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Effects of lubricant‑fuel mixing 
on particle emissions in a single 
cylinder direct injection spark 
ignition engine
Hoseung Yi1, Jihwan Seo1, Young Soo Yu1, Yunsung Lim2, Sanguk Lee2, Jongtae Lee2, 
Hanho Song3 & Sungwook Park4*

Gasoline direct injection (GDI) engines emit less carbon dioxide (CO2) than port fuel injection 
(PFI) engines when fossil fuel conditions are the same. However, GDI engines emit more ultrafine 
particulate matter, which can have negative health effects, leading to particulate emission 
regulations. To satisfy these regulations, various studies have been done to reduce particulate 
matter, and several studies focused on lubricants. This study focuses on the influence of lubricant 
on the formation of particulate matter and its effect on particulate emissions in GDI engines. An 
instrumented, combustion and optical singe-cylinder GDI engine fueled by four different lubricant-
gasoline blends was used with various injection conditions. Combustion experiments were used to 
determine combustion characteristics, and gaseous emissions indicated that the lubricant did not 
influence mixture homogeneity but had an impact on unburned fuels. Optical experiments showed 
that the lubricant did not influence spray but did influence wall film formation during the injection 
period, which is a major factor affecting particulate matter generation. Particulate emissions indicated 
that lubricant included in the wall film significantly affected PN emissions depending on injection 
conditions. Additionally, the wall film influenced by the lubricant affected the overall particle size and 
its distribution.

Abbreviations
PN	� Particle number
ATDC	� After top dead center
BTDC	� Before top dead enter
ROHR	� Rate of heat release
CA	� Crank angle
CO	� Carbon monoxide
NOx	� Nitrous oxides
THC	� Total hydrocarbon
ASOI	� After start of injection
ASOS	� After start of spark ignition

Gasoline direct injection (GDI) engines are spark ignited internal combustion engines that inject highly pres-
surized fuel directly into the combustion chamber. This injection system gives GDI engines several advantages 
compared to port fuel injection (PFI) engines, which inject fuel into the intake manifold of the engine, when the 
same fossil fuel is used. One advantage is that the direct injection system increased fuel atomization and vaporiza-
tion rate, causing a charge cooling effect in the combustion chamber during injection. This allowed GDI engines 
to reach a higher compression ratio and increase volumetric efficiency relative to PFI engines. Another advantage 
was that the direct injection system gave the ability to precisely control the amount of fuel at a certain engine 
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operating condition. This led to an increase in overall fuel efficiency compared to another configuration. Due 
to these advantages, GDI engines have better fuel economy and higher power output, producing fewer carbon 
dioxide (CO2) emissions than PFI engines1. Despite these advantages, GDI engine particulate emissions were 
significantly higher than PFI engines, as has been shown in many studies2–6. In addition, several studies reported 
that GDI engines emitted more PN7,8 and ultrafine particles2,9 than diesel engines equipped with a particulate 
filter. Since it is well known that ultrafine particles have a detrimental impact on the atmosphere and human 
respiratory systems10,11, stringent regulations to reduce particulate emissions on vehicles have been established. 
Starting in 2009, regulation of particulate mass (PM) for GDI engines was legislated, and regulations on PN were 
enacted in 2014 in Europe. Furthermore, EURO-6c has been implemented in 2017, which regulates PM and 
PN levels in GDI engines by requiring them to be at the same levels as diesel vehicles. In the U.S., the California 
Low Emission Vehicle II (LEV II) program required gasoline vehicles to comply with the PM standard starting 
in 2008. Later, the LEV III program was legislated to further restrict PM emissions regardless of fuel.

