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• Artificial neural network-based cold
start emission model was developed.

• Real-world driving data were used to
train artificial neural network.

• Proposed model predicted a sharp in-
crease in exhaust emissions after a cold
start.

• Exhaust emissions according to engine
temperature were visualized in emis-
sion map.
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During the cold start and warm-up phase, modern vehicles emit considerable amounts of pollutants due to the
incomplete combustion and deteriorated performance of aftertreatment devices. In terms of emission modeling,
there have been many attempts to estimate cold start emission such as cold-hot conversion factor, regression
model, and physis-based model. However, as the emission characteristic become complicated due to the adop-
tion of aftertreatment devices and various emission control strategies for the strengthened emission regulations,
the conventional cold start emissionmodels do not always show satisfactory performances. In this study, artificial
neural networks were used to predict the cold start emissions of carbon dioxide, nitrogen oxides, carbonmonox-
ide, and total hydrocarbon of diesel passenger vehicles.We used real-world driving data to train neural networks
as an emission prediction tool. Throughmachine leaning, numerous trainable variables of neural networks were
properly adjusted to predict cold start emissions. For input variables of the ANNmodel, the velocity, vehicle spe-
cific power, engine speed, engine torque, and engine coolant temperature were used. The proposed ANNmodels
accurately predicted sharp increases in carbonmonoxide, hydrocarbon, and nitrogen oxides during the cold start
phase. In addition to the quantitative estimations, the correlations between the operating variables and exhaust
gas emissions were visually described in the form of emission maps. The emission map graphically showed the
emission levels according to the vehicle and engine operating parameters.

© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).
Keywords:
Vehicle emission model
Cold start emission
Artificial neural network
Real driving emission
Emission map
rbon Monoxide; CO2, Carbon Dioxide; DOC, Diesel Oxidation Catalyst; DPF, Diesel Particulate Filter; LNT, Lean NOx Trap; NOx,
able Emission Measurement System; RDE, Real Driving Emission; SCR, Selective Catalytic Reduction; THC, Total Hydrocarbon;

Engineering, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 133791, Republic of Korea.

. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

http://crossmark.crossref.org/dialog/?doi=10.1016/j.scitotenv.2021.151347&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.scitotenv.2021.151347
mailto:parks@hanyang.ac.kr
https://doi.org/10.1016/j.scitotenv.2021.151347
http://creativecommons.org/licenses/by/4.0/
http://www.sciencedirect.com/science/journal/
www.elsevier.com/locate/scitotenv


J. Seo, B. Yun, J. Kim et al. Science of the Total Environment 806 (2022) 151347
1. Introduction

For modern vehicles, the additional exhaust emissions during the
cold start phase have become a critical issue in transportation-related
air pollution. In cold start conditions, vehicles emit significantly more
pollutant than in hot driving conditions due to unfavorable thermal
conditions for emission control. The thermal conditions of the engine
and aftertreatment devices have a significant impact on exhaust emis-
sions. During the cold start phase, the low temperature of the engine
leads to several problems, such as imperfect fuel evaporation, an in-
creased fuel film, and the need to consider fuel-enrichment strategies
for proper drivability, resulting in low combustion efficiency and in-
creased exhaust emissions (Bielaczyc and Merkisz, 1997; Roberts
et al., 2014). In addition, the conversion efficiency of aftertreatment de-
vices was deteriorated at low temperatures. Since most aftertreatment
devices utilize catalytic reactions for pollutant reduction, their pollutant
reduction performance is unsatisfactory under the light-off temperature
(Gao et al., 2019; Bielaczyc et al., 2011).

In recent years, cold start emissions have accounted for a large por-
tion of vehicle emissions. In contrary to hot running emissions, which
have continuously decreased as a result of the tightened emission regu-
lations and technology developments, cold start emissions have not ef-
fectively reduced over the last few decades. (Weilenmann et al., 2009;
Favez et al., 2009). Although the cold start phase accounts for only
15% of the total driving time of the New European driving cycle
(NEDC) test, carbon monoxide (CO) and hydrocarbon (HC) emissions
in the cold start phase account for up to 80% of the total emissions
(Robinson et al., 2013). In read-driving tests, most of the CO and HC
emissions were emitted during the cold start phase when the engine
was not fully warmed up (Du et al., 2020; Weilenmann et al., 2009).
In addition to CO and HC, nitrogen oxide (NOx) emissions were also in-
creased under the cold start condition due to the degraded performance
of NOx aftertreatment devices at low temperatures (Dardiotis et al.,
2013).

