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Abstract—Voronoi diagrams are powerful for understanding spatial properties. However, few reports have been made for moving

generators despite their important applications. We present a topology-oriented event-increment (TOI-E) algorithm for constructing a

Voronoi diagram of moving circular disks in the plane over the time horizon ½0; t1Þ. The proposed TOI-E algorithm computes the event

history of the Voronoi diagram over the entire time horizon in OðkF lognþ kCnlognÞ time with OðnlognÞ preprocessing time and

Oðnþ kF þ kCÞmemory for n disk generators, kF edge flips, and kC disk collisions during the time horizon. Given an event history, the

Voronoi diagram of an arbitrary moment t� < t1 can be constructed in Oðk� þ nÞ time where k� represents the number of events in

½0; t�Þ. An example of the collision avoidance problem among moving disks is given by predicting future conjunctions among the disks

using the proposed algorithm. Dynamic Voronoi diagrams will be very useful as a platform for the planning and management of the

traffics of unmanned vehicles such as cars on street, vessels on surface, drones and airplanes in air, and satellites in geospace.

Index Terms—Unmanned vehicles, moving vehicles, path planning, collision avoidance, topology event, weighted Voronoi diagram

Ç

1 INTRODUCTION

THE opening ceremony of the 2018 Winter Olympic at
Pyeongchang, Korea, witnessed a record-breaking light

show of 1,218 Shooting Star drones by Intel Co. (Fig. 1a).
Starting with 50 drones (2012; a joint effort of Austrian Ars
Electronics Futurelab and German Ascending Technologies
Co.; a football field in Krailling, Germany), drone swarms
have evolved through a series of record breaking events:
100 (November, 2015; Flugplatz Ahrenlohe in Tornesch,
Germany; Intel Co.), 500 (November 4, 2016; Krailling, Ger-
many; Intel Co.), and 1,180 (December, 2017; Guangzhou,
China; eHang Co.). The eHang Co. showed 1,374 drones on
May 1, 2018 at Xian, China (Fig. 1b) and Intel with 2,018
drones on July 15, 2018 at Folsom, California (Fig. 1c). One
of the key challenges of choreographing such a big swarm
of drones is to plan collision-free flight paths between any
pair of flying drones where location uncertainty exists for
each drone.

Most motion scenes in drone swarms were not very
dynamic but static. This might be because the computa-
tional theory for predicting and avoiding collisions among
moving objects has not been sufficiently developed. Such a
theory is becoming increasingly important not only for
drone events but also in applications such as satellites in
geospace [1], [2], [3], [4], airplanes in midair [5], [6], [7], sur-
face vessels, and self-driving cars where collision detection

and resolution is critical. We have recently choreographed a
swarm of 58 drones (equipped with low-cost/low-accuracy
GPS-sensors) where the collision-free dynamic paths were
generated by the algorithm of the dynamic Voronoi dia-
gram presented herein. Fig. 1d shows the snapshots of a
small swarm of 19 drones which displays two initials “H”
and “Y” of HanYang University: The collision-free paths
between the two initials were generated by the proposed
algorithm.

Voronoi diagrams are well-known for their powerful
properties for efficiently answering to spatial queries among
generators and have been extensively studied for various
generator types such as ordinary points, circular disks in
the plane, and spherical balls in the three-dimensional
space. However, most studies were conducted for static
generators in that their sizes and positions were fixed. Rela-
tively few studies were reported on the construction of Vor-
onoi diagrams of moving generators despite their potential
in a wide array of potential applications. Dynamic Voronoi
diagrams have applications among moving vehicles at high
speeds as they can be used to efficiently solve collision
avoidance problems among moving objects by predicting
the future conjunctions among the particles.

This paper presents the data structure and algorithm for
constructing a Voronoi diagram of moving circular disks in
the plane. We call it the dynamic Voronoi diagram of (moving)
disks. The principle idea of the proposed scheme is topol-
ogy-oriented and event-increment (thus abbreviated as the
TOI-E algorithm) and both solution accuracy and computa-
tional efficiency are guaranteed.

LetD ¼ fd1; d2; . . . ; dng be the set of mutually disjoint cir-
cular disks di ¼ ðci; riÞ in the plane where ci and ri are its
center and radius, respectively. Let VDSðDÞ be the Voronoi
diagram of the static disks in D. VDSðDÞ is defined as the set
of Voronoi cells where the Voronoi cell of di is defined as
VC ðdiÞ ¼ fx 2 R2 j distðx; ciÞ � ri � distðx; cjÞ � rj; i 6¼ jg
where distðx; yÞ is the Euclidean distance between x and
y. Then, VDSðDÞ ¼ fVC ðd1Þ; VC ðd2Þ; . . . ; VC ðdnÞg [8]. VDSðDÞ
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consists of V V ¼ fvV1 ; vV2 ; . . .g, EV ¼ feV1 ; eV2 ; . . .g, and
CV ¼ fcV1 ; cV2 ; . . . cVn g, which denotes the sets of vertices,
edges, and cells in the Voronoi diagram, respectively.
VD SðDÞ is usually stored in a winged-edge data structure or
a variation, requiring OðnÞ memory [9]. VDSðDÞ can be con-
structed in OðnlognÞ time in the worst case but OðnÞ on
average. The distance equality between two disks defines
an edge, which is a hyperbolic arc and that among three
disks defines a vertex. If all the disks are of an equal size,
VD SðDÞ is identical to the ordinary Voronoi diagram of disk
centers. Note that the Voronoi diagram of disks and the
ordinary Voronoi diagram of points possess common prop-
erties but may also have significantly different properties.
The Voronoi diagram of static disks will be termed as
“Voronoi diagram” and several algorithms are known [10],
[11], [12], [13].

Suppose that di 2 D is associated with a linear velocity
vi ¼ ðvxi ; vyi Þ with a constant speed. Hence, the location of di
at t � 0 is given by ciðtÞ ¼ ci þ vit, i ¼ 1; 2; . . . ; n. When
kci � cjk ¼ ri þ rj, di and dj collide and bounce with modi-
fied velocities according to physical properties such as the
coefficient of restitution or elasticity. See Appendix 1, which
can be found on the Computer Society Digital Library at
http://doi.ieeecomputersociety.org/10.1109/TVCG.2019.
2959321, for the details of collisions: i) The prediction of col-
lision moment, and ii) the velocity vector changes after a
collision (i.e., the changes in both directions and speeds of
two disks). Our goal is to answer spatial queries among
disks at an arbitrary moment t in the time horizon ½0; t1Þ as
efficiently and robustly as possible. If we can construct a
static Voronoi diagram of disks at t, spatial queries can be
efficiently answered. This requires the prediction of disk
locations at t as well. Note that a deadlock situation does
not occur among disks with unit coefficients of restitution
because they are mutually exclusive and are associated with
velocity vectors.

This is well-explained in Fig. 2. Fig. 2a shows a disk set D
and its Voronoi diagram VDSðD; t0 ¼ 0Þ. Suppose that the Vor-
onoi diagram hasm ¼ OðnÞ V-edges. The red curve in Fig. 2b

is the offset of the disks at t0 by the radius r1 of the black circu-
lar probe p1, i.e., the locus of the center of p1 touching at least
one disk in D. Note that the intersection between two circular
arcs of the offset curve occurs precisely on the Voronoi edges
regardless of the radius of the probe. Hence, the offset can be
correctly computed in OðmÞ time by scanning the Voronoi
edges. Note that it can be done more efficiently in
Oðlogmþ kÞ timewhere k denotes the number of intersections
between offset arcs. This implies that the two voids in the big-
gest disk cluster and the two tunnels between the disk clusters
can also be simultaneously computed at this time. The offset
for the bigger probe p2 with a radius r2 > r1 in Fig. 2c can also
be computed using the same Voronoi diagram. The difference
between Fig. 2b and 2c can be easily detected by the “offset-
invariance property” of the Voronoi diagram and many
related questions can be easily answered. For example, which
void and tunnel have disappeared and what is the minimum
probe radius that will block the existing tunnel.

The arrows in Fig. 2d denote the velocities of the disks
with the speed represented by the arrow size. Fig. 2e and 2f
show the moved disks together with their Voronoi diagrams
at t1 ¼ t0 þ Dt and their offsets for p1 and p2, respectively. It
is clear that the offset of the moved disks can be efficiently
computed once the Voronoi diagram corresponding to the
moved disks is constructed.