To meet the regulations, various studies have been conducted to find the cause of PN to reduce particulate 
emissions. Among them, several studies concentrated on lubricant consumption in the combustion chamber. 
Lubricant in the engine has various functions including: reducing friction between surfaces, cleaning soot and 
sludge in the engine, preventing rust and corrosion, cooling parts such as the piston, and sealing gaps to prevent 
combustion gas from escaping. However, these characteristics also caused entrainment of lubricant into the com-
bustion chamber through several paths such as the piston ring, valve seals, blow-by gas, and turbochargers12,13, 
which resulted in the consumption of lubricant. Even though the consumption of lubricant was marginal, 
accounting for only about 0.1% in modern engines, it contributed significantly to particulate emissions in some 
cases14. Sonntag et al.15 estimated that the contribution of lubricant to PM emission rates is 25% in light-duty 
gasoline vehicles. In addition, metal additives in the lubricant (which are included to enhance the performance of 
the lubricant) greatly affected particulate emissions16. Due to these issues, several studies have been performed to 
identify the effect of lubricant consumption on particulate emissions. For example, Miller et al.17 modified a diesel 
engine fueled with hydrogen to remove fuel-derived soot. The results showed that most particles consisted of 
metals with some organic compounds and a marginal amount of elemental carbon. Christianson et al.18 compared 
two light duty vehicles with two different ethanol blend ratio fuels. Results indicated that both the number and 
size of particles decreased during the break-in period of the lubricant, but they are expected to increase due to 
lubricant aging. Pirjola et al.19 examined particulate emissions on five lubricants with different properties using 
a turbocharged GDI vehicle. From the results, PN was significantly affected by the properties of the lubricant 
and metallic additives included in the lubricant. Amirante et al.20 investigated the contribution of lubricant to 
particulate emissions by implementing different injection methods using a spark ignition engine equipped with 
both PFI and GDI injector fueled by gasoline or natural gas. The results showed that the addition of lubricant 
significantly increased particulate emissions in the lowest size range regardless of the methods and size range 
over 50 nm was observed when the lubricant directly entered the combustion chamber.

As shown above, these studies focused on the effect of lubricant on particulate emissions but did not analyze 
how the engine lubricant influenced particulate matter in a GDI engine. Before illustrating the relationship 
between particulate matter and lubricant, detailed information related to particulate formation is required. 
Particulate matter formed in a GDI engine is mainly due to inhomogeneous air–fuel mixture and the existence 
of wall film21. Inhomogeneous mixtures appear when the fuel does not properly mix with air in the combustion 
chamber, resulting in partial fuel-rich zones. Then, incomplete combustion occurs in fuel-rich zones due to a lack 
of air during combustion, which leads to the formation of particulate matter22. A wall film develops when fuel 
spray impinges on the piston or in-cylinder liner, creating thin fuel film. This fuel film does not evaporate and 
exists during combustion, and it can cause diffusion flame from incomplete combustion, leading to particulate 
matter formation23. This process is similar to lubricant entrainment and lubricant emission due to mixture for-
mation in a GDI engine, which have been investigated by Gohl et al.24. Hence, studying the lubricant behavior 
can provide detailed insight about how lubricant influences particulate matter formation during the combustion 
phase. Therefore, we investigated the influence of lubricant on the formation factor of particulate matter and 
its effect on particulate emissions in a GDI engine by utilizing combustion and an optical engine with various 
injection conditions fueled with different ratios of lubricant blended gasoline.

Experimental methods
To analyze the influence of lubricant on particulate matter formation and its effect on particulate emissions in 
direct injection spark ignition engine with respect to lubricant blend ratio, engine experiments were conducted 
with various mix ratios.

Combustion engine experiment apparatus.  The engine used in this experiment is a four stroke, single 
cylinder GDI engine. Detailed specifications of this engine are shown in Table 1. The fuel injection system of this 
engine is a side mounted, wall guided six-hole injector located between two intake valves. The ignition system of 
this engine is a spark plug mounted and positioned on center of the cylinder head.