In terms of emission modeling, many attempts have been made to
estimate cold start emissions. Conventional cold start emission models
can be classified according to their modeling approaches. Applying
cold start conversion factors to hot emissions is the simplest andwidely
used method for estimating cold start emissions (Gkatzoflias et al.,
2007; Joumard et al., 2007). Conversion factors were often composed
of empirical functions, which were obtained through statistical process
comparing hot emissions and cold emissions based on a large amount of
experiment data. In addition to simple conversion factors, detailed
modeling approaches also have been used to predict cold start emis-
sions. Giannelli et al. (2014) estimated cold start emissions using a
semi-empirical method that operated as a function of the vehicle
tractive power. This model considered the impacts of vehicle
power and catalyst warm-up time on cold start emissions. Favez
et al. (2009) investigated the relationship between the stop time
and cold start emissions. They quantified the relative extra emissions
according to a range of stop times (from 0 to 12 h). Sabatini et al.
(2015) proposed a semi-empirical model to calculate the tempera-
ture of the catalytic converter. This model can predict the time it
takes to reach the light-off temperature of the catalyst during the
cold start. Weilenmann et al. (2013) developed a simplified
physics-based model to predict cold start emissions. This model
showed reliable prediction accuracy under various driving pattern,
ambient temperature, and stop time conditions.

However, as vehicle technologies improve to meet strengthened
emission standards such as real driving emission (RDE) regulations,
emission characteristics under cold start conditions have become
more complicated and diversified depending on the vehicle and emis-
sion types (Franco et al., 2013). The aftertreatment devices and various
engine control strategies of modern vehicles made cold start emission
characteristics further complicated (Neely et al., 2014; Neely et al.,
2013).
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As the emission characteristic become complicated, the conven-
tional cold start emission models do not always show satisfactory per-
formances. Both conventional empirical model and physics-based
model have the limitations in estimating cold start emissions of various
modern vehicles. Since empirical models are based on a relatively sim-
ple statistical process, the prediction accuracy for cold start emissions
is not satisfactory. On the contrary, implementation of physics-based
model required detailed information such as detailed specifications for
engine and aftertreatment devices and their control algorithms, which
may become an obstacle for model development.

Much research in recent years has focused on ANNs to model and
predict exhaust emissions. Sharma et al. (2005) evaluated the perfor-
mance of ANN-based vehicular emissionmodels. The prediction accura-
cies of ANN-based emissionmodelswere satisfactory due to their ability
tomodel nonlinear characteristics. Hashemi and Clark (2007) predicted
carbon dioxide (CO2), NOx, HC, and CO emissions of heavy-duty vehi-
cles by using an ANN model as a predictive tool. Their proposed ANN
model used the axle rotational speed and axle torque (and their deriva-
tives) as model input variables to predict target emissions. Jaikumar
et al. (2017) developed an ANN-based, real-time emission model for a
passenger car. Through parametric study, they analyzed which vari-
ables were effective as ANN inputs for emission prediction. The pro-
posed model used the vehicle speed, acceleration, engine speed, and
vehicle specific power (VSP) as input variables. Inclusion of other pa-
rameters as ANN inputs, such as the oil temperature, engine load, in-
take air temperature, and throttle position, showed only a marginal
improvement for emission predictions. Le Cornec et al. (2020) devel-
oped an instantaneous NOx prediction model based on an ANN
trained with large amount of real-world driving data. The proposed
model showed satisfactory NOx prediction accuracy with a relatively
simple variables such as vehicle speed and acceleration. Wang et al.
(2018) predicted the CO2, CO, NOx, and HC emissions for different
fuel types using vehicle specific power-based ANN model. The pro-
posed ANN model showed better performance in emission predic-
tions compared to regression model in all indicators such as mean
absolute percentage error, root mean squared error, and mean abso-
lute error.