In this paper, we discuss the construction of the dynamic
Voronoi diagram VD ðDÞ of moving disks in D over a time
horizon that facilitates efficient instantiation of the static
Voronoi diagram VDSðD; tÞ of the moved disks at t. A naive
approach might be to construct the entire static Voronoi

Fig. 1. Drone swarms. (a) 1,218 drones at Pyeongchang Winter Olym-
pics, Korea (February 7, 2018; Intel Co.). (b) 1,374 drones at Xian, China
(May 1, 2018; China; eHANG Co.). (c) 2,018 drones at Folsom, Califor-
nia, USA (July 15, 2018; Intel Co.). (d) 19 drones at Hanyang University,
Seoul, Korea (July 18, 2018; Voronoi Diagram Research Center;
Low-cost/low-precision GPS sensors were used.).

Fig. 2. Efficient recognition of the offsets, voids, and tunnels. (a) Disks
and the Voronoi diagram at time t0 ¼ 0. (b) The offset corresponding to
the probe p1 with the radius r1 at t0 (Two voids and two tunnels exist). (c)
The offset for p2 with the radius r2 > r1 at time t0 (The smaller void and
narrower tunnel disappeared). (d) The disks with the velocities repre-
sented by the arrows at time t0. (e) The offset corresponding to r1 at
time t1 ¼ t0 þ Dt after the disks move (Two voids and one tunnel). (f)
The offset corresponding to r2 > r1 at time t1 (One void and the tunnel
disappeared).
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diagram after updating disk locations at t. We avoid this
time-increment approach for two reasons. First, a blind update
of the disk locations after a constant time increment Dt
might miss important events such as a collision between
two disks because colliding moments tend to be irregularly
spaced over time. An effective time increment to capture
the moments of all the collisions over the entire time hori-
zon would be computationally expensive and hard to
choose. Second, it is not easy to relate the equivalent Voro-
noi entities in the Voronoi diagrams of two consecutive
moments if they are independently constructed: It is neces-
sary to perform a file inversion to answer the question
“Which V-edge of the Voronoi diagram at ti corresponds to
which V-edge of the Voronoi diagram at ti�1?”. Relating
Voronoi entities is critical for tracking geometric features of
interest that are evolving over time.

An event-based approach progresses the time horizon by
incrementing the time corresponding to the moments of sig-
nificant events for the maintenance of a Voronoi diagram.
The events include edge-flips and disk-collisions. Hence,
each time increment is of a variable length. This is because
we want to have the Voronoi entities in the initial Voronoi
diagram at t ¼ 0 survive as much as possible in the Voronoi
diagram at t1 by minimizing the creation and/or deletion
of Voronoi entities.

Suppose that the dynamic Voronoi diagram VD ðD; tiÞ at ti
is available and assume that the event of the most immedi-
ate future is known to occur at tiþ1 ¼ ti þ Dti. There might
be two methods to construct VD ðD; tiþ1Þ in the event-based
approach. The first is the exhaustive delete-and-insert method
as follows. Choose a disk and delete it from VD ðD; tiÞ and
insert it to the predicted location at tiþ1 in VD ðD; tiÞ. Deletion
from and insertion to a Voronoi diagram implies that the
topology structure is correctly maintained without and with
the disk in the Voronoi diagram, respectively. Then, repeat-
ing the delete-and-insert operation for all disks in D trans-
forms VD ðD; tiÞ to VD ðD; tiþ1Þ. We avoid this method for two
reasons. First, it is computationally expensive in that, for
each time increment, the update takes Oðn2Þ time because
each delete-and-insert operation may take OðnÞ time. Sec-
ond, this approach dynamically deletes and creates Voronoi
entities during program execution and thus it is not conve-
nient to relate the Voronoi entities of two consecutive Voro-
noi diagrams in the time horizon.

We present a more efficient, robust, and useful method,
called the topology-oriented event-increment (TOI-E) method
which requires OðlognÞ time edge-flip operation for each
time increment. The method provides a dynamic Voronoi
diagram VD ðDÞ as a data structure together with an accom-
panying algorithm. In due course, the algorithm also detects
the moments of disk collision which can be used to predict
disk locations at an arbitrary moment.

The dynamic Voronoi diagram VD ðDÞ is represented by
four items: i) All edge-flipping events, ii) all disk-colliding
events, iii) the moments of all events, and iv) the initial static
Voronoi diagram VDSðD; t ¼ 0Þ at t ¼ 0. The chronological
sequence of the events with their time stamps is called the
event history. Assuming the initial static Voronoi diagram
(taking OðnlognÞ time in the worst case), the proposed TOI-
E method computes the event history over the entire time
horizon in OðkF lognþ kCnlognÞ time and Oðnþ kF þ kCÞ

memory, both in the worst case, for the n disk generators,
kF edge flips, and kC disk collisions. Given an event history,
the Voronoi diagram VD SðD; t�Þ of an arbitrary moment
t� 2 ½0; t1Þ can be constructed in Oðk� þ nÞ time where k�

represents the number of events in ½0; t�Þ. This is because
processing each of k� events takes Oð1Þ time and the geome-
try of VDSðD; t�Þ can be evaluated in OðnÞ time using its
topology information at t�. Once a static Voronoi diagram at
an arbitrary moment t is obtained, reasoning the spatial
properties among the disks at that moment can be done
efficiently.

The contribution of this paper is as follows.

� The first report of the data structure and algorithm of
the dynamic Voronoi diagram of moving circular
disks.

� The first implementation of the dynamic Voronoi
diagram of moving disks. The library and accompa-
nying utility programs with documents are available
at Voronoi Diagram Research Center, Hanyang Uni-
versity (http://voronoi.hanyang.ac.kr).

In this paper, the notion of complexity of both time and
memory is in the worst case sense unless otherwise stated.
We assume disks are mutually disjoint except at the
moment of contact. We assume that two events do not occur
at the same time: Two Voronoi edges flip at different
moments; Two pairs of disks collide at different moments;
An edge-flip and a disk collision do not occur at the same
time. We also assume a good polynomial solver. “V-”
denotes “Voronoi”: E.g., V-vertex means Voronoi vertex.

This paper is organized as follows. Section 2 presents
related prior studies. Section 3 presents the overview of
the dynamic Voronoi diagram. Section 4 presents the tran-
sitions between state changes of the Voronoi diagram
when disks move and is the core of this paper. Section 5
presents the most intriguing case of the dynamic Voronoi
diagram of disks: The shadow operation does not exist in
other types of Voronoi diagrams such as the ordinary Vor-
onoi diagram of points or power diagrams. Section 6
presents the representation of event history of dynamic
Voronoi diagram over time horizon. Section 7 presents
experimental results with discussions. Section 8 presents
an important and emerging application of dynamic Voro-
noi diagram of moving disks and balls. Then, the paper
concludes. There are three appendices, available in the
online supplemental material.

2 RELATED WORKS

It is called “kinetic” in the literature when the initial genera-
tors remain throughout the entire life of a system in that no
generator is added to or removed from the system. No
increase or decrease of a disk radius is allowed either. Oth-
erwise, it is called “dynamic.” We note that the insertion of
a new disk to an existing structure is a building block of the
topology-oriented incremental algorithm for constructing a
static Voronoi diagram of disks [13] and deletion can be
similarly handled. Hence, the difference between kinetic
and dynamic algorithms is marginal, and we prefer to use
the term “dynamic” to include both.

The dynamic Voronoi diagram was first studied for the
ordinary Voronoi diagram of points. Gowda et al. (1983) first
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discussed the dynamic Voronoi diagram of points as a
repeated deletion-and-insertion of point generators [14].
Ever since, many studies have followed including Devillers
et al. (1993) [15], [16], Roos [17], Lauritsen et al. (1994) [18],
Fabritiis and Coveney (2003) [19], and Schaller et al. [20]. For
moving points, Schaller and Meyer-Hermann reported that
the event-based method was twenty times faster than the
recomputation method [20], and Lauritsen et al. [18] and
Fabritiis and Coveney [19] reported that locally updating a
triangulation was faster than repeatedly using delete and
insert operations. Studies on the dynamic power diagram
(or equivalently regular triangulation) by Gavrilova and
coworkers (1996) [21], [22], [23] and by G€uibas et al. [24] and
others [25], [26] followed to handle proximity problems
among disks.

It is important to note the difference between the Voronoi
diagram and power diagram corresponding to a set of circu-
lar disks. The Voronoi diagram provides correct Euclidean
distance information regardless two disks intersect or not.
In the case of power diagram, however, correct Euclidean
distance information between non-intersecting disks is
not directly available while the information about intersect-
ing disks is correct. This property has an important conse-
quence in the spatial reasoning for solving applications.
Suppose we want to compute the offset of a set of arbitrary
disks (at fixed locations) with an offset amount d. Given the
Voronoi diagram, we can compute each of two offsets corre-
sponding to d ¼ d0 and d1, d0 6¼ d1, in the linear time of the
number of disks. See Fig. 2b and 2c. However, if we want to
compute the same offsets using power diagram, we need to
construct two different power diagrams. First, it is neces-
sary to construct the power diagram of the disks enlarged
by d0 and use the topology of the power diagram to find
the intersecting (enlarged) disks in the linear time. Second,
the same procedure needs to be repeated once more
with the disks enlarged by d1. See [27] for details.

