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Abstract: We propose a method to predict performance variables according to the rotor slot shape of
a three-phase squirrel cage induction motor using a convolution neural network (CNN) algorithm
suitable for utilizing image data. The set of performance variables was labeled according to the
images of each training dataset, and this set was generated from the efficiency, power factor, starting
torque, and average torque. To verify the accuracy of the trained deep learning model, the analysis
and prediction results of the CNN model were compared and verified with nine untrained double
cage slot shapes and shapes optimized based on the root mean square error (RMSE). Although a large
number of training data are required for high accuracy in the existing image processing deep learning
model, the proposed deep learning method can predict the performance variables for various shapes
with the same level of accuracy as the finite element analysis results using a small number of training
data. Therefore, it is expected to be applied in various engineering fields.

Keywords: artificial intelligence; deep learning; convolution neural network (CNN); induction motor

1. Introduction

Motors account for more than 60% of the total power consumption, and induction
motors account for more than 70% of total motor usage [1]. Induction motors can be broadly
classified into squirrel cage induction motors and wire-wound induction motors, where
squirrel cage induction motors have advantages in terms of maintenance and repair over
wire-wound induction motors. More than 90% of electric motors in industry are three-
phase squirrel induction motors, which are widely used in home appliances and various
industries due to their simple structure, robustness, and low manufacturing cost [2,3]. To
improve the performance of the three-phase squirrel cage induction motor, a study on the
slot shape of the rotor and stator was conducted [4–6]. It has been shown that only the
rotor slot shape greatly affects the characteristics of the induction motor [7–9]. In many
existing induction motor design methods, it is essential to find a solution by minimizing
errors through numerous iterations, which incurs an enormous computation time and
high computational costs [10,11]. In addition, the previous calculation process is not saved
and not used for future analysis, and it takes the same amount of time as before, even if
a similar shape is analyzed. In order to solve such a problem, it is necessary to apply a
deep learning technique that can predict the result value based on experience by using the
trends of previous data and calculation records for future analysis.

Deep learning is a field of artificial intelligence and is a method of learning data
characteristics and core contents from a large amount of data. Representative deep learning
techniques include deep neural networks (DNNs), convolutional neural networks (CNNs),
and recurrent neural networks (RNNs). In this study, a CNN is used; CNNs are composed
of one or several convolution layers, and are characterized by using a pooling layer and
a fully connected layer. Because of these features, CNNs are effective in extracting and
learning features from image data [12–14]. The CNN was first devised by Fukushima
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and Miyake [14], inspired by human neuroscience research. LeCun et al. [12] tried to
recognize handwritten digits through a CNN. The network learning method using back
propagation proposed by [15] became the basic structure of CNNs that are still used today.
Afterwards, they were developed as a method of learning network parameters from a
large amount of training data using a backpropagation method, consisting of several
convolutional layers, a pooling layer, and a precoupling layer. As such, CNNs have been
used in numerous image-data-based research fields, such as robots, natural language
processing, and autonomous vehicles, and have been applied in various fields, such as
motor design, optimization, and fault diagnosis. Sasaki and Igarashi [16] performed phase
optimization using a CNN as training data using the section of the permanent magnet motor
expressed in RGB. Asanuma et al. [17] performed the optimization of permanent magnet
motors using transfer learning to reduce the computational cost of phase optimization
based on genetic algorithms. Chattopadhyay et al. [18] proposed a CNN model with 3~10%
improved performance compared with the existing method to recognize the defects of
induction motors. The deep learning technique in the above studies was used to support
the analysis of the data, and the final result was still obtained through simulation. To
improve this, Gabdullin et al. [19] proposed a deep learning model to predict the final result
without using simulation by applying CNN, and predicted the torque curve according to
the shape variable of the permanent magnet motor with more than 90% accuracy.

However, in previous studies that predicted performance by applying deep learning
techniques in the field of electric motors, only the performance according to shape variables
was predicted for a fixed shape. That is, it was a prediction according to the sizing of
a fixed shape, and no research has been conducted on a change in shape. In order to
obtain prediction results for various shapes, high accuracy can be obtained by learning
the same shape as the shape to be predicted. However, if the deep learning technique
cannot be applied due to insufficient training data, there is a limit to learning all shapes.
It was determined that the above problems could be solved by learning the minimum
shape information and predicting various shapes. Accordingly, in this study, we intend
to propose the predictability of a combined shape that has not been learned with learning
data composed of a specific shape.