For all test conditions, the engine was operated using an alternating current (AC) motor, which kept the 
engine speed constant during the experiment. The intake air was constantly provided into the intake port using 
compressed air and a mass air flow controller. Fuel was pressurized using an air-driven liquid pump, and pres-
sure fluctuation was stabilized by including a fuel chamber between the pump and injector. Injection timing and 
spark timing were controlled using a CompactRIO (National Instruments) system and the LabVIEW (National 
Instruments) program. Equivalence ratio was measured using a broadband lambda sensor (LSU4.9, Bosch), and 
it was used as a feedback signal to control injection duration. In-cylinder pressure was acquired using a piezo-
electric pressure sensor integrated into a spark plug (6115B, Kistler), and the signal was amplified by the charge 
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amplifier (Kistler). This signal was then sent to the data acquisition board (USB X series, National Instruments) 
for post-processing. In-cylinder pressure data were measured over 300 cycles and averaged to minimize cyclic 
variation. Measurement of total hydrocarbon (THC), carbon monoxide (CO), and nitrous oxides (NOx) emitted 
from the engine exhaust were performed using a MEXA 9100 (Horiba) emission bench. Engine exhaust particle 
number (PN) and size distribution were measured using PPS-M (Pegasor) and EEPS 3090 (TSI), respectively. 
After a sufficient duration of stabilization, emission data were collected in real time for over three minutes when 
each test condition was at steady state. Data regarding combustion characteristics and engine power (kW) were 
post processed using data acquired from cylinder pressure, crank angle, and intake/exhaust pressure. Emis-
sion data were post processed to be in gram per kilowatt-hour (g/kW-hr) for gaseous emissions and numbers 
per kilowatt-hour (#/kW-hr) for particle number by utilizing engine power. Intake flow rates were taken from 
experiment data, and the density of gaseous substances in exhaust emissions was based on the book ‘An Intro-
duction to Combustion’25. Particle size distribution was post processed into concentration (%) by dividing each 
particle size number by the sum of all particle size numbers. The overall experimental setup mentioned above 
is illustrated in Fig. 1.

Optical engine experiment apparatus.  In-cylinder fuel spray and flame visualization were conducted 
by implementing an optical engine system in between the cylinder head and body as shown in Fig. 2. Images 
of the fuel spray were captured on the side of the engine by adding a quartz side window between the cylinder 
head and liner, which has an optical accessible width of 49 mm and a height of 34 mm. A metal halide lamp was 
used as a light source to observe the development of spray by the Mie-scattering method. Thirty cycles of spray 
image were continuously recorded since the interactions between spray behavior, in-cylinder flow and turbu-
lence are not same for all cycles. All spray images were recorded with the same image resolution, exposure rate, 
focal point, and aperture. Also, camera was calibrated using the provided camera control program (PCC 3.1, 
Phantom) to acquire same image intensity for all cases. Then, the recorded spray image was cropped to only see 
the spray visualized by the side quartz window, and it was post processed to average the spray image to reduce 

Table 1.   Engine specifications.

Item Specification

Bore 77 mm

Stroke 85.44 mm

Displacement volume 397.86 mL

Compression ratio 10.5:1

Intake valve open/close BTDC 345/95°

Exhaust valve open/close ATDC 108/346°

Figure 1.   Schematic diagram of engine operating systems and exhaust emission measuring systems.
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cycle-to-cycle variation. Additionally, the average spray image was converted into a color map to clearly visualize 
spray brightness. The flame image was captured on the bottom of the engine through a 45° mirror and a quartz 
bottom window located at the piston head with an optical accessible diameter of 55 mm. No light source was 
used for the flame image to capture the chemiluminescence emitted from the flame. Over 120 cycles of flame 
images were taken because the diffusion flame is affected by spray behavior, in-cylinder flow, film formation, and 
flame propagation. All flame images were recorded with the same image resolution, exposure rate, focal point, 
and aperture. Also, camera was calibrated using the provided camera control program (PCC 3.1, Phantom) to 
acquire same image intensity for all cases. Recorded flame images were cropped to view the diffusion flame 
visualized by the bottom quartz window and to remove reflected lights formed on the bottom of the quartz 
window. All visualization images were obtained using a high-speed camera (VEO 710, Phantom) at 9000 frames 
per second.

Combustion engine experiment conditions.  The combustion engine was operated at 1500 rpm, and 
the coolant temperature was set to 80 ℃. An intake flow rate of 130LPM was set to ensure the engine had 
medium load, which prevents knocking caused by auto-ignition of the lubricant26. Injection duration was set to 
maintain the equivalence ratio to stoichiometric for all test conditions. Spark timing was set by the maximum 
brake torque (MBT) of each test condition. Injection pressure varied from 10 MPa up to 35 MPa, and injection 
timing varied from BTDC 330° to BTDC 180° to create the particulate matter formation conditions and check 
the influence of the lubricant. Test conditions mentioned above are organized in Table 2.

Optical engine experiment conditions.  For optical engine conditions, engine rotation speed, coolant 
temperature, intake flow rate, injection pressure, and injection timing were set to be the same as the combustion 
engine experiment conditions. Injection duration for spray visualization was set from 1.0 to 2.0 ms for all test 
conditions. Injection duration and spark timing for flame visualization were set according to the results from the 
combustion experiment. The test conditions mentioned above are also organized in Table 2.