We are aware of only two previous studies on the
dynamic Voronoi diagram of moving disks [22], [28], [29],
[30]. The study by Gavrilava and Rokne (1999) is of particu-
lar importance as their formula for the flip time of the V-
edge when disks linearly move with constant speeds is fun-
damental [22], [31]. They observed that the flip time of a V-
edge can be computed by finding the condition for a set
of four disks to be cotangent to a common circumcircle, say
�. The problem was transformed to a problem where a set
of three disks cotangent to a common line via the M€obius
transformation, also called the linear fractional transforma-
tion [32]. Let D ¼ fd1ðc1; r1Þ; d2ðc2; r2Þ; d3ðc3; r3Þ; d4ðc4; r4Þg
be a set of four disks where a disk di has the center
ci ¼ ðxi; yiÞ and radius ri � 0, i ¼ 1; 2; 3, and 4. Suppose that
d4 is the smallest.

Lemma 1. (From [22] with a correction) The time of the edge-flip
is the minimum positive real root of the polynomial

fðtÞ ¼ A2 þB2 � C2 ¼ 0; (1)

satisfying

giðtÞ ¼ Bðxi � x4Þ �Aðyi � y4Þ
C

< pi; (2)

where

A ¼
x1 � x4 r1 � r4 p1

x2 � x4 r2 � r4 p2

x3 � x4 r3 � r4 p3

�
�
�
�
�
�
�

�
�
�
�
�
�
�

;

B ¼
y1 � y4 r1 � r4 p1

y2 � y4 r2 � r4 p2

y3 � y4 r3 � r4 p3

�
�
�
�
�
�
�

�
�
�
�
�
�
�

;

C ¼
x1 � x4 y1 � y4 p1

x2 � x4 y2 � y4 p2

x3 � x4 y3 � y4 p3

�
�
�
�
�
�
�

�
�
�
�
�
�
�

:

(3)

where pi ¼ ðxi � x4Þ2 þ ðyi � y4Þ2 � ðri � r4Þ2, i ¼ 1; 2; 3
and the disk motions are analytic functions of time t.

Eq. (1) tests if � is cotangent to four disk generators where
all four are simultaneously either inside or outside of �.
Eq. (2) tests if � is empty, i.e., all four disks are placed out-
side of �. Provided that a reliable polynomial root finding
library is available, the roots of Eq. (1) satisfying Eq. (2) can
be found in Oð1Þ time.

If generators move linearly at constant speeds, fðtÞ
for d-dimensional spherical balls is a polynomial of
degree 2ðdþ 2Þ [31]. Hence, fðtÞ is a polynomial of degree
8 for two-dimensional disks and of degree 10 for three-
dimensional spherical balls. If generators are points in a
plane, fðtÞ is of degree 4. If generators are disks and the
power distance is used, fðtÞ is also of degree 4. Table 1
summarizes this observation.

The second study was Karavelas’ Ph.D. thesis (2001) [28],
[29] where the Voronoi diagram for moving disks was dis-
cussed in terms of the dual structure (whose theory was
completed by the introduction of the quasi-triangulation
[33], [34], [35]). Quoting Gavrilova’s 1999 work in [22] for
the event time prediction in the diagram, the thesis
described topology operations but not at the level sufficient
enough to judge the correctness of the algorithm.

In Voronoi diagrams, the representation of infinity is
essential. A popular and straightforward representation is
to place some phantom generators sufficiently far away
from the input generators [9], [13]. Fig. 3a shows the Voro-
noi diagram of ten generator disks (clustered in the center)
plus three phantom disks located sufficiently far away from
the generator disks so that the V-cells of the generator disks
are bounded. A more convenient representation is a circular
container with a sufficiently large radius to contain all the
input generators as Fig. 3b and 3c [36], [37]. Fig. 3b shows
the Voronoi diagram of the same generator disks in a circu-
lar container. The geometry of the V-edges is quadratic:
Elliptic between a generator disk and the container and
hyperbolic between two generator disks. Fig. 3c shows a

TABLE 1
The Degree of the Polynomial for the Dynamic

Voronoi Diagram (fðtÞ in Eq. (1))

2-dimension 3-dimension d-dimension

Ordinary VD of points 4 5 d + 2
VD of disks(spheres) 8 10 2(d + 2)
Power diagram 4 5 d + 2

Generators move linearly at constant speeds.
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larger container to accommodate generator motions for a
time interval. In this study, we use the approach in [36].

Scientific simulations frequently use particles to analyze
critical measures such as contacts, short-, mid-, and long-
range interactions among particles because the distribution
functions of physical properties are useful for understanding
nature [38]. Such interactions usually require a clever but
complicated representation of the neighborhood relationships
among particles to avoid combinatorial explosion. A well-
known example is the simulation of a continuous-time
dynamic billiard-like system consisting ofmany circular disks
or spherical balls by Lubachevsky (1991) [39], [40], [41]. Other
examples where particle interaction is critical include colli-
sion-avoiding path planning among moving vehicles [42],
[43], [44], [45], [46], dancing and crowd simulation [47], [48],
[49], [50], [51], collision-avoiding pedestrian path planning
[52], [53], [54], [55], [56], [57], [58], evacuation process simula-
tion [59], [60], etc. All such applications can take advantage of
the information available in the Voronoi diagram.

Another application is packing circular disks and spherical
balls in containers. Packing problem is an old and NP-hard
problem. Since the first introduction in 1944 [61], the disk
packing problem has been frequently formulated as nonlinear
optimization problems [62], [63], [64], [65] and various heuris-
tic methodswere reported [66], [67], [68], [69], [70], [71]. Intro-
ducing the Shrink-and-Shake algorithm, Sugihara and Kim,
together with coworkers (2004), showed that the geometric
properties of disk arrangement could be a powerful tool for a
goodpacking algorithm [36], [72], particularly using theVoro-
noi diagram of disks in a circular container [36]. Specht explic-
itly used the geometry information of the interstitial region in
disk arrangement [73]. There are many emerging applications
of the dynamic Voronoi diagram ofmoving disks such as cov-
erage problems in mobile sensor networks [74], routing prob-
lems for multi-hop mobile ad-hoc networks [75], [76], target
localization and tracking [77], and event-driven particle
dynamics [78], [79]. Drone cinematography might be an
emerging application if its three-dimensional counterpart is
available [80], [81], [82].

3 OVERVIEW OF THE DYNAMIC VORONOI DIAGRAM

ALGORITHM

There are three types of discrete events in the proposed
algorithm: Topology changes in the Voronoi diagram, colli-
sions between disks, and velocity changes (due to collisions
or other constraints). We assume linearity of disk motions
and perfect elasticity; We ignore other physical properties
such as friction with the plane. The skeleton of our

algorithm given below follows Roos’ work (1993) on the
event-driven simulation of the dynamic Voronoi diagram
of points [17], which was based on the framework of
traditional discrete event simulation [83], [84]. Similar
approaches have also been used by others [22], [23].

Algorithm 1. DynamicVoronoiDiagram-Skeleton

1 (Step1. Preprocessing)
2 (a) Construct the initial static Voronoi diagram VD of a disk

setD at t ¼ 0.
3 (b) For each V-edge, compute its potential flip time and col-

lision time for generating disks.
4 (c) Initialize an event queue Q.
5 (Step2. Iteration) Iterate the following while time horizon is

not over (or until there is no event in Q)
6 (a) Remove the nearest future event E from Q (E is either

edge flip or disk collision event).
7 (b) Process E and accordingly update VD ,D, and Q.

Beginning with an initial static Voronoi diagram VD ðDÞ at
t ¼ 0, we want to find all topology changes in the Voronoi
diagram as disk generators move and the moments that
disk pairs collide over the time horizon ½0;1Þ. In practice,
we are usually interested in a finite length of time ½0; t1Þ
where t1 << 1. We keep the predicted events during
½0; t1Þ in an ordered list EventHistory so that we can
quickly find the correct location of all the disks at an arbi-
trary moment t 2 ½0; t1Þ, and the corresponding Voronoi
diagram structure can be efficiently constructed.

