The influence of thermophoresis parameter τ on concentration profile 
at the first order chemical reaction i.e. n = 1 when Gr = Gc > 0 is illustrated in Fig. 14.

Figure 3.   Effect of K on temperature profile when Gr = Gc = 0.5.

Figure 4.   Effect of K on velocity profile when Gr = Gc = −0.5.



10

Vol:.(1234567890)

Scientific Reports |         (2022) 12:5445  | https://doi.org/10.1038/s41598-022-09301-x

www.nature.com/scientificreports/

It is observed that the magnitude of the concentration profile decreases with larger values of τ Physically, 
thermophoresis is a phenomenon whereby heated particles migrate to a region of diminishing temperature 
gradient. (i.e. particles move to a region where there is low heat energy).

Likewise, the same effect is observed in Fig. 15 when the 4th order chemical reaction is considered. It is 
observed that the concentration profile is a decreasing function of  τ even for higher order of chemical reaction.

Conclusion
The study of the variable thermophysical properties of second-grade fluid flow past a vertical surface with con-
vective boundary condition with special attention to assisting and opposing flows has been studied analytically. 
The effects of thermophoresis, temperature-dependent viscosity, temperature-dependent thermal conductivity, 
and variable concentration diffusivity are all taken into account. Using similarity transformation, the governing 
partial differential equations are converted into nonlinear ordinary differential equations. This investigation 
yielded the following significant findings:

1.	 Velocity and temperature profiles are decreasing functions of second grade parameter K for assisting flow 
and opposing flows.

2.	 Within the boundary layer, velocity profile is an increasing function of temperature-dependent viscous 
parameter ξ for both assisting and opposing flows.

Figure 5.   Effect of K on temperatureprofile when Gr = Gc = −0.5.

Figure 6.   Effect of ξ on velocity profile when Gr = Gc = 0.5.
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Figure 7.   Effect of ξ on shear stress profile when Gr = Gc = 0.5.

Figure 8.   Effect of ξ on velocity profile when Gr = Gc = −0.5.

Figure 9.   Effect of ε on velocity profile when Gr = Gc = 0.5.
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3.	 Both velocity and temperature profiles are increasing functions of temperature dependent thermal conduc-
tivity parameter ε in case of assisting flow.

4.	 The velocity and concentration profiles increase with increase in concentration dependent diffusivity param-
eter ω for assisting flow.

5.	 For first and higher orders of chemical reaction, the magnitude of the concentration profile decreases with 
larger values of thermophoretic parameter τ.

Figure 10.   Effect of ε on temperature profile when Gr = Gc = 0.5.

Figure 11.   Effect of ω on velocity profile when Gr = Gc = 0.5.
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Figure 12.   Effect of γ on concentration profile when Gr = Gc = 0.5.

Figure 13.   Effect of γ on temperature profile when Gr = Gc = 0.4.

Figure 14.   Effect of τ on concentration profile when n = 1.
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Figure 15.   Effect of τ on concentration profile when n = 4.

Figure 16.   ℏ-curve of f ′′(0) obtained at 10th-order of approximation.
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