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Abstract: When a longitudinal wave passes through a contact interface, second harmonic components
are generated due to contact acoustic nonlinearity (CAN). The magnitude of the generated second
harmonic is related to the contact state of the interface, of which a model has been developed using
linear and nonlinear interfacial stiffness. However, this model has not been sufficiently verified
experimentally for the case where the interface has a rough surface. The present study verifies
this model through experiments using rough interfaces. To do this, four sets of specimens with
different interface roughness values (Ra = 0.179 to 4.524 µm) were tested; one set consists of two
Al6061-T6 blocks facing each other. The second harmonic component of the transmitted signal
was analyzed while pressing on both sides of the specimen set to change the contact state of the
interface. The experimental results showed good agreement with the theoretical prediction on the
rough interface. The magnitude of the second harmonic was maximized at a specific contact pressure.
As the roughness of the contact surface increased, the second harmonic was maximized at a higher
contact pressure. The location of this maximal point was consistent between experiments and theory.
In this study, an FEM simulation was conducted in parallel and showed good agreement with the
theoretical results. Thus, the developed FEM model allows parametric studies on various states of
contact interfaces.

Keywords: interfacial stiffness; contact acoustic nonlinearity (CAN); ultrasonic; contact condition;
NDT; longitudinal wave; roughness; Al6061-t6; nonlinear ultrasonics

1. Introduction

With development of nuclear, aviation, and power plant industries, which require high
reliability and safety, the importance of flaw detection is increasing for safety diagnosis
and integrity evaluation of structures. For this, ultrasonic inspection has been widely used;
however, it is difficult for conventional ultrasonic flaw detection technologies to detect
partially closed micro-scale defects caused by stress corrosion or thermal fatigue for which
the crack surface has formed a contact interface due to thermal expansion or external stress.
This limitation is because conventional methods are based on linear wave propagation and
mostly use the amplitude change of ultrasonic waves reflected at or transmitted through
the defect surface. However, the amplitude change at a closed interface is not significant
and is difficult to detect. To solve this problem, nonlinear ultrasonic methods based on
contact acoustic nonlinearity (CAN) have been studied [1].

CAN is a phenomenon in which harmonic waves are generated due to a temporary
opening and closing of the interface or a nonlinear pressure–displacement relationship
when ultrasonic waves are reflected at or transmitted through the contact interface [2–5].
Related theories have been studied for decades. Richardson et al. [6] analyzed the nonlinear
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dynamics of a system composed of an unbonded planar interface separating two semi-
infinite linear elastic media. This is referred to as the hard contact condition, where the
opening and closing of the interface is the origin of the nonlinearity. However, this theory
does not consider that the contact state is variable with surface state. To supplement
this point, Rudenko et al. [7] studied the soft contact condition with the distributed-
microasperity model.

Later, the ultrasonic response was quantified by modeling the contact interface with
a rough surface as a spring with linear and nonlinear contact stiffness [8–10], where the
contact stiffness is dependent on the static pressure applied at the interface. This was
followed by experimental verification by several researchers. Drinkwater et al. [11] put in
contact two aluminum block specimens, applied pressure from both sides, and analyzed
the reflected wave at different excitation frequencies (4 MHz to 17 MHz) to confirm the
frequency dependence and the relationship between the reflectivity and the contact stiffness
by increasing the static pressure. Nam et al. [12] carried out similar experiments but used
an ultrasonic wave that was obliquely incident on the contact interface. Furthermore,
Biwa et al. [13,14] tested the contact interface by pressing together two aluminum blocks
with surface roughness and measured the contact stiffness against static pressure at the
interface with different roughness values. The dependence of the second-order harmonic
amplitude on the incident wave amplitude was verified experimentally only on a relatively
smooth contact interface (the surface roughness Ra ≤ 1 µm).

Therefore, in this study, we tried to confirm experimentally whether the CAN theory
can be applied to a rough contact interface. To do this, four sets of two aluminum blocks
with different surface roughness values (Ra = 0.179 to 4.524 µm) at the contact face were
prepared. Two aluminum block specimens were put in contact, and static pressure was
applied from both sides. The transmitting transducer was placed on one of the pressing
surfaces, and the receiving transducer was placed on the other to receive the ultrasonic
waves transmitted through the contact interface. While increasing the static pressure to
80 MPa, the change in transmission efficiency was measured to estimate the linear and
nonlinear interfacial stiffness values expressed as a power function of pressure. From this,
the amplitude of the second harmonic generated by CAN was obtained based on Biwa’s
theory and compared with the experimental results. Since the contact interface of an actual
crack, such as a stress corrosion crack or fatigue crack, can be very rough, this study will be
useful by confirming that the CAN theory can be applied to detect actual closed cracks.