In order to predict cold start emissionwith high performance, this
paper presents a novel and reliable methodology to predict cold start
emissions based on artificial neural networks (ANNs). Since ANNs
consist of nonlinear functions and numerous trainable variables,
which can be adjusted to predict the target value through machine
learning, this methodology can effectively take into account the
complex and nonlinear behavior contained in the training data. In
addition, ANN-based models do not require high level of modeling
techniques which was essential for conventional physics-based
emission model. By properly designing ANN structure, ANNs can
train the emission characteristics of the experiment data by them-
selves through machine learning. Currently, many real-world driv-
ing tests are being conducted around the world for regulatory
purposes (Gao et al., 2021). Therefore, more experimental data will
be available for development of ANN models.

In this study, we predicted cold start CO2, NOx, CO, and total hy-
drocarbon (THC) emissions using ANNs, which were trained with
real-world driving data. Four types of ANN models were developed
for each exhaust species depending on the combination of input var-
iables such as velocity, VSP, engine speed, engine torque, and engine
coolant temperature. Through the machine learning, ANN model
trained the correlation between the operating variables and exhaust
emissions represented in experimental data. The emission predic-
tion accuracies of developed ANNmodels were validated by compar-
ing with experiment emissions. In addition, since the ANNmodel is a
black boxmodel, we introduced emission maps to describe the emis-
sion characteristics trained in these ANN models. We visualized cold
start emissions according to the engine coolant temperature in the
form of an emission map.
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2. Methodology

2.1. Artificial neural network model

In order to achieve optimal performance of ANN models, multiple
types of ANN models were developed, and their prediction accuracies
were compared. We developed four types of ‘multi-layer, feed-
forward neural network’models, as shown in Fig. 1. A total of five oper-
ating variables were used as ANN input variables: velocity, VSP, engine
speed, engine torque, and engine coolant temperature.

Among the five input variables, the engine coolant temperature was
the key parameter for estimating cold start emissions. Through trial and
error, we found that ANNmodels using the engine coolant temperature
as an input variable were able to predict the cold start effect on exhaust
emissions. However, the prediction quality of emission models is af-
fected not only by the engine coolant temperature, but also by other
input variables, such as velocity, VSP, engine speed, and engine torque.
Therefore,we developed four differentANNmodels to comprehensively
analyze the performance of cold start emissionmodels. The detailed de-
scriptions of each ANN model are as follows:

• Vehicle model

velocity and VSP were used as inputs for the Vehicle model. Although
this model cannot directly consider engine parameters, it was easy to
use and practical because velocity and VSP are relatively easily available
parameters. For example, EPAMOVES (USEPA, 2011), which is the vehi-
cle emission inventory system of the U.S., uses velocity and VSP for
emission estimation.

• Engine model
Engine-related variables (engine speed and engine torque) were used
as inputs for the Engine model. The engine speed and engine torque
are used to represent the basic engine operating conditions. These
two variables are widely used in vehicle-dynamics-based models for
fuel and emission predictions (Rexeis, 2017; Ehsani et al., 2016;
Srinivasan and Kothalikar, 2009). In contrast to the Vehicle model,
Fig. 1. Structures of artificial
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the Engine model directly considers the engine operating conditions.
• Cold-vehicle model and Cold-engine model
The ‘Cold’ models used the engine coolant temperature as an addi-
tional input variable, as compared to the Vehicle and Engine models.
These models were designed to consider the cold start effect on
exhaust emissions by considering temperature-related variables for
emission prediction.

Except for the input layer, all ANN models had the same network
structure. The hidden layer consists of three layers, and the first, second,
and third layers contain 64, 128, and 128neurons, respectively. Neurons
in the hidden layers were fully connected, and a dropout layer was not
used. The number of output variables for these ANNmodels was singu-
lar, and we trained separated ANNmodels to predict CO2, NOx, CO, and
THC emissions. Through the training, mean square propagation algo-
rithmadjust the trainable parameters in all neurons. Although the num-
ber of trainable parameters is slightly depending on the number of ANN
inputs, about 25,000 parameters were adjusted by the learning algo-
rithms. For loss function, mean square error were used. In each hidden
layer, the Relu function was used as an activation function.