Fuel composition conditions for combustion and optical engine experiments.  For both the 
combustion and optical engines, SAE 5W20 lubricant (Hyundai Mobis) was blended into commercial gasoline 
produced for summertime use (GS Caltex) in different weight percentages varying from zero to five weight per-
cent (wt%). Gasoline, lubricant, and gasoline-lubricant blended fuel property measurement tests were requested 
from the Korea Petroleum Quality and Distribution Authority. Detailed percentage ratios of the blended fuel 
and properties of lubricant and gasoline are listed in Table 3. Here, “G100” denotes 100wt% of gasoline is used 
and “GxxLy” denotes “xx” wt% of gasoline and “y” wt% of lubricant is blended. For example, “G97L3” denotes 
97wt% of gasoline and 3wt% of lubricant was blended. A maximum of G95L5 was used since the exhaust meas-
urement systems used in this experiment could not measure the emission data of blended fuel that had more 
than 5wt% lubricant.

Figure 2.   Schematic diagram of optical engine for spray and flame visualization.
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Results
Combustion engine experiments on gasoline‑lubricant blend ratio.  Changes in combustion char-
acteristics at different injection pressure with respect to blend ratio were observed as shown in Fig. 3a,b. Since 
the combustion results were similar on all three injection pressures, data with respect to injection pressure were 
averaged to observe overall results. When observing the results of in-cylinder pressure shown in Fig. 3c, the 
lubricant blend ratio had a negligible effect on in-cylinder pressure and ROHR regardless of injection timing. 
Including lubrication oil seemed to slightly reduce IMEP compared to G100 for all injection timings, but the 
difference was within the error margin and there were no significant differences between different blend ratios 
over 1 wt% as shown in Fig. 3e. Here, combustion duration, calculated from ROHR, is defined as crank angle 
duration from 10 to 90% of mass fuel to burn. This means that combustion duration can be interpreted as com-
bustion speed. The combustion duration displayed in Fig. 3f showed no significant differences in lubricant blend 
ratio for injection timings of BTDC 330 and 270°. For an injection timing of BTDC 180°, combustion duration 
seemed to decrease when the lubrication blend ratio increased. However, when inspecting the ROHR at an 
injection timing of BTDC 180° presented in Fig. 3d, the results were similar for all blend ratios, which indicated 
that the combustion duration differences were marginal. From these results, the combustion characteristics indi-
cated that lubricant blend ratio did not affect mixture homogeneity since mixture homogeneity impacts flame 
propagation. Fuel consumption with respect to lubricant blend ratio presented in Fig. 4 was calculated based on 
the injection duration and injection quantity specification of the injector. As the lubricant blend ratio increased, 
the fuel consumption also increased to an average of 1.4% as compared to G100. This result implies that excess 
fuel did not participate in the combustion process but remained unburned. Because the equivalence ratio was a 
fixed experimental condition, combustion characteristics were similar for all cases, and the lower heating values 
(LHV) were similar for the gasoline and lubricant.

CO emissions shown in Fig. 5a had no trend with respect to lubricant blend ratio for all injection pressures 
therefore data was averaged to see overall trend at different injection timing. Even when the data was averaged, 
CO emissions had no trend on all injection timings as shown in Fig. 5b. NOx emissions shown in Fig. 5c had 
similar trend for all injection pressures therefore was averaged to observe overall trend at different injection 
timing. Averaged NOx emissions showed small differences with lubricant blend ratio as illustrated in Fig. 5d, 
and the trend was similar for each injection timing. Here, NOx emissions are mainly influenced by in-cylinder 
pressure since the combustion temperature, the main factor for NOx emissions, is proportional to in-cylinder 
pressure and combustion speed27. From this knowledge, the slight difference in NOx emissions was due to meas-
urement error since there were no differences in in-cylinder pressure, and the trend in NOx emissions showed 

Table 2.   Engine operating conditions.