Additionally, second harmonics can be generated by inherent material nonlinearity or
by measurement system nonlinearity [15]. Therefore, a theoretical prediction that does not
consider those extra harmonic components will show a difference from the experimental
results. In this study, such a difference was verified by conducting a separate experiment for
conditions without the CAN effect (using a single specimen without an interface), showing
that the difference was due to nonlinearities other than those caused by the CAN effect.

In addition, since it is difficult to experimentally test the contact interface in various
contact states, a numerical analysis approach that can replace the experiment will be useful.
Therefore, in this study, numerical analysis using the finite element method (FEM) was
performed, and it was determined whether the results fit well with the theoretical results.

The remainder of this paper is organized as follows. Section 2 presents a brief descrip-
tion of the CAN theory with the theoretically estimated transmission efficiency and second
harmonic amplitude according to variations of contact pressure. Section 3 describes the
FEM modeling and simulation results. Section 4 describes the fabrication process used to
create test samples, as well as the experimental setup. It also compares our experimental
results with the results of the theoretical prediction and FEM simulation. Section 5 presents
our conclusions, the limitations of the current study, and suggestions for future works.
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2. Contact Acoustic Nonlinearity at a Contact Interface
2.1. Theory

The longitudinal wave propagation through a contact interface with roughness can
be analyzed using a spring model, as shown in Figure 1. Since the details of this theory
are well described in the literature [5], it is only briefly introduced here. When pressure
is applied to such an interface, large asperities collide and deform, producing elastic and
plastic deformation. Therefore, the pressure–displacement relationship becomes nonlinear
and can be expressed as follows:

P(h)= P0 − K1·(h − h0)+K2· (h − h 0)
2 (1)

Here, P and h are the pressure and gap displacement, respectively. P0 is the static
contact pressure, and h0 is the initial gap at P0, i.e., P0 = P (h0). K1 and K2 are the linear and
nonlinear interfacial stiffness, respectively, and can be defined as follows from Equation (1).

K1= − (
∂(P)
∂h

)h=h0 , K2 =
1
2
(

∂2(P)
∂h2 )

h=h0
(2)

Considering one-dimensional propagation, the approximate solution of the transmit-
ted wave can be obtained as displacement for a harmonic wave as follows [16].

UT(t ) =
K2 A0

2

K1{1+4K1
2/(ρ2c2ω2)}

+ 2K1 A0

ρcω

√
1+4K1

2/(ρcω)2
cos(ωt− δ1)− K2 A2

0

ρcω{1+4K1
2/(ρcω)2}

√
1+K1

2/(ρcω)2

×sin(2ωt − 2δ1+δ2)
(3)

Here, A0 is the displacement amplitude of the incident wave, c is the longitudinal
wave velocity, ρ is the density of the material, ω is the angular frequency of the incident
wave, δ1 = tan−1

(
ρcω
2K1

)
, and δ2 = tan−1

(
K1

ρcω

)
. The first term on the right side is the static

displacement component. The second term represents the fundamental component of the
incident wave frequency, which is a linear response, and its amplitude depends only on
linear stiffness. The third term indicates the second harmonic component with a frequency
twice that of the incident wave, and its amplitude depends not only on linear stiffness K1,
but also on the nonlinear stiffness K2.

Figure 1. One-dimensional longitudinal plane wave propagation through a rough contact interface
and soft contact model of an interface.
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Then, amplitude A1 of the fundamental component and amplitude A2 of the sec-
ond harmonic component in the transmitted wave can be determined from Equation (3)
as follows.

A1 =
2K1 A0

ρcω

√
1+ 4K1

2

(ρcω)2

(4)

A2 =
(K 2 A0 A1)

2K1

√
1+ 4K1

2

(ρcω)2

√
1+ K1

2

(ρcω)2

(5)

Note that some terms of the amplitude of the harmonic component have been replaced
by A1 in Equation (5).

Meanwhile, the transmission efficiency is defined as the ratio of A1 and A0, as follows.

T =
2K1

ρcω

√
1+ 4K1

2

(ρcω)2

(6)

As linear stiffness K1 increases, transmission efficiency increases. Therefore, as linear
stiffness increases, the interface closes further. When K1 increases to much greater than
ρcω, the transmission efficiency converges to 1, and linear stiffness K1 can be expressed as
a power function of static pressure P0, as follows [5,13,14].