2.2. ANN training data

RDE data of two diesel light-duty vehicles were used for ANN train-
ing. Table 1 shows the vehicle specifications of the two light-duty vehi-
cles with 2000 cc diesel engine. The model year of Vehicle A is 2009,
which is nine years older than Vehicle B. Since emission regulations
have been updated over time, Vehicle B was subject to the Euro 6d-
temp regulation, which is a more stringent emission regulation than
the Euro 5 regulation of Vehicle A. Therefore, advanced emission reduc-
tion devices, such as a leanNOx trap (LNT) and selective catalytic reduc-
tion (SCR), were used in Vehicle B to meet the stricter emission
standards. Although both vehicles have a similar engine size, Vehicle B
was 170 kg heavier than Vehicle A due to the additional aftertreatment
devices.
neural network models.



Table 1
Main characteristics of test vehicles.

Emission regulation Engine Model year Aftertreatment system Curb weight Amount of experimental data

Vehicle A Euro 5
1955 cc
diesel

2009 DOC, DPF 1875 kg
30,100 s

(1 hot, 5 cold)

Vehicle B Euro 6d-temp
2045 cc
diesel

2018 LNT, DPF, SCR 2045 kg
30,411 s

(2 hot, 3 cold)
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In Korea, RDE testing is mandatory for diesel vehicles (Park et al.,
2021), and the RDE data of this study were measured in compliance
with the standard testing procedure. For Vehicles A and B, five and
three cold start tests were conducted, respectively. In accordance with
the RDE test standard, the velocity was controlled not to exceed
60 km/h during the first 5 min after starting. Therefore, high-velocity
driving was rarely observed in the cold start phase.

The RDE data were divided into three parts for ANN training, valida-
tion, and performance testing. ANN models were trained using the
training data set through machine learning. The validation dataset was
used to inspect the occurrence of training errors, such as overfitting
and divergence. Then, we validated the prediction accuracy of the
trained ANN model based on the data set of performance testing. For
performance testing, 1000 s of continuous data after the engine started
were selected from thewhole data set. Except for the performance test-
ing data, remaining data were randomly divided into training and vali-
dation sets at an 8:2 ratio.

The ANN training data weremeasured from the vehicle tests. During
the RDE test, vehicle operating variables (velocity, engine speed, engine
torque, engine coolant temperature) were collected through the on-
board diagnostics (OBD) system. Instantaneous CO2, NOx, CO, and THC
emissions were measured with a portable emission measurement sys-
tem (PEMS). However, due to some experimental failure, CO emissions
of Vehicle A and THC emissions of Vehicle B were not measured.

In addition, we calculated VSP based on the measured velocity and
simple vehicle specifications. VSP represents the required specific
power for a vehicle to operate under certain driving conditions, such
as the velocity and road gradient. VSP was calculated as follows.

VSP ¼ A ∙ vþ B ∙ v2 þ C ∙ v3 þm ∙ a ∙ v
m

ð1Þ

Here, VSP is the vehicle specific power (W/kg); v is the vehicle veloc-
ity (m/s); A is the rolling resistance term (W/(m/s)); B is the friction
term (W/(m/s)2); C is the aerodynamic drag term (kW/(m/s)3); m is
the vehicle mass (kg); and a is the vehicle acceleration (m/s2).

In order to increase the training efficiency, the ranges of thefive ANN
input variables (velocity, VSP, engine speed, engine torque, engine cool-
ant temperature) were scaled by standardization, as follows.

xscaled ¼ x− xmean

xstdev
ð2Þ

Here, xscaled is the standardized value; x represents the ANN input
variable (velocity, VSP, engine speed, engine torque, engine coolant
temperature), xmean is the mean of x; and xstdev is the standard
deviation of x.

2.3. Development of emission maps

Since the ANN model is a black box model, we cannot directly de-
scribe the trained emission characteristics in the ANN model. In this
study, cold start emission characteristics were visually described in
the form of emission maps. The emission map graphically showed the
correlations between the operating variables and exhaust gas emis-
sions. Depending on the number of input variables of the ANN models,
emission maps were developed in a three-dimensional (two input
4

variables, one output variable) or four-dimensional (three input vari-
ables, one output variable) data form. In order to investigate cold emis-
sion characteristics, emission maps according to engine coolant
temperature were compared.