In this study, a CNN algorithm was used, and the efficiency, power factor, average
torque, and starting torque were set as the performance variables. To check whether
the CNN accurately learns the trends of the performance variables according to the slot
shape, the training data were classified into three cases according to the shape, while the
verification data were composed of the unlearned rotor slot shape. To obtain performance
variables according to the shape, the MATLAB-based 2D Finite Element Analysis open-
source code [20] was used. By designating the range of shape variables for each shape,
the rotor shape was randomly generated within the specified range so that the image and
corresponding analysis results were designated as a label. In addition, to confirm the
accuracy of the predicted performance variables for the optimal shape, optimization was
performed on an arbitrary shape.

We tried to predict the results based on the trend of the performance variables accord-
ing to the slot shape, which has already been learned via the previous data and calculation
history. This setup allows for future analysis through the application of deep learning
techniques. As a result of training the CNN with 7500 training data points for 11 shapes,
it was possible to obtain a prediction value that was almost the same as that of the finite
element analysis of the validation data.

2. Convolution Neural Network (CNN)

In deep learning, an appropriate model should be selected according to the character-
istics of the training data used. In this study, image data, which are suitable for expressing
the various slot shapes of induction motor rotors, were used. For this purpose, a CNN, a
model that can learn while maintaining spatial information of the image, was applied. To
learn high-dimensional image data, a process of transforming them into a one-dimensional
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planar matrix form is essential [13], and the spatial information of the data may be lost
during the planarization process. That is, learning proceeds inefficiently because of a lack
of information due to image spatial data loss, and there may be limitations in increasing
accuracy. However, since the CNN learns while maintaining spatial information in the
data-flattening process, it is possible to predict with high accuracy. CNN has a convolution
layer that extracts features from image data, a pooling layer that reduces the dimension of
input data and selects important information received from the convolution layer, and a
fully connected layer that outputs prediction results based on the features extracted from
the convolution layer. The overall structure is shown in Figure 1.
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Figure 1. Composition of the convolution neural network.

The purpose of the convolution layer is to analyze the input image data to extract
features and to learn them. To analyze the image, the feature map generated by applying a
filter to the data is transferred to the next layer. The filter performs convolution from the
input data, and stride is a variable that determines at what interval the filter is moved. The
filter value is automatically repeated and corrected in the direction of reducing the final
error value as the CNN learns.

The feature map finally calculated in the convolution layer is not transmitted directly
to the next layer, but only after passing through the activation function. All operations
performed in the convolution layer are composed of linear functions. That is, even if the
convolution layer is repeated infinitely, it is limited in solving nonlinear data problems
unless nonlinearity is forcibly applied. To learn both linear and non-linear data, the process
of adding non-linearity through an activation function is essential. For activation functions,
ReLU and Sigmoid functions were used. Equations (1) and (2) and Figure 2 were defined
by comparisons with other functions, so that the ReLU function had the advantages of fast
learning, low computational cost, and very simple implementation. This function can solve
the vanishing gradient problem, because it outputs 0 when the value of x is 0 or less, and
a constant gradient value when it is positive [21]. The sigmoid function outputs a value
between 0 and 1 according to the x value, and outputs a negative value as a value close
to 0 [22].

ReLU(x) =
{

x(x > 0)
0(x ≤ 0)

(1)

sigmoid(x) =
1

1 + e−x (2)

The pooling layer receives the output data of the convolution layer as the input and
reduces the dimension of the feature map. The pooling technique is classified into max
pooling that extracts the maximum value from a certain part of the feature map, min
pooling that extracts the minimum value, and average pooling that extracts the average
value. Max pooling is mainly used, rather than min pooling or average pooling, under
the assumption that strong features are expressed when the pixel value is large [23]. If the
convolution layer and the pooling layer are repeated, the image data are transformed into
a shape that is difficult to recognize with the naked eye, but a feature map is output that
extracts only the important features of the data. The fully connected layer lists the finally
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obtained feature map as one-dimensional vector data and outputs the final predicted value
after going through the activation function.
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3. Induction Motor Performance Prediction Procedure and Results

The three-phase squirrel cage induction motor outputs various performance param-
eters according to the shape and size of the rotor slot. In this study, learning data were
constructed by randomly changing various shapes and their associated variables for the
rotor slot. The deep learning model was verified by predicting the performance variable
according to the shape change, and the prediction accuracy for the optimized shape was fur-
ther verified. The following procedure was performed to predict the performance variables
according to shape data using deep learning as the method proposed in this study.