K1 = CP0
m (7)

Here, C and m are positive constants related to the roughness of the interfacial surface.
Substituting Equation (7) into Equation (6), transmission efficiency T is expressed as a
function of pressure P0. Then, the constants C and m can be determined by fitting the
experimental results of T measured while varying static pressure P0. Furthermore, the
nonlinear stiffness K2 of Equation (2) can be expressed as follows.

K2 =
1
2

K1
dK1

dP0
=

1
2

mC2P0
2m−1 (8)

Therefore, Equation (1) can be rewritten as

P = P0 − CP0
m(h − h0) +

1
2

mC2 p0
2m−1 (h − h 0)

2 (9)

2.2. Theoretical Simulations of A1 and A2

A theoretical simulation for the specimen to be tested in the experiment was conducted
using the aforementioned theoretical model. In the experiment (Section 4.1), four sets of
specimens in which two aluminum alloy (Al6061-T6) blocks were contacted were tested,
and the surface roughness of each set was varied. The interfacial surface roughness
values of the specimens were Ra = 0.179, 1.458, 2.567, and 4.524 µm, respectively (Table 1).
K1 and K2 were obtained using the constants C and m, which were determined in the
experiment (Table 2) to calculate A1 and A2. Other parameters used for simulation were
ρ = 2700 kg/m3, c = 6300 m/s, and frequency = 2 MHz, as in the experiment. The results
are shown in Figure 2, where the amplitudes were normalized to the maximum value.

When the contact pressure is small, since the interface is open, the amplitude of fun-
damental component A1 is almost zero. As the pressure increases, the interface gradually
closes and A1 increases. With a rougher interface, A1 starts to rise at a higher pressure. The
normalized value of A1 converges to 1, which corresponds to a closed interface state, and
the two specimens are considered as one body with no interface. Additionally, the rougher
the interface, the greater the contact pressure when transmittance approaches 1. For second
harmonic amplitude A2, a peak appears at a specific pressure, and the rougher the interface,
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the greater the peak pressure. This means that the CAN effect can be maximized at an
appropriate interfacial gap. Additionally, the rougher the interface, the higher the pressure
needed to achieve the appropriate gap.

Figure 2. Theoretical simulations of A1 and A2.

3. Finite Elements Method
3.1. D Model for Longitudinal Wave Propagation through a Contact Interface

Finite element analysis is carried out using the ABAQUS tool to verify the theoretical
model to analyze structural nonlinear contact problems, and can easily handle various
contact conditions by simply changing the contact properties. Figure 3 shows the two-
dimensional model of two aluminum blocks in contact with an interface, on the side of the
model, a symmetry constraint is applied to the plane of constant y coordinates. U1 and U2
are the degrees of freedom of translational motion along x and y axes, respectively, and UR1
is the degree of freedom of rotational motion due to the rotational moment about the x-axis.
At the lower end, the displacement in the x-direction U1 is given as zero as a boundary
condition, which means that the wave is 100% reflected at the lower end. This FEM
modeling is based on plane-strain condition, and applied element shape is quadrilateral,
element size is 0.1 mm, and the number of elements is 240,000. A longitudinal wave is
input at the top as the oscillating displacement and propagated in the x-direction. The
material properties are those of Al6061-T6: the density is 2700 kg/m3, Young’s modulus is
68× 109 N/m2, and Poisson’s ratio is 0.33. The input signal was a 2 MHz tone burst sine
wave of eight cycles with a displacement amplitude of 10 nm.

To express the contact condition, the relation of the pressure gap shown in Equation (9)
is used. In ABAQUS, however, a positive gap is referred to as clearance, and a negative
gap is referred to as overclosure. Thus, the contact property at the interface can be defined
as the pressure–overclosure relationship. In our analysis, Equation (10) was used instead
of Equation (9), in which the gap term expressed as (h − h0) in Equation (9) was replaced
with (−h), which expresses the overclosure amount.

p(h)= p0+CP0
mh+

1
2

mC2P0
2m−1h2 (10)
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Figure 3. Two-dimensional contact model for FEM analysis.

Then, using constants C and m (Table 2) for each specimen obtained in the experiment,
the contact condition can be defined using the above equation. Static uniform pressure from
0 to 80 MPa was applied to the top surface as compression stress. The signal transmitted
across the contact interface was received at a center point on the lower end. The received
signal was processed by MATLAB (MathWorks, Natick, MA, USA, vR2019b) using fast
Fourier transform (FFT) with the Hanning window at a sampling frequency of 1 GHz.