In addition to being used to visualize the emission characteristics,
emission maps were used to predict exhaust emissions. The instanta-
neous mass flow rate of the exhaust emission was calculated using an
interpolation function based on the emissionmap. By comparing exper-
imental emissions and predicted emissions, we validated the emission
map-based prediction accuracy.

2.4. Evaluating the effects of cold start conditions on exhaust emissions

Based on the developed emission map, we estimated vehicle emis-
sions using the performance testing data, which was not used for ANN
training. By comparing the predicted emissions and experimental emis-
sions, the prediction accuracy was validated. We used the ‘scatter
interpolant’ function of MATLAB, which performed interpolation based
on Delaunay triangulation of the data points of the emission map
(Amidror, 2002). In light of practicality and applicability, we use emis-
sion maps with interpolation functions for emission prediction rather
than directly running the trained ANN model for emission predictions.
Since an emission map is composed of a data table, it can be easily
used and incorporated with other tools without needing to use the
trained ANN model.

In addition to the validation analysis, cold start emissions were esti-
mated under three temperature scenarios to quantitatively analyze the
cold start effect on exhaust emissions. Fig. 2(a) shows the engine cool-
ant temperature rise of Vehicles A and B in cold start conditions with
an ambient temperature of 15 to 25 °C. After the engine start, the engine
coolant temperature begins to rise at a temperature similar to the ambi-
ent conditions and stabilized around 90 °C. The engine coolant temper-
atures of Vehicle A and B started from 30 °C and 60 °C, respectively. Due
to some experimental issues, the engine coolant temperature of Vehicle
A was measured from 60 °C.

However, under various ambient temperature conditions, the en-
gine coolant temperature rises more quickly or slowly than what is
shown in Fig. 2(a). In order to consider the effects of various cold start
conditions on exhaust emissions, we evaluated vehicle emissions
under three engine coolant temperature scenarios. The temperature
rise rate was set differently for the three cold start conditions, as
shown in Fig. 2(b). The engine coolant temperature of the normal sce-
nario was similar to the experimental data in Fig. 2(a). The gradients
of the engine coolant temperature lines of the fast rise, normal, and
slow rise conditions were set to 0.75, 1, and 1.5 °C/s, respectively. The
engine coolant temperature rises to 85 °C and then stabilized in this
temperature without fluctuation.

3. Results

3.1. Emission maps

In order to visualize the emission characteristics of the ANNmodels,
we developed emission maps, which represent exhaust emissions as a
function of the operating variables, such as the velocity, VSP, engine
speed, engine torque, and engine coolant temperature. According to



Fig. 2. Engine coolant temperature: (a) experimental data and (b) three temperature rise
scenarios.
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the input variables of each ANN model, we developed CO2, NOx, THC,
and CO emission maps for Vehicles A and B.

For two-variable input models, such as the Vehicle model and En-
gine model, we visualized the emission characteristics in a single con-
tour graph (x-axis: first operating variables, y-axis: second operating
variables, z-axis: mass flow rate of exhaust gas). On the contrary, in
the case of the Cold-vehicle model and Cold-engine model, which use
three variables as model inputs, multiple emission maps were
Fig. 3. CO2 emission m
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developed according to the engine coolant temperature. For Vehicles
A and B, emission maps were analyzed for engine coolant temperatures
ranging from 60 to 90 °C and 30 to 90 °C, respectively. Due to experi-
mental issues, emission data in the lower temperature range (30 to
60 °C) of Vehicle A were not measured.