Step 1: Collect induction motor analysis learning data;
Step 2: Construct and train a deep learning model;
Step 3: Validate the prediction accuracy of performance variables according to shape change;
Step 4: Validate the prediction accuracy of the performance parameters for the optimized shape.

3.1. Collect Induction Motor Analysis Learning Data

In this study, only the change in shape of the rotor slot was considered due to the
characteristics of the induction motor, which are greatly affected by the shape and size of
the rotor. Therefore, variables other than the shape and size of the rotor slot were fixed
and then learning data were collected. Table 1 shows the specifications of a 2.2 kW-class
three-phase squirrel cage induction motor. Figure 3 shows the results of the implementation
of the shape and meshing of the three-phase squirrel cage induction motor by interlocking
the MATLAB-based finite element analysis code with G-mesh [24].
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Table 1. Specifications of the three-phase squirrel cage induction motor.

General data

Given output power 2.2 kW

Rated voltage 380 V

Number of poles 4

Frequency 60 Hz

Length of shaft 120 mm

Winding

Turns per coil 16

Winding layers 2

Winding connection Star connection

Filling factor 41.25%

Stator

Number of slots 36

Outer diameter 180 mm

Inner diameter 110 mm

Material 50PN470

Rotor

Number of slots 28

Air gap 0.35 mm

Inner diameter 32 mm

Material 50PN470

To learn the shapes of various rotor slots, learning data for a total of 11 shapes were
constructed, as shown in Table 2. The shape parameters used are indicated in red in
Table 2. The training data of Type 1 consist of only the most basic shape, Type 2 is a shape
corresponding to the upper part of a double cage slot, and Type 3 is a double cage slot that
can be created by a combination of the Type 1 and Type 2 shapes. Type 1 is a basic slot
shape, and to learn the characteristics of various shapes as much as possible, the range of
each shape variable is considered from the minimum value. In addition, the rotor outer
diameter, shaft outer diameter, and the range in which physical interference does not
occur between slots were considered. To predict the performance variables for the type 3
combined shape, the training data set was classified into three cases, as shown in Table 3.
In Case 1, only Type 1 data were learned; in Case 2, both Type 1 and Type 2 data were
learned; and in Case 3, all data from Type 1 to Type 3 were learned. Type 1-1 and Type 1-2
generated 1500 data points each, and Type 2 and Type 3 generated 500 data points for each
shape. Accordingly, 3000 pieces of training data for Case 1, 4500 pieces for Case 2, and
7500 pieces for Case 3 were used.

As described above, data preprocessing is essential to reduce the computational
amount of deep learning that is needed to learn a large amount of training data and to
increase the learning performance of the model. The data obtained through simulation
are shown in Figure 4a. In this study, the performance variables for the rotor shape were
considered, so Figure 4b was removed, and the existing RGB data of (875, 656, 3) are
shown in Figure 4c; the amount of computation was reduced by reducing all pixels and
dimensions to (128, 128, 1), expressed in black and white. After converting the image data
into a numpy array for training, the efficiency, power factor, starting torque, and average
torque corresponding to performance variables were labeled as labels. In addition, in order
to improve the learning speed of the CNN model, image data, which were converted into a
numpy array and expressed as pixel values of (0 to 255), were divided by 255 and the pixel
values of the data were normalized to values between 0 and 1.
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Table 2. Example rotor slot shapes for training data, ( ): number of data points.