3.2. Simulation Results

The simulation was conducted by changing the contact properties according to the
surface roughness of the specimen. Figure 4 shows the simulation results for the contact
state of specimen 2 and plots the received signals and their FFT spectra at three contact
pressures of 0.1, 22.5, and 80 MPa. At a contact pressure of 0.1 MPa, the interface is in an
almost open state and the signal amplitude is very weak. As the pressure increases, the
signal amplitude gradually increases as the interface closes. The amplitude of fundamental
component A1 and the amplitude of second harmonic A2 are determined from the magni-
tude of the spectrum at 2 MHz and 4 MHz, respectively. The second harmonic amplitude
is greater at 22.5 MPa than at 80 MPa, although the fundamental amplitude at 22.5 MPa is
smaller than that at 80 MPa.

Figure 5 shows the values of A1 and A2 for all specimens with respect to the applied
static pressure, in which they were normalized to the maximum value. These results are
similar to the theoretical calculations shown in Figure 2. Likewise, the rougher the surface,
the higher the applied pressure needed to transmit the ultrasonic waves through the contact
interface. The peak of the second harmonic occurs at higher contact pressure. A detailed
comparison is described later with the experimental results.
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Figure 4. Results of FEM simulation for specimen 2 (C = 4.09× 10−5 [MPa1−m·nm−1], m = 2.601):
(a) the received signal and (b) the FFT spectrum of the signal in (a).

Figure 5. Results of FEM simulations for four specimens: (a) A1 and (b) A2.

4. CAN Experiment with Different Roughness Values
4.1. Specimens

Figure 6 shows the specimens used in the experiment. The experiment was carried
out with four sets of contact interface roughness values. One set consists of two Al6061-T6
blocks facing each other to form one contact interface. The blocks are cylindrical, and each
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is 40 mm in diameter and 30 mm long. The contact surfaces of the two blocks in contact in
a set have the same roughness.

Figure 6. Dimensions of the Al6061-T6 block and four sets of contact interface specimens with different roughness values.

The average roughness of the four specimen sets was measured using an optical
microscope, and the roughness value (Ra) of each specimen set is shown in Table 1. Figure 7
shows the surface 3D images of the optical microscope.

Figure 7. Surface optical microscope images: (a) specimen 1, (b) specimen 2, (c) specimen 3, (d) specimen 4.
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Table 1. Roughness of four specimen sets.

Ra [µm]

Specimen 1 0.179
Specimen 2 1.458
Specimen 3 2.567
Specimen 4 4.524

4.2. Experimental Setup

The experimental setup is shown in Figure 8. A PZT transducer with a center frequency
of 2.25 MHz was attached to the top surface of the upper block and used to transmit a 2 MHz
longitudinal wave, and a PZT transducer with a center frequency of 5 MHz was attached to
the bottom of the lower specimen and used to receive the second harmonic of the ultrasonic
wave transmitted through the specimen. To align the axis of wave propagation, a specially
designed jig was installed. To apply variable static pressure to the contact interface, a load
of 0 to 10,000 kg was applied to both sides of the specimen using a hydraulic press; this
range corresponds to contact pressures of about 0 to exactly 78.1 MPa. The input signal
entering the transmitting transducer is 13 cycles of a tone-burst signal of 2 MHz, which
was excited in a high-power tone-burst signal generator (RAM-5000, RITEC, Warwick, RI,
USA), and data were acquired through a digital oscilloscope.

Figure 8. Experimental setup.

Figure 9 shows an example of the received signal for specimen 2 at 22.5 MPa. The
time duration of the tone burst signal we used is about 7 µs, and considering that the
time of flight for round trip between the interface and the lower boundary is about 10 µs,
overlapping with multiple reflection signals can be sufficiently avoided. The acquired
data were analyzed via FFT through MATLAB (MathWorks, Natick, MA, USA, vR2019b).
Only seven cycles of the central part of the signal, where it was stable, were used for the
FFT analysis, as shown in the figure. In addition, the Hanning window was applied to
reduce the influence of side lobes. Figure 10 shows the FFT results of specimen 2 at three
static pressures. The second harmonic components at 4 MHz were detected clearly at
contact pressures of 22.5 and 80 MPa. The magnitude of the second harmonic component
at 22.5 MPa was greater than that at 80 MPa. In contrast, the magnitude of the fundamental
component was greater at 80 MPa, which is consistent with the results of the FEM analysis.
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Figure 9. Received signal for specimen 2 at 22.5 MPa.