Fig. 3 shows the CO2 emissionmap of Vehicle A. In the Vehiclemodel
map, dynamic emission characteristics as a function of the vehicle
operating conditionswere observed. In the positive VSP region (acceler-
ation or cruising), CO2 emissions increased as velocity and VSP in-
creased. On the contrary, in the negative VSP region (deceleration),
velocity and CO2 emissions were not proportional. In the Cold-vehicle
model maps at engine coolant temperatures of 60 °C and 75 °C, CO2

emissions in the high-velocity region were quite low. This result was
due to the absence of training data at the high-velocity and low-
engine coolant temperature condition. AlthoughANNmodel can predict
emissions in all range of operating area, the prediction accuracy for the
outside of the training data is not reliable. In the RDE test, the velocity
was controlled to avoid exceeding 60 km/h for 5 min after cold start,
so the experimental data of the high-velocity and low-engine coolant
temperature region were not acquired. Therefore, ANN training in this
region was not properly conducted, resulting in an abnormal CO2

mass flow rate in the emission map, and predicting emissions outside
the training data should be avoided.

On the contrary, abnormal CO2 emissions were not observed in the
Cold-engine model map in the low-temperature condition. Although
the vehicle velocity was controlled below 60 km/h in the experiment,
the engine speed and engine torque were not restricted to a narrow
range because of the influence of gear shifting at the transmission.
Therefore, ANN training was properly conducted for the overall engine
operating range. In the Cold-engine model map, noticeable differences
in CO2 emissions at different engine coolant temperature conditions
were not shown, and CO2 emissions were not significantly affected by
the engine coolant temperature.

As shown in Fig. 4, the overall shape of the CO2 emission map of
Vehicle Bwas relatively twisted compared to that of Vehicle A. Since Ve-
hicle B uses advanced emission reduction technologies, such as LNT and
SCR, the emission characteristics of Vehicle B were more complicated
than those of Vehicle A, resulting in a relatively curved contour line in
the emission map. For the Cold-vehicle model map and Cold-engine
model map, significant differences in the CO2 emissions were not
observed for different engine coolant temperature conditions.
aps of Vehicle A.



Fig. 4. CO2 emission maps of Vehicle B.
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Fig. 5 illustrates the NOx emission map of Vehicle A. The overall
shape of the NOx emission map was similar to the CO2 emission map
of Vehicle A. In both the Cold-vehicle map and Cold-engine map, NOx
emissions in the cold start condition (engine coolant temperatures of
60 °C and 75 °C) were not high compared to the warmed-up condition
(engine coolant temperature of 90 °C). In the case of the Cold-engine
model map, NOx emissions did not vary significantly with different en-
gine coolant temperatures, and NOx emissions increased as the engine
speed and engine torque increased.

In contrast to Vehicle A, NOx emissions of Vehicle B increase as the
engine coolant temperature decreases, as shown in Fig. 6. For both the
Cold-vehicle model map and Cold-engine model map, NOx emissions
at low-temperature conditions (emission map with coolant tempera-
tures of 30 °C and 60 °C) were higher than at the warmed-up driving
condition (emission map with a coolant temperature of 90 °C). Since
Vehicle B was equipped with LNT and SCR, a minimum temperature
was required for aftertreatment devices to initiate the catalytic reaction
properly. However, right after the cold start, the NOx reduction
Fig. 5. NOx emission m
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efficiency is low due to the low temperature of the aftertreatment de-
vice, resulting in the high NOx emission rate in the emission map. On
the contrary, the Vehicle model and Engine model could not consider
the cold start effect on NOx emissions, because the engine coolant tem-
perature dose was not taken into account in these emission maps.

The cold start effect on the THC emissions of Vehicle A is shown in
Fig. 7. The THC emissions and engine coolant temperature were in-
versely proportional. In the cold start phase, hydrocarbons contained
in the fuel could not be sufficiently oxidized due to the deteriorated
fuel atomization, resulting in increased THC emissions (Bielaczyc and
Merkisz, 1997). In addition, the performance of the aftertreatment de-
vices for THC reduction was not effective at low temperatures. These
emission characteristics are clearly observed in the emission maps of
the Cold-vehicle model and Cold-engine model.

Fig. 8 shows the CO emission maps of Vehicle B. The emission char-
acteristics of COwere similar to the THC emissions in that the emissions
were high at low engine coolant temperatures. High CO emissionswere
observed in the Cold-vehiclemodelmap and Cold-enginemodelmap at
aps of Vehicle A.