Fig. 4a and 4b showVoronoi diagrams before and after the
flip of the V-edge e1 due to themotion of d3 to the arrowdirec-
tion, respectively. Before the flip, the V-edges e1 and e2 are
defined by the disk sets fd1; d2; d3; d4g and fd1; d3; d4; d5g,
respectively. After the flip, e1 is still defined by fd1; d2; d3; d4g
but e2 is defined by fd1; d2; d4; d5g. The disk set for e1 is
unchanged but that for e2 is changed. We call the set of the
four disks an edge generating disk set, or generating (disk) set for
a V-edge. A close observation shows the following. In Fig. 4a,
the bisector for the V-edge e1 is defined by the pair d1 and d3.
The two V-vertices of e1 are defined additionally by the two
disks d2 and d4. We call the pair d1 and d3 the crossing disk
pair (CDP) and the pair d2 and d4 the traversing disk pair (TDP)
of e1 and denote as QUADðe1Þ ¼ fCDPðd1; d3Þ;TDPðd2; d4Þg
where QUAD represents an edge generating disk quadruplet or
generating quadruplet of e1. Hence, the generating quadruplet
of e2 before the flip in Fig. 4a is QUADðe2Þ ¼ fCDPðd1;
d4Þ;TDPðd3; d5Þg. After the edge flip in Fig. 4b, the genera-
ting disk set of e1 remains unchanged but the generating

Fig. 4. (Ordinary Flip) Edge-flip of e1 in a Voronoi diagram with ordinary
V-cells. (a) Before the flip of e1 and (b) after the flip.

Fig. 3. Representation of infinity in the Voronoi diagram. (a) The con-
ventional approach using phantom disks. (b) Infinity represented
by a circular container. (c) An enlarged container to accommodate
generator motions.
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quadruplet is changed by switching the roles, e.g., from
QUADðe1Þbefore ¼ fCDPðd1; d3Þ;TDPðd2; d4Þg to QUAD
ðe1Þafter ¼ fCDPðd2; d4Þ;TDPðd1; d3Þg. For e2, the generating
disk set is changed from fd1; d3; d4; d5g to fd1; d2; d4; d5g.
When a V-edge flips, there are changes in the number of V-
edges bounding four V-cells. We call this type of flip an
“Ordinary Flip” as it is applied to ordinary V-cells.

Definition 1. An ordinary V-cell is bounded by more than
three V-edges and when it is bounded by four V-edges, none of
its adjacent V-cells are bounded by only two V-edges.

For example, in Fig. 4a, after the flip, VCðd1Þ and VCðd3Þ
have one V-edge less than they had before the flip and
VCðd2Þ and VCðd4Þ one more than they had before. Note
that there is no change in the total number of V-vertices, V-
edges, or V-cells. In CDP and TDP, the order of the two
disks is immaterial, and we keep the disks in the ascending
order of indices.

Lemma 2. Each V-edge of an ordinary V-cell has a unique flip
time, and the corresponding topology change is well-defined.

To construct EventHistory, we need to check if a V-edge
flips as disks move and need to predict the moment tFlip of
an edge-flip event EFlip if it does. Therefore, we scan all the
edges in the initial Voronoi diagram at t ¼ 0 to compute the
flip time of each V-edge caused by all disk motions. We
store the edge-flip event EFlip in a priority queue QFlip,
implemented as a heap, using the flip time tFlip as the key.
The root node of QFlip has the nearest future flip event.
Then, we pop the root node, which has a flip event for an
edge e, flip e, take care of related topology bookkeeping,
and advance the time on the horizon. The bookkeeping
takes care of the modification of the local topology configu-
ration among the V-vertices, V-edges, and V-cells in the
Voronoi diagram due to the flip, the update of the new flip
time of the edges with a modified topology, and the reloca-
tion of the updated V-edges in QFlip according to the new
key values. The flipped edge e should also be pushed into
QFlip with a new flip time.

On the other hand, the collision time can be predicted
with VD ðDÞ. If two disks collide in a sufficiently near future,
they should define a V-edge in VD ðDÞ. Hence, for each V-
edge in VD ðDÞ, we locate its two generating disks and check
if they will collide or not. If they shall collide, we compute
the collision time tCollide and store the collision event in
another priority queue QCollide using tCollide as the key. Given
d1ðc1; r1Þ and d2ðc2; r2Þ, a colliding moment is determined
by kc1 � c2k ¼ r1 þ r2.

Lemma 3. If disks di and dj collide at t, there is a V-edge e of
VD ðD; tÞ where di and dj are a crossing disk pair of e.
We maintain two priority queues QFlip and QCollide sepa-

rately because edge-flip changes the topology of a Voronoi
diagram whereas disk collision changes the states of the
disks in D with modified velocities. There might be other
types of events depending on applications. QFlip and QCollide

can also be merged into one queue if necessary.
Given the initial arrangement of disks and its Voronoi

diagram at t ¼ 0, we now proceed at time t 2 ½0; t1Þ. We
remove the root node of either QFlip or QCollide whichever is
the nearest future event. Let E be such an event and

tE > 0 be its event time. Depending on the type of E, the
situation can be handled appropriately. If E is from QFlip,
i)flip the corresponding V-edge, ii) re-compute the new
edge-flip time for the five V-edges (i.e., the flipped V-edge
e itself and those of four V-edges incident to e), iii) re-
locate each edge-flip event in an appropriate location in
QFlip, iv) find the disks associated with e, both before and
after the flip to get four disks in total, and v) update the
disk collision times for the cases involving these four disks
in QCollide. Note that the flipped V-edge among the five
V-edges in step (ii) above always contains the current time
tE as one of the polynomial roots.

If E is from QCollide, the velocities after the collision can be
calculated by i) modifying the velocities, ii) updating the new
collision time in the neighborhood according to the newveloc-
ities and updatingQCollide, and iii) updating the new flip time
of the neighbor edges in QFlip. The algorithm is summarized
inAlgorithm DynamicVoronoiDiagram.

Algorithm 2. DynamicVoronoiDiagram

1 (Step1. Preprocessing)
2 (a) Given a set D of initial disks, construct the static Voro-

noi diagram VD ofD at t ¼ 0.
3 (b) For each V-edge, compute its potential flip time. Initial-

ize a priority queue QFlip by inserting all V-edges using
the flip time as the key.

4 (c) For the disk pair defining each V-edge, compute its
potential collision time. Initialize a priority queue QCollide

by inserting all such disk pairs using the collision time as
the key.

5 (Step 2. Iteration) Iterate the following while the prediction
time horizon is not over (or until there is no event in both
QFlip and QCollide).

6 (a) Remove the root node event E of either QFlip or QCollide

whichever is the nearest future event.
7 (b) If E corresponds to an edge-flip event for an edge e, do

the following.
8 (i) Perform the edge-flip by appropriately modifying

the winged-edge data structure of VD .
9 (ii) For the edge e, re-compute the new flip time and

push into QFlip if there exists a real solution t greater
than the current time.

10 (iii) For each of the four V-edges incident to e, re-com-
pute the new flip time with a generator quadruplet
with some new disks (as the local connectivity is modi-
fied) so that the new flip time becomes the new key
value of the V-edge. Then, appropriately bubble up or
down this edge in QFlip.

11 (iv) If e flips, re-compute the new collision time for the
modified disk pair of e and bubble up or down the col-
lision event in QCollide.

12 (c) If E corresponds to a collision event between two
disks, do the following.

13 (i) Modify the velocities of collided disks.
14 (ii) Update the collision time in the neighborhood

reflecting the velocities and bubble up or down the
collision events in QCollide.

15 (iii) Update the flip time of the neighbor edges and bub-
ble up or down the flip events in QFlip.

Fig. 5 summarizes the flowchart of important steps in
Algorithm DynamicVoronoiDiagram. The two event
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queues are merged into a single queue Q and the coefficient
of restitution is ignored in the flowchart.

Step 1(a) takes OðnlognÞ time for n disks from a theoret-
ical point of view (in our current implementation, we use
the topology-oriented incremental algorithm, which takes
Oðn2Þ time but guarantees algorithmic robustness). Step 1
(b) takes OðnlognÞ time if the priority queue is imple-
mented with a heap data structure. Flip time computation
takes OðnÞ time because the flip time of a V-edge can be
computed in Oð1Þ time by Eqs. (3) and (2) and there are
OðnÞ V-edges in the Voronoi diagram of n disks in the
plane. Step 1(c) takes OðnlognÞ time. Therefore, step 1
takes OðnlognÞ time.