Figure 10. FFT results of received signals for specimen 2 at three contact pressures.

4.3. Experimental Results

In the experiment, the pressure applied at the contact interface was increased, transmit-
ted amplitude A1 was detected, and transmission efficiency T was estimated with respect
to contact pressure to estimate linear stiffness. Figure 11 shows an example of the results
for specimen 1, where the transmission efficiency was obtained by normalizing A1 to the
maximum value obtained at the maximum pressure. The transmission efficiency converged
to 1 as the pressure increased. The linear stiffness K1 against the contact pressure was
calculated using Equation (6) on a point-by-point basis from the measured transmission
efficiency, and the constants C and m were obtained by power-law fitting this data to
Equation (7). A commercial software (Origin) was used for the nonlinear curve fitting.
Note that the fitting range was set up to the contact pressure at which the transmission
efficiency is sufficiently converged. In the case of specimen 1, the fitting range was up to
48 MPa, at which the transmission efficiency is 99%. The reason for this setting is as follows.
What we pay attention to in this study is the variation in the amplitude of the harmonic
component for the variation in the soft contact state, and such soft contact state is created
before the transmission efficiency reaches 100%. However, after the upper limit of the set
fitting range, the linear stiffness rises rapidly, so fitting over the entire pressure range can
overfit the rapid-rising section and distort the analysis of the soft contact state. Therefore,
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we set the fitting range up to the pressure at which the transmission efficiency reaches 99%.
This type of fitting was applied similarly to other specimens.

Figure 11. (a) Measured transmission efficiency and (b) linear stiffness with power-law fitting with respect to contact
pressure for specimen 1.

Figure 12 shows the experimentally obtained transmission efficiency and linear stiff-
ness for all specimens with power-law fitting. When calculating the transmission efficiency
and fitting the results, the abovementioned method was applied. Particularly, in speci-
mens 3 and 4, the transmission efficiency did not sufficiently converge even at the applied
maximum pressure, so the fitting range was set to the entire pressure range. The linear
stiffness of specimen 1 (with a roughness of 0.179 µm) increased from a contact pressure
of 0 MPa, while the linear stiffness of specimen 4 (with a roughness of 4.524 µm) started
to increase at much higher pressure. In addition, in specimens 2, 3, and 4, we can see a
weak up-and-down in the transmission efficiency at low pressure, although ideally the
transmission efficiency should be close to zero there. This is probably due to the instability
of experimental setup at low pressure. Nevertheless, as shown in Figure 12b, the stiffness
at low pressure is very small, so the effect on analyzing the overall trend is negligible.
However, since the linear stiffness data obtained in such up-and-down section is worthless
for curve-fitting, it is considered more preferable not to include this section. Therefore, the
lower limit of the curve fitting range was taken as the pressure at which the transmission
efficiency starts to increase stably.

Table 2 shows the constant values obtained from all specimens. The constant m tends
to increase as surface roughness increases, while the constant C tends to decrease on the
contrary. The parameter standard errors for m and C were evaluated to be smaller than the
fitted values, and the correlation coefficient R2 was also close to 1 in all specimens, which
indicates that the fitting was done properly.
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Figure 12. (a) Measured transmission efficiency for four specimens and (b) linear stiffness with respect to the contact
pressure for all specimens with power-law fittings.

Table 2. Constants C and m obtained for all specimens.

Sample m C [MPa 1−m·nm−1]
Standard
Error. m

Standard
Error. C R2

Specimen 1 0.930 2.41× 10−2 0.016 1.32×10−3 0.995
Specimen 2 2.601 4.09 ×10−5 0.075 1.11× 10−5 0.985
Specimen 3 4.987 3.47× 10−10 0.112 1.61× 10−10 0.988
Specimen 4 7.486 5.85× 10−15 0.147 3.67× 10−15 0.993

4.4. Comparison of Theoretical, FEM, and Experimental Results for A1 and A2

Finally, the theoretical simulations, FEM simulations, and experimental results were
compared. Figures 13 and 14 show the results for A1 and A2, respectively. For A1, the
theoretical, FEM, and experimental results agree well with each other. In particular, the
FEM results are in perfect agreement with the theoretical results. Experimental results
show perfect agreement at high pressure but a slight difference at low pressure. This
difference in the low-pressure region is because, as mentioned earlier, the interface did not
involve sufficient contact. For A2, the peak pressure is consistent between theoretical, FEM,
and experimental results. The tendency to decrease after passing the peak is the same.
However, while the theoretical and FEM results continue to decrease, the experimental
results show convergence at some level. The reasons for this result are discussed in the
next section.
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Figure 13. Comparison of theoretical, FEM, and experimental results for A1: (a) specimen 1, (b) specimen 2, (c) specimen 3,
and (d) specimen 4.