Item Specification

Engine speed 1500 rpm

Intake air flow rate 130LPM

Coolant temperature 80 °C

Equivalence ratio 1.0

Injection pressure 10, 20, 35 MPa

Injection timing BTDC 330, 270, 180°

Spark timing

Combustion MBT

Optical Set from combustion results

Injection duration

Combustion Set by equivalence ratio

Optical

 Spray image 1.0, 1.5, 2.0 ms

 Flame image Set from combustion results

Table 3.   Fuel blend ratio and properties of fuel components.

Gasoline (G100) Lubricant (O100) G95L5

Properties

Lower heating value [J/g] 42,740 42,910 -

Kinematic viscosity [mm2/s @20 °C] 0.5330 128.5 0.6403

Absolute viscosity [mPa*s @25 °C] 0.3673 77.34 0.4235

Density [kg/m3 @15 °C] 718 851.1 718.8

Initial boiling point [°C] 36.6 326.1 –

Final boiling point [°C] 193.7 610.7 –

Vapor pressure [kPa @ 37.8 °C] 57.4 (Unable to measure) 53.8
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no relationship between combustion speed and lubricant blend ratio. Generally, CO emissions are produced 
due to incomplete combustion from a rich air–fuel mixture or an inhomogeneous mixture. NOx emissions 
are produced by the factors mentioned above and from lean air–fuel mixtures27. Since CO and NOx emissions 
were not dependent on lubricant blend ratio for all injection timings and combustion was stoichiometric for 
this experiment, we concluded that the lubricant blend ratio did not have an impact on mixture homogeneity. 
On the other hand, the gasoline-lubricant blend ratio had a significant effect on THC emissions displayed in 
Fig. 5f. Since THC emissions trend with respect to lubricant blend ratio at different injection pressures were 
similar as shown in Fig. 5e, data was averaged to observe overall trends regarding on injection timing. For an 
injection timing of BTDC 330°, THC emissions increased significantly as the lubricant blend ratio increased, 
resulting a 193% increase when comparing the emissions of G100 and G95L5. This increase was notably higher 
than other injection timings. When injection timing was delayed to BTDC 270°, the difference between G100 
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and lubricant blended fuel was reduced, leading to a 140% increase in emissions between G100 and G95L5. As 
injection timing was retarded further to an injection timing of BTDC 180°, the maximum difference between 
G100 and lubricant blended fuel was slightly reduced to a 132% increase in emissions between G100 and G95L5. 
THC emissions are generated by several factors, including a rich air–fuel mixture, incomplete combustion, and 
unburned fuels27. From the experimental conditions and previous results, rich air–fuel mixtures and incomplete 
combustion were not factors in this experiment. Thus, we concluded that the increase in THC emissions were 
mostly due to an increase in unburned fuels.

Optical engine experiments on gasoline‑lubricant blend ratio.  To investigate the effect of lubri-
cant blend ratio, differences in the spray behavior and penetration length at various lubricant blend ratios were 
measured under an injection pressure of 10 MPa at ASOS 18° (where the injection process has just terminated) 
by comparing spray images of G100 and G95L5 as presented in Fig. 6. All images were set in a grid to clearly 
compare the differences in spray images. Furthermore, for an injection timing of BTDC 330°, an illustration 
of the piston was inserted to demonstrate the interaction between the piston surface and spray. At an injection 
timing of BTDC 330° (where spray collides with the piston surface and in-cylinder flow increases as illustrated 
in Fig. 7a), there were no differences in the average spray behaviors and penetration length of the two fuels. 
Further, the spray behaviors after colliding with the piston were similar. Figure 7b shows the spray image on 
an injection timing of BTDC 270° where the in-cylinder flow was strong resulting in a downward direction of 
spray penetration. As shown, slight differences in behaviors were observed, but these were mainly due to the 
variance in in-cylinder flow. Overall spray penetration lengths were similar. The injection timing of BTDC 180° 
(where in-cylinder flow was weak leading to an upward spray direction as illustrated in Fig. 7c) also showed 
similar spray behavior and penetration length between G100 and G95L5. These observations can be supported 
by the properties of G100 and G95L5 mentioned in Table 3. Density and vapor pressure are fuel properties that 
influence spray behavior. As density increases, the momentum of the spray increases, resulting in a longer spray 
penetration length. Vapor pressure has an effect on spray behavior since a higher vapor pressure enhances fuel 
evaporation, resulting in a reduction in fuel droplet size. As a result, the spray image brightness decreases. How-
ever, the difference in density and vapor pressure between G100 and G95L5 were insignificant, meaning that 
the lubricant blend ratio did not affect spray behaviors and penetration. This result also implies that lubricant 
blend ratio did not have an impact on mixture homogeneity since spray behavior and penetration greatly impact 
air–fuel mixture formation28.