Step 2(a) takes OðlognÞ time. Step 2(b)(i), (ii), (iii), and
(iv) respectively take Oð1Þ, OðlognÞ, OðlognÞ, and OðlognÞ
time if the priority queue is implemented as a heap struc-
ture. A bubble up or down of a node with a modified key
value to find its proper location in a priority queue takes
OðlognÞ time. For the OðlognÞ time of Step 2(b)(iii), we
have a direct pointer from each V-edge in the Voronoi dia-
gram to its corresponding node in the priority queue. The
time complexity of Step 2(c) is a little bit different in that
OðnÞ V-edges can be influenced by a single event of disk
collision as shown in Fig. 6. Therefore, Step 2(c) takes
OðnlognÞ time for each collision because we need to
update OðnÞ new event times on a priority queue based on
heap data structure: We anticipate that it might take
OðlognÞ on average in most cases.

The computational requirement of the entire Step 2 is
proportional to the number of iterations, which is linear to
the length of the time horizon ½0; t1Þ and is given as
follows.

Theorem 4. DynamicVoronoiDiagram computes the event
history of the time horizon in OðkF lognþ kCnlognÞ time
with OðnlognÞ preprocessing time for n disk generators where
kF and kC represent the numbers of edge-flip and disk-collision
events over the time horizon, respectively.

Let k ¼ kF þ kC and r be the density of disks which is
defined as the area of the union of the disks to the area of a
minimum circle enclosing the generator disks and n the
average of the velocities assigned to the disks.

Lemma 5. k / t1, k / r, and k / n.

Lemma 6. The number of V-edges and the number of V-vertices
remain constant in the Voronoi diagram constructed by
DynamicVoronoiDiagram at any moment t 2 ½0;1Þ.

Proof. Let QUADðeÞ ¼ fCDPðdleft; drightÞ;TDPðdstart; dendÞg
be the quadruplet of a V-edge e. If e flips, one V-edge and
one V-vertex are decremented from the V-cells of both
dleft and dright. On the other hand, one V-edge and one V-
vertex are incremented in the V-cells of both dstart and
dend. Therefore, the number of Voronoi entities remains
unchanged. tu
Lemma 6 helps to improve the performance of the Dynam-

icVoronoiDiagram. In its current form, in Step 2(a) and 2
(b), we explicitly remove and insert a node(s) from and to
QFlip, respectively. We can instead bubble-up or down a V-
edge(s) in QFlip with a new key value. The same idea of bub-
bling is also applied to Step 2(c) for disk collisions.

Lemma 7. DynamicVoronoiDiagram takes Oðnþ kÞ mem-
ory for n disks and k events.

Proof. The representation of the topology structure takes
OðnÞ memory in the winged-edge data structure [33], [85],
[86], [87]. The priority queue of edge-flip events has each of
all the V-edges once having OðnÞ elements, and the heap
data structure for storing the priority queue takes OðnÞ
memory. Each of the edge-flip or collision events can be
obviously stored in Oð1Þ memory, as will be presented in
Section 6, and thus k events can be stored in OðkÞmemory.
Therefore,Oðnþ kÞmemory is sufficient. tu
Although it is output sensitive, the proposed algorithm is

compact as it requires only Oðnþ kÞ memory, is responsive as
each flip and collision event is handled in OðlognÞ and
OðnlognÞ time, respectively, and is local as it requires local
changes in the topology of a Voronoi diagram.

4 STATE TRANSITIONS IN DYNAMIC VORONOI

DIAGRAMS

The Voronoi diagram of disks is substantially different from
the ordinary Voronoi diagram of points and the power dia-
gram, mainly due to anomalies. Therefore, the algorithms to
properly maintain their dynamic structures are also sub-
stantially different. The most critical problem resides in
Step 2(a), which chooses the nearest future event in the time
horizon. This is because in the Voronoi diagram of disks,

Fig. 5. Flowchart of the proposed dynamic Voronoi diagram algorithm.
(t1: Upper bound of the prediction time, t�: time of the next event).

Fig. 6. The worst case of handling a collision event: In this case, a fast-
moving disk d collides one of many, say n� 1, disks where each share a
V-edge with d. (a) The shaded disk in the middle of the disk arrangement
moves fast. (b) and (c) The shaded disk moves from the initial placement
in (a) where it collides with a disk in right or left part of the arrangement.
At any moment, the shaded disk shares n� 1 V-edges with the n� 1
surrounding disks.
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there can be more than one V-edge with an identical event
time. This does not happen in the other types of Voronoi
diagrams. This section describes when such situations are
encountered and how to handle them.

4.1 Transition in an Ordinary Case

When disks move, the Voronoi diagram undergoes a series of
state transitions. Fig. 7 shows the transition of the Voronoi dia-
gram of four identically sized disks where the shaded one is
moving in the direction of the arrow. The red dotted circles in
Fig. 7a are themaximum empty tangent circles corresponding
to the V-vertices. Fig. 7b shows the moment, say t�, when the
four edge generatingdisks define a common empty circumcir-
cle (computed by Eqs. (3) and (2)). The V-edge contracts to a
point at t� and immediately after this moment, the V-edge
flips by an Ordinary Flip to result in Fig. 7c. If a same process
begins with Fig. 7c and the shaded diskmoves in the opposite
direction of the arrow, Fig. 7a will result, also by an Ordinary
Flip. AnOrdinary Flip is reversible.

When the disks are of the same size, the Voronoi diagram
is identical to an ordinary Voronoi diagram of disk centers.
In the ordinary Voronoi diagram of points (and also in the
power diagram), a cell is bounded by three or more V-
edges, and no pathological situation occurs in the topology
of a dynamic Voronoi diagram. The algorithm for the
dynamic Voronoi diagram of points is rather simple.

Lemma 8. (Necessary condition) Let QUADðeÞ ¼ fCDPðdleft;
drightÞ;TDPðdstart; dendÞg be the generating quadruplet of a V-
edge e. If dstart and dend are distinct, the V-edge e may flip in a
foreseeable time under disk motions.

Note that the twodisks inCDPare alwaysdistinct anddefine
a hyperbolic bisector. Lemma 8 implies that when the two disks
in TDP are also distinct, the corresponding V-edge may flip in
the near future. The actual flip time is the moment when an
empty circumcircle to the four generating disks is defined by
Eqs. (1) and (2). This implies the following observation.

Lemma 9. V-edges with an identical generating disk set have an
identical flip time.

Recall thatwe assume no two events occur at the same time.
Hence, two V-edges with different generating sets do not have
an identical flip time. This assumptionmust be checkedwhen-
ever two ormoreV-edgeswith an identical flip time occur.

4.2 Transition to a 2-EdgeV-Cell: A Pathological Case

Consider five disks, d1, d2, d3, d4, and a tiny disk d5
and the Voronoi diagram as shown in Fig. 8. Note the

d5 � CHðd2; d4Þwhere CHða; bÞ denotes the convex hull of a
and b. In this case, there are two empty circumcircles among
d2, d4, and d5. The V-cell for d5 is bounded by only two V-
edges e3 and e4. The distinct V-vertices v1 and v2 are defined
by an identical triplet of disks d2, d4, and d5 where each V-
vertex corresponds to one of the red-dotted empty circum-
circles. This type of pathological case, called an anomaly, is
unique in the Voronoi diagram of disks and does not hap-
pen in the ordinary Voronoi diagram of points or the power
diagram. The situation related with an anomaly causes com-
plications in the maintenance of the dynamic Voronoi dia-
gram of disks.

In the Voronoi diagram of disks, unlike the ordinary Vor-
onoi diagram of points, an edge generating disk set may not
be unique for each V-edge. For example, in Fig. 8, both e3
and e4 are generated from an identical disk set fd2; d4; d5g of
three disks, not four. As there are no four distinct disks to
be cotangent to a common circumcircle, the flip condition in
Lemma 8 cannot be satisfied, and thus the lemma cannot be
applied. The generating quadruplet of e3 is QUADðe3Þ ¼
fCDPðd4; d5Þ;TDPðd2; d2Þg and that of e4 is QUADðe4Þ ¼
fCDPðd2; d5Þ;TDPðd4; d4Þg. Note that the TDPs of both of
the generating quadruplets degenerate. This condition vio-
lates the flip condition for e3 and e4 and thus these V-edges
do not flip in the foreseeable future. The necessary condition
for such a case is the d5 � CHðd2; d4Þ and we call d5 to be
trapped by d2 and d4. We call the V-cell of d5 a 2-edge V-cell
implying that it is bounded by e3 and e4. Because the two
bounding V-edges (in Fig. 8, e3 and e4) do not flip in the
foreseeable future, we set their flip time as infinity and store
it in the event queueQFlip. This proves the following lemma.

Lemma 10. The twoV-edges of (an isolated) 2-edgeV-cell do not flip.