Fig. 6. NOx emission maps of Vehicle B.
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low engine coolant temperatures. However, the Vehicle model and En-
ginemodel, which did not use the engine coolant temperature as amap
variable, could not take into account the cold start characteristics. These
models could not distinguish the cold start phase. Emission maps of
these two models only represent the warmed-up emission characteris-
tics, rather than represent the cold start emissions. Since the cold start
phase is a small part (less than 10%) of the total vehicle test data, cold
emission characteristics were suppressed during the training of the Ve-
hicle model and Engine model.

3.2. Cold start emission predictions based on emission maps

Wepredicted vehicle emissions during the 1000 s after the cold start
using the emissionmaps. The performance dataset, whichwas not used
for ANN training, was used to predict emissions. By comparing the pre-
dicted results with experimental data, the prediction accuracy of pro-
posed method was validated.
Fig. 7. THC emission m
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The comparison of the experimental emissions and predicted emis-
sions is shown in Fig. 9. Noticeable cold start effects were not observed
in the CO2 emissions of Vehicles A and B and the NOx emissions of Ve-
hicle A. For the CO2 emissions shown in Fig. 9 (a) and (b), four types
of emission maps of Vehicles A and B well predicted the experimental
values. Since the cold start effect on CO2 emissions was not significant,
the CO2 prediction results of Cold-vehicle model and Cold-engine
model were similar to that of the Vehicle model and Engine model.

Similarly, significant cold start effects on the NOx emissions of Vehicle
Awere not observed in Fig. 9(c). On the contrary, for Vehicle B, a sharp in-
crease in NOx emissions during the cold start phase occurred after 400 s,
as shown in Fig. 9(d). Since the NOx conversion efficiencies of SCR and
LNT (mounted on Vehicle B) were deteriorated at low temperatures,
NOx reduction was not sufficiently performed in the cold start phase,
resulting in a sharp increase of NOx emissions. Although the conversion
efficiency of the NOx reduction device was low in the whole period of
cold start condition, the amount of NOx emission before 400 s was not
aps of Vehicle A.



Fig. 8. CO emission maps of Vehicle B.
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significant because vehicle and engine were operated at low speed and
low load conditions. As shown in Cold-vehicle model and Cold-engine
model map in Fig. 6, the NOx emissions in low speed and low load area
are small. After 400 s, engine and vehicle operated at higher speed and
higher load condition than before, but the aftertreatment devices was
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Fig. 9. Comparison of experimental emissions and ANN-predicted emissions: (a) CO2 emissio
emissions of Vehicle B, (e) THC emissions of Vehicle A, and (f) CO emissions of Vehicle B.
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not fully heated due to cold start, resulting in sharp increase in NOx emis-
sion. Since Vehicle and Engine models used temperature-independent
variables as model input, cold start emission characteristics were unpre-
dictable and only consider emissions in warmed-up conditions, as previ-
ously shown in the emission maps in Fig. 6. On the other hand, the Cold-
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vehicle model and Cold-engine model are able to accurately predict NOx
emissions, including the sharp increase. Similar tendencieswere observed
in the THC and CO prediction results in Fig. 9 (e) and (f).

Similar to the Vehicle and Engine models of this study, there have
been attempts to predict vehicle emissions by using temperature-
independent variables as model input such as speed, VSP, engine speed,
and engine torque (Le Cornec et al., 2020, Wang et al., 2018, Hashemi
and Clark, 2007, Jaikumar et al., 2017). However, these models were un-
able to predict cold start emissions due to the absence of consideration
of temperature-related variables for emission estimation. On the contrary,
Cold-vehicle model and Cold-engine model well predicted cold start
emission by considering engine coolant temperature as model input.