To inspect the amount and position of the diffusion flame generated during combustion, the flame images 
were observed for various lubricant blend ratios under various injection pressures and injection timings. Flame 
images were also observed at ASOS 40°, where the flame front meets the piston surface or the cylinder liner. 
One image was chosen from over 120 cycles of images for all cases. Selection of the image was conducted by the 
following procedures: flame images exhibiting diffusion flames were chosen and post processed to calculate the 
total area and position of diffusion flame of each image. Calculated data were averaged, and the image closest 
to the average was chosen and post processed to clearly visualize the area and position of diffusion flame. The 
position of the intake and exhaust valve, spark plug, and injector can be identified from Fig. 8. At an injection 
timing of BTDC 330° shown in Fig. 9a, the diffusion flame was positioned mostly at the side of the piston and 
between the intake and exhaust valve where the spray collided with the piston as illustrated in Fig. 7a for both 
G100 and G95L5. For G100, diffusion flame decreased as injection pressure increased since as injection pres-
sure increase, wall film thickness decreases29. For G95L5, substantial diffusion flame was continuously observed 
regardless of injection pressure. To understand this phenomenon, other studies were examined based on the 
properties of the lubricant. From Bai et al.30, spray-wall interaction regimes are classified into stick, spread, 
rebound, and splash. Then, the transition criteria between theses regimes were calculated using droplet Laplace 
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number and were compared with droplet Weber number to identify the possibilities of transition. Based on this 
article, we calculated that the lubricant droplet Laplace number is substantially lower than gasoline due to the 
high viscosity and high surface tension, which is proportional to viscosity31, while the droplet Weber numbers 
were similar. This means that the lubricant droplet tends to ‘stick’ or ‘spread’ significantly more than gasoline 
since the transition criteria are much higher than the droplet Weber number, resulting in an increase in wall 
film as the lubricant blend ratio increased. In addition, Yu et al.32 investigated the spray impingement to improve 
emissions during early injection timing using dimethyl ether (DME) blended diesel. The results showed that wall 
film average thickness and variation was due to impingement momentum, wall film mass and fuel properties. 
From this article, lubricant properties, such as kinematic viscosity, surface tension, and vapor pressure caused an 
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Figure 5.   Gaseous emissions with respect to lubricant blend ratio.
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increase in average wall film thickness. Therefore, after the spray collided with the piston surface, a wall film was 
formed on the piston surface without a thickness reduction, and it did not participate in the combustion process, 
causing diffusion flame as the combustion flame front contacted the wall film. At an injection timing of BTDC 
270°, the diffusion flame at G100 decreased significantly compared to the diffusion flame at an injection timing 
of BTDC 330° as illustrated in Fig. 9b. As injection pressure increased, the diffusion flame notably decreased and 
could not be found at an injection pressure of 35 MPa. This was not the case for G95L5. The amount of diffu-
sion flame did not decrease despite the increase in injection pressure. Also, diffusion flame was observed at the 
side of the piston, but it was also observed in the middle of the piston. These characteristics were also due to the 
properties of the lubricant and its influence of wall film development with the effect of in-cylinder flow and fuel 
behavior. Spray from the injector at an injection timing of BTDC 270 did not directly collide with the piston nor 
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Figure 6.   Averaged spray image with respect to lubricant blend ratio.