A 2-edge V-cell is connected to the rest of the V-edge
graph via two V-edges (which are called the “connecting V-
edges”). Each of the two connecting V-edges has a unique
generating disk quadruplet and thus has a unique flip time.
In Fig. 8, for example, e0 ¼ fCDPðd2; d4Þ;TDPðd1; d5Þg and
e00 ¼ fCDPðd2; d4Þ;TDPðd3; d5Þg. Note that the connecting
V-edges have identical CDPs: d2 and d4 in this example.

The complications related with the 2-edge V-cell can be
classified into two cases: i) Transitions between a triangular
V-cell and an isolated 2-edge V-cell and ii) transitions
between two trapped 2-edge V-cells.

4.3 Transition Between a Triangular V-Cell and a
Trapped Isolated 2-Edge V-Cell

Consider, in Fig. 9a, a triangular V-cell of d5 that has three
V-edges e5, e6, and e7. In this case, e5, e6, and e7 are all

Fig. 7. (Ordinary Flip) Transition between ordinary V-cells. Equal-sized
disks. (a) Before an edge-flip. (b) The edge contracts to a point. (c) After
the edge-flip. Fig. 8. A Voronoi diagram with an anomaly V-cell of d5 trapped by two big

disks d2 and d4.

2930 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 27, NO. 6, JUNE 2021



defined by an identical set of four disks fd1; d2; d4; d5g but
with different generating quadruplets: e5: fCDPðd2; d5Þ;
TDPðd1; d4Þg; e6: fCDPðd4; d5Þ;TDPðd1; d2Þg; e7: fCDPðd1;
d5Þ;TDPðd2; d4Þg. Suppose that d5 moves to the right so that
the d5 � CHðd2; d4Þ as shown in Fig. 9b. Then, d5 defines a
2-edge V-cell and becomes trapped as shown in Fig. 9c.

In Fig. 9a, all three V-edges e5, e6, and e7 around d5 have
an identical flip time because they all have an identical gen-
erating disk set fd1; d2; d4; d5g and the three V-edges are
placed in the priority queue QFlip with an identical key
value. Therefore, when it is necessary to choose a V-edge to
flip, it is critical to choose the right one.

In Fig. 9a, e7 is the one to flip to e8 in Fig. 9c. This case
occurs only in a triangular V-cell because a 2-edge V-cell
can be created only when a V-edge of the triangular V-cell
flips. This case does not occur if a V-cell has four or more V-
edges. The following lemma is proven.

Lemma 11. All three V-edges of a triangular V-cell have an iden-
tical flip time.

This lemma indeed implies that there can be at most
three edges in a V-face with identical flip times. We call the
V-cell of d5 in Fig. 9a a 3-edge V-cell and call the topology
operation to transit from Fig. 9a, 9b, and 9c a 3-to-2 Flip.

Suppose that the disks are given as Fig. 9c and d5 moves
in the opposite direction (i.e., to the left). Then, the 2-edge
V-cell in Fig. 9c transforms to the 3-edge V-cell in Fig. 9a via
an Ordinary Flip of e8. In this sense, a 3-to-2 Flip is
irreversible.

How can the right V-edge among the three candidate V-
edges be chosen? For example, in Fig. 9a, how to choose e7

to flip from e5, e6, and e7? Suppose that t� is the edge-flip
time. In the case of multiple V-edges with an identical edge-
flip time, we temporarily move the generating disks to the
location corresponding to t� and check which V-edge actu-
ally shrinks to a point. Hence, we actually move at most
four disks and compute the circumcircle only once, thus tak-
ing Oð1Þ time. We call this a Move-&-Check operation. In
Fig. 9a, fd1; d2; d4; d5g generates e5, e6, and e7. This proves
the following lemma.

Lemma 12. The transformation from a 3-edge V-cell to a 2-edge
V-cell can be done by a 3-to-2 Flip operation in Oð1Þ time.

Fig. 10 summarizes the discussion up to this point: The
state transition of a single V-cell from an ordinary V-cell to
a 3-edge V-cell to a 2-edge V-cell or vice versa.

4.4 Transition Between a Pair of Trapped V-Cells

This section describes the state transition of two trapped
V-cells.

Consider a case where two small disks are trapped by
two big disks. For example, see Fig. 11a where d5[
d6 � CHðd2; d4Þ. There are six different ways to define a
bisector between two disks from a set of four disks, i.e.,
Cð4; 2Þ ¼ 6. As the bisector between the two big disks d2
and d4 is split into two connecting V-edges, there can be
altogether at most seven V-edges. Recall that each of the
two connecting V-edges has a unique flip time. The five
bisectors contributing to the V-edges in the trapped region
require careful investigation. Note that the V-edges form a
planar graph. Consider the following three cases.

� Configuration I (Fig. 11a) One small disk is exposed
to only one big disk, the other small disk is exposed
to both big disks, and the small disks are adjacent to
each other in the Voronoi diagram (i.e., they interact
with each other). The two disks are linearly aligned
and the disk configuration looks like the letter I.

Fig. 9. (3-to-2 Flip) Transition between a triangular V-cell and an isolated
2-edge V-cell. (a) Before the edge-flip, (b) the V-edge e7 is shrunken to a
point, and (c) after the edge-flip.

Fig. 10. State transition diagram in the big world of the dynamic Voronoi
diagram of disks due to an edge-flip. The label on each arrow denotes
the corresponding flip operation.

Fig. 11. (24-to-33 Flip) Two V-edges e9 and e09 have an identical flip time.
(a) Before the edge-flip (Configuration I), (b) a shrunken edge, and (c)
after the edge-flip (Configuration X).
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� Configuration X (Fig. 13a) Both of the small disks are
exposed to big disks, and two small disks are adja-
cent to each other. The disk configuration looks like
the letter X.

� Configuration W (Fig. 14a) Both of the small disks
are exposed to both big disks, and the two small
disks are not adjacent to each other (i.e., they do not
interact with each other). The disk configuration
looks like the letter W.

Hence, the following observation holds.

Lemma 13. There are three, and only three, different configura-
tions for each pair of trapped disks: Configurations I, X, and W.

Proof. The V-cells of two trapped disks may be either adja-
cent or non-adjacent to each other. If they are adjacent to
each other, there can only be two cases as follows: i) One
is a two-edge V-cell, and the other has four V-edges

(Fig. 11a) and ii) both have three V-edges (Fig. 13a). If
they are not adjacent to each other, the only possible case
is Fig. 14a. tu

4.4.1 Configuration I

In Configuration I in Fig. 11a, there is a 2-edge V-cell VCðd6Þ.
In this case, the bisector between d4 and d5 defines twodistinct
V-edges e9 and e09 among the five V-edges in total. In this case,
both e9 and e09 have an identical generator quadruplet
fCDPðd4; d5Þ;TDPðd2; d6Þg and thus have an identical flip
time by Lemmas 8 and 9. The other three V-edges are defined
by only three distinct disks fd4; d5; d6g and fd2; d4; d5g and
thus have degenerate generator quadruplets fCDPðd4; d6Þ;
TDPðd5; d5Þg, fCDPðd5; d6Þ;TDPðd4; d4Þg, and fCDPðd2; d5Þ;
TDPðd4; d4Þg so that their flip times are not defined.

Lemma 14. Configuration I has two V-edges with an identical
flip time.

When d5 moves to the arrow direction, we need to choose
the correct V-edge between e9 and e09 to flip. In this example,
e9 flips. To make this choice correct, the Move-&-Check

operation is used, i.e., we temporarily move the related four
disks and measure the lengths of the V-edges. We call the
topology operation from Fig. 11a, 11b, and 11c a 24-to-33
Flip because the two V-faces with 2 and 4 V-edges are trans-
formed to V-faces, both with 3 V-edges).

Lemma 15. The 24-to-33 Flip can be done in Oð1Þ time.

If the disks are arranged as in Fig. 12, e17 and e017 have an
identical flip time, say t1; e18 and e018 have another identical
flip time t2 6¼ t1. This case may also be repeated an arbitrary
number of times and can be resolved by applying the
Move-&-Check operation for each pair of such V-edges.

4.4.2 Configuration X

Fig. 13a shows a disk configuration that is identical to
Fig. 11c. We call this disk configuration X in that the disk
arrangement looks like the letter X. In this case, all of the
five V-edges have an identical generating disk set
fd2; d4; d5; d6g and therefore an identical flip time. (Another
possible explanation is as follows. Each of the two

Fig. 13. (33-to-24 Flip) All five V-edges of the two 3-edge V-cells have an
identical flip time (except for the connecting V-edges). (a) Before the
edge-flip (Configuration X), (b) a shrunken edge, and (c) after the edge-
flip (Configuration I).