3.3. Cold start emissions under different temperature rise scenarios

In order to quantitatively analyze the cold start effect on exhaust emis-
sions, we predict emissions using the Cold-engine model in three engine
coolant temperature scenarios, as shown in Fig. 2(b). The predicted results
are illustrated in Fig. 10. For CO2 emission of Vehicles A and B, as well as
NOx emissions of Vehicle A, the cold start emissionswere not significantly
affected by the temperature condition. However, other emissions (NOx
emissions of Vehicle B, THC emissions of Vehicle A, and CO emissions of
Vehicle B) were sensitive to the temperature conditions. The exhaust
emissions increasedunder the slow temperature rise scenario,while emis-
sions decreased under higher engine coolant temperature conditions.
Fig. 11 summarizes the predicted results for the three engine coolant tem-
perature scenarios. These results shows that the proposed methodology
comprehensively considered the effect of the vehicle characteristics, emis-
sion types, and temperature conditions on cold start emissions.
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4. Discussion and conclusion

In this study, we estimated cold start emissions based on emission
maps and an artificial neural network model. Through machine learn-
ing, the emission characteristics presented in real-world driving data
were trained at artificial neural network models. As input variables for
the models, the velocity, vehicle specific power, engine speed, engine
torque, and engine coolant temperature were used to estimate the car-
bon dioxide, nitrogen oxides, total hydrocarbon, and carbon monoxide
emissions of diesel passenger vehicles. Four types of artificial neural
network models were developed according to the combination of
input variables, and the prediction accuracy of cold start emissions
was significantly improved when the engine coolant temperature was
used as a model input. By considering the engine coolant temperature
as a key variable, we visualized emission characteristics for different
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engine coolant temperatures in the form of emission maps. The pro-
posed models (Cold-vehicle model and Cold-engine model) predicted
cold start emissions with high accuracy.

Since the cold start effect on carbon dioxide emissions was insignif-
icant, a relatively simple model that did not consider cold emission
characteristics is sufficient to accurately predict the carbon dioxide
emissions. However, nitrogen oxides emission sensitivity to cold start
operation was quite different depending on the vehicle type. In the
case of Vehicle A, nitrogenoxides emissions did not change significantly,
regardless of the engine coolant temperature condition; thiswas similar
to the carbon dioxide emission characteristics. However, nitrogen ox-
ides emissions of Vehicle B increased under cold temperature condi-
tions due to the low nitrogen oxides conversion efficiency of SCR and
LNT. The Cold-vehicle model and Cold-engine model accurately pre-
dicted the sharp increase in Nitrogen oxides emissions during the cold
start phase of Vehicle B. In the case of carbonmonoxide and total hydro-
carbon emissions, rapid increases in emissions were observed during
the cold start phase. These emission characteristics were well predicted
in the Cold-vehicle model and Cold-engine model, while the Vehicle
model and Engine model were unable to predict the cold start carbon
monoxide and total hydrocarbon emissions.

In addition to the emission predictions, we quantitatively analyzed
the cold start effect on exhaust emissions according to three engine
coolant temperature scenarios. As expected, Nitrogen oxides emissions
of Vehicle A and carbon dioxide emissionswere only slightly affected by
the temperature conditions. In the case of temperature-sensitive ex-
haust gases, such as Nitrogen oxides emissions of Vehicle B and carbon
monoxide and total hydrocarbon emissions, the amount of emissions
was inversely proportional to temperature. Although, the results for dif-
ferent temperature assumptionswere not validated using experimental
data, the proposed models show the potential to consider cold start
emissions in various temperature conditions.

As vehicle regulations have been strengthened over time, various
technologies have been applied to vehicles for emission reduction,
resulting in diversified emission characteristics depending on the vehi-
cle and emission types. Most prior works have predicted vehicle emis-
sions mainly in the warmed-up condition or predicted cold start
emissions using complicated modeling approaches, which were in-
adequate and could not be applied to various types of vehicles. How-
ever, the proposed methodology of this study is a relatively simple
methodology based on the artificial neural network model, and the
prediction accuracy was satisfactory. The notable advantage of this
approach is that it predicts the cold start emissions with high accu-
racy, regardless of the vehicle and emission types. We believe that
the proposed model can overcome the shortcomings of conventional
emission models.

This methodology is useful for assessing transportation emissions in
urban areas where cold start emissions account for a significant per-
centage of pollutant emissions due to the high frequency of cold starts
in these areas. Since we predicted carbon dioxides, nitrogen oxides, car-
bon monoxide, and total hydrocarbon emissions of diesel vehicles in
this study, future work should also investigate the emission prediction
of other powertrains, such as SI engines and hybrid vehicles, as well as
other types of emissions, such as particulates.
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