Figure 7.   Schematic descriptions of piston and intake valve positions with respect to injection timing and spray 
penetration direction.
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the cylinder liner, as described in Fig. 7b. Therefore, the wall film caused by spray impingement on the piston 
surface did not occur for this injection timing. However, from Lee et al.33, unevaporated fuel droplets contact the 
piston head and cylinder liner at this injection timing. Furthermore, high viscosity of the lubricant blended fuel 
caused fuel droplets to be stuck on the piston and cylinder surface. Also, low volatility prevented fuel droplets 
from evaporating resulting in the development of wall film. Then, this unburned wall film met the combustion 
flame front resulting in a diffusion flame as mentioned before. The effect of lubricant at an injection timing of 
BTDC 180° was also identified. G100 showed marginal amount of diffusion flame, and diffusion flame decreased 
as injection pressure increased. Diffusion flame was no longer visible at an injection pressure of 35 MPa resulting 
in a black image due to lack of chemiluminescent source. Whereas diffusion flame was still identified on G95L5 
as shown in Fig. 9c. The cause of the diffusion flame for G95L5 was similar to the cause of diffusion flame at an 
injection timing of BTDC 270° but on a different position of the cylinder. At an injection timing of BTDC 180°, 
the spray direction was more towards the cylinder liner as illustrated in Fig. 7c. This was due to the upward in-
cylinder flow at this injection timing34, which led unevaporated fuel droplets contact and stick on the cylinder 
liner creating wall film. As a result, the wall film at the cylinder liner was met with the combustion flame front, 
causing diffusion flame. From these results, difference in diffusion flame amount implied that lubricant blended 
in the gasoline affected wall film amount which is one of the causes of particle formation.

Effect of gasoline‑lubricant blend ratio on particulate emission.  PN emissions emitted as a func-
tion of lubricant blend ratio are shown in Fig. 10. For G100, the overall PN decreased significantly as injection 
pressure increased for all injection timings due to a reduction in the wall film. However, as the weight percent of 
lubricant increased, the results deviated from G100. At an injection timing of BTDC 330° at G95L5, the overall 
PN was 11 times larger than G100. Also, the G95L5 lubricant blend ratio resulted in no reduction in PN with 
respect to injection pressure as shown in Fig. 10a. From the investigation above, the overall increase in PN was 
affected by an increase in unburned fuel remaining on the piston surface and cylinder liner, creating a wall film 
and a causing pool fire, which is a dominant feature of PN emissions from GDI engines. These phenomena were 
due to the lubricant properties. The high viscosity and surface tension of the lubricant resulted in a high transi-
tion criterion from stick to splash, which makes regime transition difficult even with increased droplet velocity 
at higher injection pressure. This did not reduce the wall film, resulting in similar PN regardless of injection 
pressure. For an injection timing of BTDC 270°, the overall increase in PN emissions at G95L5 was 152 times 
that of G100. While G100 PN emissions decreased as injection pressure increased from better atomization and 
evaporation of fuel droplets, PN emissions increased with respect to injection pressure, and the rate of increase 
became more significant as the lubricant blend ratio increased as shown in Fig.  10b. The substantial overall 
increase in PN emissions was also due to the properties of the lubricant. Since the spray in this injection timing 
did not collide with the piston nor the cylinder liner, overall PN emissions were low for G100. However, for the 
lubricant blended fuel, fuel droplets that did not evaporate due to the low volatility stuck to the piston surface 
and cylinder liner, resulting in the observed difference in PN emissions. The increase in PN emissions on injec-
tion pressure and lubricant blend ratio was from the increase in spray momentum, which is proportional to 
injection pressure. As spray momentum increased from boosted injection pressure, the spray penetration length 
also increased, which led to an increase in unevaporated fuel droplets reaching the piston surface and cylinder 
liner. This phenomenon becomes more significant as the lubricant blend ratio increases, resulting in an increase 
in PN with respect to lubricant blend ratio. Overall PN emissions at an injection timing of BTDC 180° increased 
significantly, i.e., 146 times moving from G100 to G95L5. Furthermore, the rate of PN generation, increased 
with respect to injection pressure and lubricant blend ratio as shown in Fig. 10c. The mechanism that influenced 
the overall increase in PN was the same as the mechanism at an injection timing of 270°. However, the rate of 
increase was lower than at an injection timing of BTDC 270° since the spray momentum was the only main 
source for the unevaporated lubricant droplet to move to the cylinder liner.