Fig. 12. The V-edges e17 and e017 have an identical flip time, say t1.
Similarly, e18 and e018 also have an identical flip time t2 6¼ t1. Fig. 14. (Ordinary Flip and 33-22 Flip) The three connecting V-edges e14,

e15 and e16 have a unique flip time. (a) Before the edge-flip (Configuration
W), (b) an edge-flip of e14 to e

0
14, (c) an edge-flip of e15 to e

0
15 (Configura-

tion X).
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triangular V-faces have all three V-edges with an identical
flip time. Because the two V-faces have a common V-edge,
the five V-faces have an identical flip time.) All five of the
V-edges have different generating quadruplets without
any degeneracy. To determine the right V-edge to contract,
we again use the Oð1Þ time Move-&-Check operation.
Note that the disk configurations of Fig. 13a and 13c are
identical to those of Fig. 11c and 11a, respectively. The
topology operation from Fig. 13a, 13b, and 13c is called the
33-to-24 Flip taking Oð1Þ time. Therefore, the following
observation holds.

Lemma 16. Configuration X has five V-edges with an identical
flip time.

Lemma 17. The 33-to-24 Flip can be done in Oð1Þ time.

4.4.3 Configuration W

In Fig. 14, each small disk defines an isolated 2-edge V-cell,
and they are not adjacent to each other in the Voronoi dia-
gram. Recall that the V-edges bounding the 2-edge V-cells
do not flip by Lemma 10. On the other hand, each of the
three connecting V-edges e14, e15, and e16 has a unique flip
time because it has a unique generating disk set. Flip e14 (or
e15) by an Ordinary Flip operation results in Fig. 14b (or (c))
from (a). There can be an arbitrary number of tiny disks
arranged in this fashion to form aW Configuration.

The topology operation from Fig. 14b to 14a is called a 33-
to-22 Flip takingOð1Þ time. The following observation holds.

Lemma 18. Configuration W has three V-edges with distinct flip
times.

Lemma 19. A 33-to-22 Flip can be done in Oð1Þ time.

Fig. 15 summarizes the state transitions in small worlds
due to the flip of the V-edges during maintenance of the
dynamic Voronoi diagram. Note that four V-edges can have
an identical flip-time: See Appendix 2, available in the
online supplemental material.

5 SHADOW OPERATIONS : SHADOW V-VERTEX
AND SHADOW FLIP

Fig. 16a and 16d are duplicates of Fig. 11a and 11b, respec-
tively. Recall that only d5 moves toward the arrow direction.
Given the Voronoi diagram, say VD a, in Fig. 16a, the next
edge-flip event occurs at the moment of VD d in Fig. 16d.
Fig. 16b and 16c show intermediate Voronoi diagrams.

Fig. 17 shows the Voronoi diagram, say VD �, with an addi-
tional disk d�. Note that the V-cell of d� trims off some V-cells
of the Voronoi diagram VD in Fig. 16. The dotted curve seg-
ments in Fig. 17 are the trimmed portion of the V-edges in the
corresponding VD and do not exist in VD �. For example, ê9 in
Fig. 17a is the trimmed edge of e9 of VD a in Fig. 16a.

Given the Voronoi diagram VD �
a in Fig. 17a, the next edge-

flip occurs when the V-edge ê9 contracts to a point as shown
in VD �

b in Fig. 17b. Fig. 17c shows the Voronoi diagram VD �
c

after a tiny time increment. Be aware that there is a shadow
V-edge eshadow which is contained in the V-cell of the disk d�.
The shadow V-edge does not exist in the data structure of a
real Voronoi diagram VD �

c .
Then, an important situation is encountered. The next

edge-flip event is computed as VD �
d as shown in Fig. 17d

when the eshadow contracts to a point. As explained previ-
ously in Section 4.4.1, the flip time of e09 is identical to that of
eshadow because both e09 and eshadow are defined by the
same set of four generating disks ~D ¼ fd2; d4; d5; d6g. The
algorithm recognizes if eshadow, not e

0
9, flips at the moment of

Fig. 17d. Hence, in this case, we do not perform any actions
but proceed to the next event in the time horizon. In this
sense, we call it the shadow flip of the V-edge and the V-

Fig. 15. State transition diagram in the small world of the dynamic Voro-
noi diagram of disks due to the edge-flip. The label on each arrow
denotes the corresponding flip operation.

Fig. 16. Duplicates of Fig. 11. (a) Before the edge-flip (VD a), (b) a
shrunken edge (VD b), (c) before the edge-flip (VD c), and (d) a shrunken
edge (VD d).

Fig. 17. Shadow flip of a V-edge. (a) Before the edge-flip (VD �
a), (b) a

shrunken edge (VD �
b ), (c) before the edge-flip (VD �

c ), and (d) a shrunken
edge (VD �

d).
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vertex at the center of the red circumcircle a shadow Voronoi
vertex. A shadow flip is unique in the Voronoi diagram of
disks and does not exist in an ordinary Voronoi diagram of
points or a power diagram.

It is necessary to distinguish a shadow flip from a real
flip. Suppose that we apply the Oð1Þ time Move-&-Check

operation with the generating disk set ~D to the edge-flip
time so that we get the location of the shadow Voronoi ver-
tex, say v. Then, we look into the root node r of the priority
queue QFlip to check if the location of v is identical to either
one of the V-vertices of r. If the location of v is not identical
to either one of the V-vertices, this edge-flip is a shadow.

Lemma 20. A shadow flip can be done in Oð1Þ time in the
worst case.

Theorem 21. Given an event history, the dynamic Voronoi dia-
gram of n disks over the time horizon ½0; t1Þ can be constructed
in Oðkþ nÞ time with OðnlognÞ time for preprocessing to con-
struct the initial Voronoi diagram at t ¼ 0 where k denotes the
number of events in the time horizon.

6 REPRESENTATION OF THE EVENT HISTORY

We store all the events of the dynamic Voronoi diagram in
the time horizon in an event history in chronological order
because any spatial queries on the generator disks at an
arbitrary moment can be efficiently answered from the
event history and the initial state of a system. A disk-
collision event has three data items ðtCollide; " d1; " d2Þ: tCollide
is the disk collision time, " d1 and " d2 are the pointers or
indices to the colliding disks. The velocity vectors of the
disks after a collision can be calculated. An edge-flip event
stores two data items ðtFlip; " eÞ: tFlip is the edge-flip time and
" e is the pointer to the V-edge to be flipped. We may repre-
sent " ewith a disk quadruplet which defines e to store event
history information in a file to use in applications. Note that
the computational requirement of an event history is heavy.

The event history is used to efficiently analyze the spatial
properties of moving disks at t� 2 ½0; t1Þ. Let tk be the time
of an kth event Ek in the event history. First, we scan the
event history to locate Ek�1 and Ek where tk�1 � t� < tk.
Then, the topological structure of the Voronoi diagram at t�

can be constructed in OðkÞ time by performing k edge-flips
and/or disk-collisions. We want to construct a static Voro-
noi diagram VDSðD; t�Þ as quickly and robustly as possible.

There are two operators for obtaining the static Voronoi
diagram VD SðD; t�Þ at t� 2 ½ti; tiþ1Þ from a history file and
the initial set of disk generators.

� Move disks places the disk generators at the correct
locations at t�. There are three alternatives. For each
event up to ti < t�: Move-1 moves all disks at each
event; Move-2 moves all disks at each collision
event; or Move-3 moves only two colliding disks at
each collision event.

Then, all disks are moved to the final locations at
t�. Move-3 shows the best performance in terms of
both computational efficiency and numerical robust-
ness because the number of arithmetic operations
needed to obtain the disk locations at the last
moment is minimized.

� Construct VD realizes the construction of the Voro-
noi diagram. There are two alternatives. Con-

struct-1 constructs the static Voronoi diagram of
the disk generators located at t�; Construct-2

updates the topology of the Voronoi diagram by
doing the edge-flip operations for all edge-flip events
up to ti < t� and evaluates the geometry of the static
Voronoi diagram using the disks located at t� with
the current topology of the static Voronoi diagram.

Hence, there can be six different strategies defined from
the combinations of the two operators. An appropriate
approach can be chosen depending on parameters such as
the densities, velocities, and radii of disks.

7 EXPERIMENTS AND DISCUSSIONS

We have implemented the proposed algorithm and tested
thoroughly for performance evaluation using the following
computational environment: Intel Core i7-7700 3.60 GHz;
16 GB RAM; Windows 10 Professional (64 bit); Visual C++
onMicrosoft Visual Studio Community 2017. We emphasize
that we used only one core in this experiment.