Figure 14. Cont.
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Figure 14. Comparison of theoretical, FEM, and experimental results for A2: (a) specimen 1, (b) specimen 2, (c) specimen 3,
and (d) specimen 4.

4.5. Difference between Experiment and Theory at High Contact Pressure

We only considered the contact acoustic nonlinear effect at the interface when conduct-
ing theoretical and FEM analysis. However, since the material nonlinear effect inherently
exists regardless of the presence or absence of an interface, it is necessary to further examine
this effect, although it is known that the magnitude of the harmonics caused by the material
nonlinear effect is relatively small compared to the influence of the CAN effect. In addition,
system-induced harmonics can be included in the received signal. At high pressures, the
transmission efficiency is almost constant; therefore, the aforementioned extra second
harmonics will be constant.

To confirm this, the magnitude of the second harmonic component in a single cylin-
drical Al6061-T6 specimen (60 mm in length) was measured. There was no interface in
this specimen. To create the same propagation distance as in the previous experiment, the
length of the specimen was made equal to the combined length of the two blocks. Since
all experimental equipment and materials were the same as in the previous experiment,
the material nonlinearity or the magnitude of the second harmonic component caused by
the system was the same. The intention of this experiment was to determine whether the
magnitude of A2 at high pressure (e.g., 80 MPa) shown in specimen 1 of Figure 14 is the
same as that of A2 obtained from the specimen without an interface. For this comparison,
we measured the relative parameter β′, which is defined as follows [17].

β′ =
A2

A1
2 (11)

Compare β′ calculated from the A1 and A2 values previously obtained for specimen
1 (with an interface) at a pressure of 80 MPa and β′ newly measured from the specimen
without an interface. The average values of 10 repeated measurements were 0.0109 ± 0.0001
for specimen 1 at 80 MPa and 0.0106 ± 0.0002 for the single specimen. The results are
similar to each other, which means that the convergence of A2 to a certain constant value at
high pressure in the previous experiment was due to the extra harmonic component from
material nonlinearity and system nonlinearity. Note that if the material nonlinearity and
the system nonlinearity can be identified in advance, it will be possible to integrate the
CAN model with the contribution of material nonlinearity and system nonlinearity. If such
an integrated model is applied, it is expected that the problem of the difference between the
theoretical prediction and the experimental results at high pressure shown above will be



Materials 2021, 14, 2988 15 of 16

solved. However, although the model for material nonlinearity is well-known, the model
for system nonlinearity is still a challenging task [15].

5. Conclusions

In this paper, the theory of contact acoustic nonlinearity at an interface with rough-
ness, in which the contact state of the interface is represented using linear and nonlinear
interfacial stiffness (which vary according to contact pressure), was experimentally verified.
To do this, four sets of specimens with different interface roughness values (Ra = 0.179 to
4.524 µm) were tested. One set of specimens consisted of two AL6061-T6 blocks facing
each other. The second harmonic component of the transmitted signal was analyzed while
applying force to both sides of the specimen set to change the contact state of the interface.
The experimental results showed good agreement with the theoretical prediction, even
with a rough interface. The amplitude of the second harmonic component was maximized
at a specific contact pressure. Additionally, as the roughness of the contact surface in-
creased, the second harmonic component was maximized at a higher contact pressure.
The location of this maximal point was consistent in experimental and theoretical results.
At high pressure, however, the interfacial stiffness was very large so that the amplitude
of the second harmonic converged to zero in the theoretical results, while maintaining a
constant value in the experimental results. Based on additional experiments conducted on
a single specimen with the same propagation distance but no interface, this difference was
determined to be caused by the nonlinearity of the material itself and the component due
to the system nonlinearity.

Additionally, FEM simulations were conducted in parallel, in which the contact
interface was modeled in two dimensions using ABAQUS. Numerical simulation results for
tested specimens were in good agreement with the theoretical predictions. The developed
FEM model enables parametric studies on various states of contact interfaces.

It is very important that the magnitude of the second harmonic component be max-
imized at a specific pressure, and a quantitative relationship between this pressure and
the gap needs to be identified in the future. In addition, higher pressure is required to
demonstrate this behavior for surfaces that are rougher than those analyzed in this study.
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