Particle size distributions were also influenced by lubricant blend ratio as shown in Fig. 11. Here, particle 
size distributions with respect to lubrication blend ratio for various injection pressures were similar as shown 

Figure 8.   Schematic of valve, spark plug, and injector position for flame image.
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in Fig. 12. Therefore, particle size distributions on injection pressure were averaged to clearly see the influence 
of lubricant blend ratio at different injection timings. For an injection timing of BTDC 330°, nucleated particles 
increased compared to G100 at G99L1, but the overall particle size shifted towards accumulation mode as the 
lubricant blend ratio increased as illustrated in Fig. 11a. Size distributions were similar for all lubricant blend 
ratios. The increase in nucleation particles when lubricant was blended was due to the influence of lubricant 
properties as investigated by Amirante et al.20 The increase in overall size in relation to the lubricant blend ratio 
(except G100) was due to an increase in nucleation particles from an increase in wall film. Nucleation particles 
collided with each other, forming larger particles by agglomeration35. The increase in nucleation particles resulted 
in a higher probability of nucleated particles colliding with each other, which increased particle size. The change 
in overall particle size for injection timings of BTDC 270 and 180 were similar to the overall change in an injec-
tion timing of BTDC 330°, but the shift towards accumulation mode was lower as presented in Fig. 11b,c. This was 
due to the reduction in the wall film compared to BTDC 330°, which reduced the number of nucleated particles. 

Figure 9.   Diffusion flame image with respect to lubricant blend ratio.
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Size distributions at both injection timings were distinct from G100. G100 size distributions were divided into 
nucleation mode and accumulation mode, whereas lubricant blended fuels size distributions were clustered near 
the boundary between nucleation mode and accumulation mode. Particle formation in G100 was mainly due 
to the mixture homogeneity, whereas particle formation for the lubricant blended fuel was primarily due to the 
wall film, which can be further explained by the size distributions at BTDC 330°.

Conclusion
Experiments were conducted to identify how particulate matter formation was influenced by lubricants and 
how these affected PN and particle size distributions using a single-cylinder GDI combustion and optical engine 
fueled by different lubricant gasoline blend ratios. Our results are summarized as follows.

1.	 Lubricant did not affect mixture homogeneity for all cases. Combustion characteristics on various lubricant 
blend ratio were similar, which is one of the major parameters distinguishing mixture homogeneity. Also, 
CO emissions showed no trends, indicating that lubricant blend ratio did not affect CO emissions. NOx 
emissions seemed to be affected by the lubricant, but this was a measurement error based on combustion 
characteristics and had no relationship with CO emissions. Since CO and NOx relationships also have a 
major influence on mixture homogeneity, this implies that there was no influence of lubricant on the mixture 
homogeneity. Furthermore, spray images showed similar results between G100 and G95L5 in terms of spray 
behavior, which also indicated there was no difference in mixture homogeneity from the lubricant.

2.	 The wall film was a major contributor to particulate emissions for various lubricant blend ratios. An increase 
in fuel consumption and THC emissions indicated that the lubricant had an influence on unburned fuels. 
Furthermore, diffusion flame was constantly observed for G95L5 regardless of injection conditions, whereas 
diffusion flame decreased for G100 as injection pressure increased and injection timing retarded. These dif-
ferent results for G100 and G95L5 showed that the lubricant had an influence on wall films. This was due 
to the extremely low volatility and high viscosity of the lubricant compared to gasoline, which increased 
unevaporated fuel droplets. When these droplets were in contact with the piston or in-cylinder liner, it 
developed into a wall film, which ignited to form diffusion flame due to incomplete combustion, resulting 
in an increase in unburned fuels and the formation of particulate matter.
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Figure 10.   PN emissions with respect to injection pressure and lubricant blend ratio.
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3.	 PN emissions and particle size distribution characteristics with respect to lubricant blend ratio demonstrated 
the influence of the lubricant on the mechanism of wall film formation. For an injection timing of BTDC 
330°, where the spray impinges on the piston surface, lubricant properties increased the wall film, which 
boosted PN emissions and nucleated particles. Also, it affected the amount of wall film, resulting in similar 
PN emissions with respect to injection pressure. For an injection timing of BTDC 270 and 180°, where spray 
does not directly collide with either the piston or in-cylinder liner, lubricant properties increased unevapo-
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Figure 11.   Particle size distributions with respect to lubricant blend ratio.
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rated fuel droplets, which created a wall film inside the combustion chamber. This resulted in an increase 
in PN emissions and differences in particle size distributions. In addition, increasing the injection pressure 
helped fuel droplets reach the piston and/or in-cylinder liner, resulting in a proportional relationship between 
PN emissions and injection pressure.

Data availability
The data that support the experimental results in this study are available from the corresponding author upon 
reasonable request.
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