Type 1 Type 2 Type 3
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3.2. Construct and Train a Deep Learning Model

The constructed CNN model is shown in Figure 5. This network consisted of seven
convolution layers and four pooling layers, and the size of the convolution layer filter was
(3, 3), which was the same for all. The CNN also had a structure in which the gradient and
the pooling layer were repeated. The ReLU activation function was applied to solve the loss
problem in the convolution layer. In the pooling layer, the maximum pooling technique of
size (2, 2) was applied; in the output layer, a sigmoid function was used, and the learning
rate was set to 0.0001. In addition, the Adam optimizer was used as an algorithm for
learning, and all codes were written based on Tensorflow 2.7.0 and Keras 2.7.0. As the
computing environment used in this study, the CPU was an AMD Ryzen 7 3700X, GPU
was ab NVIDIA GeForce RTX 2080 TI, and RAM was 64 GB.
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3.3. Validate the Prediction Accuracy of Performance Variables According to Shape Change

To verify the prediction accuracy of the trained CNN model, the shape of the validation
data configured must not overlap with the training data, as shown in Table 4. For the
verification data, the shape variables were set in the range where physical interference did
not occur in the same way as the training data, and 50 randomly generated data for each
shape were compared and verified for Cases 1 to 3.

3.4. Validate the Prediction Accuracy of the Performance Parameters for the Oprimized Shape

To confirm the prediction accuracy of the optimal shape, optimization was performed
on the shape of Type 3-1, which output the best performance variables among the config-
ured training data. The shape parameters of Type 3-1 are shown in Figure 6. It was set
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up as shown in Table 5, and the range and objective function of the shape variables were
defined as shown in Table 5.

Table 4. Example shapes of the rotor slot for test data.
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Table 5. Definition of the objective function and design variables.

Objective Function Design Variables

Efficiency

1.5 ≤ h1 ≤ 3.0
1.4 ≤ h2 ≤ 7.0
1.0 ≤ h3 ≤ 18.0
0.8 ≤ w1 ≤ 1.0
2.0 ≤ w2 ≤ 3.0
0.5 ≤ w3 ≤ 2.5

A regression function was estimated from 500 data points of Type 3-1 obtained from
the simulation. A regression analysis was performed based on the constructed data to
remove variables that did not affect the efficiency, which was the dependent variable. The
p-value is used as an indicator to check the importance of each independent variable. If
the p-value is less than 0.05, it is classified as a significant independent variable, and if it is
greater than 0.1, it is classified as insignificant [25]. As a result of the regression analysis,
the p-value of w1 was 0.4359 and the p-value of w2 was 0.3365, so these two variables were
excluded from the independent variables.

The coefficient of determination (R2) is an index indicating the validity and accuracy
of the estimated regression function [26], and suitability was judged through the values.
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After removing insignificant variables, the regression analysis was repeated with four
independent variables, h1, h2, h3, and w3, to estimate the coefficients of determination
of the regression functions. The coefficient of determination of the estimated regression
function was obtained as 0.968. Optimized values of each variable were obtained from the
obtained regression function and the range of independent variables. Since w1 and w2
did not significantly affect the efficiency, they were determined as the most efficient values
among the 500 data points of Type 3-1. The derived optimal values are shown in Table 6.

Table 6. Optimization result of the Type 3-1 rotor slot.

Design Variables (mm) Efficiency (%)

h1 = 2.997

89.62

h2 = 1.881
h3 = 12.59
w1 = 0.973
w2 = 2.589
w3 = 1.319

The training data for verifying the prediction accuracy of the CNN model were
classified into Case 1, Case 2, and Case 3, and 200 epochs were learned for each case.
Figures 7–9 are graphs of the loss according to the epoch in each case, and show the loss
for both the training data and the validation data. In each case, it was confirmed that the
loss converged to a value close to 0. The verification of the CNN model was conducted for
the optimal shapes of Test data 1 to Test data 9 and Type 3-1 in each case. Table 7 shows
a comparison between the predicted values and the analysis results for the performance
variables of the optimal shape in each case. Table 7 compares the performance variables
of the optimal shape and the performance values of the CNN-predicted shape for each
case. Table 8 is a table that verified the accuracy of the performance values of the CNN
prediction shape for each case obtained from Table 7 through the root mean square error
(RSME), mean absolute percentage error (MAPE), and mean absolute error (MAE).
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Table 7. Comparison of results for Type 3-1 optimal shape and predicted shape in Cases 1, 2, and 3.

Optimal Shape Case 1 Case 2 Case 3

Efficiency (%) 89.62 88.85 89.38 89.60
Power factor (%) 80.69 78.48 80.35 80.62

Starting torque (Nm) 12.66 12.72 12.57 12.60
Average torque (Nm) 12.87 13.00 12.89 12.81

Table 8. Verification of prediction accuracy through RMSE, MAPE, and MAE.

Method Case 1 Case 2 Case 3

Efficiency
RMSE 0.544 0.170 0.014
MAPE 0.430 0.134 0.011
MAE 0.385 0.120 0.010

Power factor
RMSE 1.563 0.064 0.049
MAPE 1.369 0.355 0.043
MAE 1.105 0.042 0.035

Starting torque
RMSE 0.042 0.064 0.042
MAPE 0.237 0.355 0.237
MAE 0.030 0.045 0.030

Average torque RMSE 0.092 0.028 0.042
MAPE 0.505 0.155 0.233

At 200 epochs in Case 1, the loss on the training data was 5.46 × 10−6, and the loss
on the validation data was 1.77 × 10−5. Case 1 showed a very high level of accuracy, even
though only a relatively simple shape was learned. However, for the power factor, the error
rate was 2.74%, confirming that there was a limit to accurately predicting the performance
variables of complex shapes, such as double cage slots, with only the basic shape of Case 1.
At 200 epochs in Case 2, the loss on the training data was 4.95 × 10−6 and the loss on the
validation data was 3.12 × 10−4. Case 2 was a case in which the individual data of the
upper and lower parts of the double cage slot were learned to check the predictability of
the combined shape. For this, in Case 2, information about the upper part of the double
cage slot was additionally learned in Case 1, where only the existing simple shape was
learned. It was confirmed that Case 2 accurately predicted all of the performance variables
to an integer digit compared to Case 1. At 200 epochs in Case 3, the loss on the training
data was 4.51 × 10−6, and the loss on the validation data was 2.33 × 10−4. Case 3 was
a case in which the double cage slot shape was additionally learned. In Case 3, it was
confirmed that predictions to the first decimal place were possible compared with Case 2,
where predictions were possible only to an integer digit in all performance variables.

Among the test data composed of various rotor slot shapes from Case 1 to Case 3, the
prediction accuracy of Case 3, which learned even the shape of the double cage slot, was
the best. However, a considerable level of prediction accuracy was also confirmed in Case 1,
which learned only the basic shape, and Case 2, where information on the upper part of the
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double cage slot was additionally learned. In addition, according to the prediction results
for the optimal shape of Type 3-1, Case 1 showed relatively low accuracy. However, Case 2
was able to predict accurately up to an integer number, and Case 3 was able to predict
to one decimal place. Through the results up to Case 3, it was confirmed that the deep
learning model constructed in this study accurately predicted the performance variables
for the optimized shape compared with the finite element analysis results.

From the above results, various shapes could be predicted with almost the same level
of accuracy as the finite element analysis results according to the combination of shapes
and learning data learned from various shapes with a relatively small number of training
data points. It was also confirmed that the performance variables of the shape could be
accurately predicted.

4. Conclusions

In this study, based on the CNN technique, a deep learning technique for predicting the
efficiency, power factor, starting torque, and average torque according to various rotor slot
types of induction motors was proposed. Predictions for various double cage slot shapes
were compared using 7500 training data points classified into three cases, and performance
variables were predicted with similar accuracy to the analysis results. In addition, although
the basic shape of an induction motor alone had few limitations in accurately predicting
the performance variables of complex shapes, learning additional information about the
basic shape led to high-accuracy prediction results. Through the research results, it was
confirmed that the CNN model learned the trends of the performance variables according
to the slot type and made predictions with an accuracy similar to the analysis results.

Deep learning has the advantages of self-learning data, computational history, and
data characteristics. According to the results derived from this study, it can be seen that, if
the performance and shape variables accumulated in the deep learning model are trained,
the resulting values can be predicted by self-learning the trend for the resulting values
according to the characteristics of the deep learning model. Additionally, this approach
can predict almost the same level of results as the data and finite element analysis values.
This means that, when a deep learning model with high predictive accuracy is built, it is
possible to accurately predict the analysis results without an experienced designer with
high ability to utilize the simulation software. Therefore, it is expected that the proposed
deep learning method can be applied to various fields with a relatively small number of
experienced designers.
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