7.1 Test Data

We have generated five types of disk sets. The first one is
REFERENCE ¼ fD1; D2; . . . ; D10g where Di is a model file
containing 1000 � i mutually disjointed random disks. The
disks in Di are placed in a sufficiently large circular con-
tainer C i ¼ ðO;RiÞ centered at the origin O with the radius
Ri. Each disk di;j ¼ ðci;j; ri;jÞ 2 Di has a random radius
ri;j 2 ½1:0; 10:0� and is centered at a random location ci;j in
C i. Each disk is associated with the velocity vector of a ran-
dom direction but of a unit speed 1.0. Let s 2 ½0:0; 1:0� be
the coefficient of restitution between two disks which is
defined as the ratio of the relative velocity after a collision
to that before the collision. We assume that the coefficient of
restitution of any disk pairs in REFERENCE are identically
1.0, i.e., are perfectly elastic. Let r be the density of Di,
which is defined as the ratio of the area of the union of the
disks inDi to the area of C i. It is known that r � 0:9069 (The
equality holds for mono-sized disks). For all model files in
the experiments in this paper, s ¼ 1:0 implying that the
disks are perfectly elastic and r 	 0:05 to investigate the
long-range behavior of the particle systems, unless other-
wise stated.

We created four additional types of disk sets to investi-
gate the algorithm properties related to the number of
events in the dynamic Voronoi diagram that is dependent
on the initial speed of the disks, the size of the disks, the
packing density of the disks, and the coefficient of the resti-
tutions. Suppose that the Dbase is a model file containing a
set of 1,000 mutually disjoint disks that are randomly cre-
ated in a circular container C , in a way similar to
REFERENCE. In other words, di ¼ ðci; riÞ 2 Dbase has a ran-
dom radius ri 2 ½1:0; 10:0� at a random location ci in C with
a random velocity vector with a unit speed, r 	 0:05, and
s ¼ 1:0 forDbase.

The four types of disk sets are as follows. SPEED-
VARIED ¼ fDspeed

1 ; Dspeed
2 ; . . . ; Dspeed

10 g. The disks in Dspeed
k

are generated with a rule identical to that used for the Dbase

except that the initial speed of all the disks in the Dspeed
k is
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set to a constant k. SIZE-VARIED ¼ fDsize
1 ; Dsize

2 ; . . . ; Dsize
10 g

where the disks in Dsize
k are similarly generated except that

the radii rk of the disks in Dsize
k is randomly chosen so

that rk 2 ½1:0; k�. DENSITY-VARIED ¼ fDdensity
1 ;Ddensity

2 ; . . . ;

Ddensity
10 g where the disks in the Ddensity

k are similarly gener-

ated except that the density r of the Ddensity
k is 0:05 � k.

RESTIT-VARIED ¼ fDrestit
1 ;Drestit

2 ; . . . ;Drestit
5 g where the

disks in Drestit
k are similarly generated, except that the coeffi-

cient of the restitution s of Drestit
k is 0:5þ k=10:0. For exam-

ple, s of Drestit
1 = 0.6.

7.2 Correctness of the Constructed Dynamic
Voronoi Diagrams

We thoroughly checked and found the correctness of the
constructed Voronoi diagrams of all of the ten model files in
the REFERENCE data set. All of the constructed Voronoi
diagrams passed the tests performed as follows.

We first constructed the dynamic Voronoi diagram over
the time horizon ½0; 1; 000� and stored the history file. Then,
we uploaded the history file to perform the following test:
We advanced the time horizon to tcurr by scanning the his-
tory file to get the topology and geometry of the Voronoi
diagram at tcurr. Then, we computed the maximum empty
circumcircle � at the moment for the three disk generators
associated with each V-vertex and checked if � intersects
any other disks. We used 10�6 as the tolerance to check the
intersections.

We used two different strategies to advance the time
horizon. The first is to increment the constant time interval
Dt, i.e., t ¼ tþ Dt where Dt ¼ 0:1. The other is to increment
the time to the moment of the next event and check the Vor-
onoi diagram in the middle of the time interval between
two consecutive events.

7.3 Computation Time Profile

We analyzed the computational efficiency properties of the
proposed dynamic Voronoi diagram algorithm, which con-
sists of four major tasks: Step 1) Find the possible flip time
of the V-edges; Step 2) Find the possible collision time
between the disks; Step 3) Do the bookkeeping for the flip
or collision time in the priority queue; Step 4) Move the
disks corresponding to a related event time.

Fig. 18a shows the total computation time of the pro-
posed algorithm to the size of the model files of
REFERENCE. Recall that the time horizon is 1,000 units,
s ¼ 1:0, r 	 0:05. We observed a weak super-linearity,

which verifies the Theorem 4. Fig. 18b shows four curves
that correspond to the four major tasks above: Red: Step 1;
Green: Step 3; Yellow: Step 4; Blue: Step 2. Be aware that the
vertical axis of Fig. 18b is logarithm-scaled.

7.4 Influence of the Initial Speeds of the Disks

We studied the algorithm properties under the speed vary-
ing conditions. Fig. 19 shows the analysis using the
SPEED-VARIED data set. Be aware that the time horizon is
up to 1,000 units, s ¼ 1:0, r 	 0:05. Fig. 19a shows the total
computation time, which is strongly linear.

To verify the linearity, we further studied the number of
events, which took the majority of the computation using
this data set. Fig. 19b and 19c shows the numbers of events
occurring and the predicted ones over the time horizon,
respectively: Red: Flip events; Blue: Collision events; Black:
Total events. Note that the horizontal axis denotes the initial
speeds of the disks. Based on this analysis, we make the fol-
lowing observations:

� All curves are strongly linear.
� The gap between the red and blue curves is signifi-

cant yet consistent.
� The scale difference between the predicted and the

occurring events is an order of magnitude. Specifi-
cally, only 15 percent of the predicted flip events
occurred and 42 percent for the collision events.

7.5 Influence of the Disk Sizes

We also studied the algorithm properties under size varying
conditions using the SIZE-VARIED data set. Fig. 20a shows
the events occurring with respect to the maximum disk
radius (i.e., the upper bound of the range of the disk radius
from which each disk radius is randomly determined): Red:

Fig. 18. Computation time (Data set: REFERENCE). Ten sets of disks.
#disks: 1,000, 2,000, . . ., 10,000. Random radii in ½1:0; 10:0� with random
velocities but with a unit speed. t1 ¼ 1; 000. r 	 0:05. s ¼ 1:0. (a) Total
computation time. (b) Computation time for the four major steps. Be
aware of the logarithm scale. (Red: Step 1; Green: Step 3; Yellow: Step
4; Blue: Step 2.).

Fig. 19. Influence of the initial speeds of the disks (Data set:
SPEED-VARIED). Ten sets of 1,000 disks with an initial speed of 1.0,
2.0, . . ., and 10.0. Random radii in ½1:0; 10:0�. Random moving directions
for the disks. t1 ¼ 1; 000. r 	 0:05. s ¼ 1:0. (a) The computation time,
(b) the number of events occurring, (c) the number of predicted events.

Fig. 20. Influence of disk sizes (Data set: SIZE-VARIED). Ten sets of
1,000 disks. Upper-bound from which the disk radii were sampled in
each set: 1.0, 2.0, . . ., and 10.0. Initial speed of the disks: 1.0. Random
moving directions for the disks. t1 ¼ 1; 000. r 	 0:05. s ¼ 1:0. (a) The
number of events occurring. (b) The average distance between a disk
and its first neighbors. (c) The speed of the disks.
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Flip events; Blue: Collision events; Black: Total events (i.e.,
Red + Blue). Note that all curves are monotonic, decreasing
in a nonlinear fashion which can be explained by Fig. 20b
and 20c. Fig. 20b shows the average distances between each
disk and its first Voronoi neighbors at the last moment in
the time horizon, i.e., 1,000. Two disks di and dj are Voronoi
neighbors if and only if the V-cells of the two disks share a
V-edge. We measure the average distance (between the
boundaries of two disks) at the last moment in the belief
that the system has reached a steady state. Fig. 20c shows
the distribution of the disk speeds at the last moment of the
time horizon. We made the following observations that
explain the monotonic decrease shown in Fig. 20a: i) Both
the distance and its variance increase as the maximum disk
radius increases; ii) The average inter-disk distance is a
strong linear increase; iii) The average speeds are very close
to the initial condition of the unit speed 1.0 but with an
overall increasing variance.

7.6 Influence of the Disk Densities

We studied the density varying conditions using the
DENSITY-VARIED data set. Fig. 21a shows the events that
occurred with respect to the density. The three curves corre-
spond to the event types: Red: Flip events; Blue: Collision
events; Black: Total events. The collision curve is super-
linear, increasing while the flip curve shows a sub-linear
increase pattern up to r ¼ 0:4 when the curve seems to
reach a steady state. The black curve shows a roughly linear
increase. This observation can be nicely explained by
Fig. 21b and 21c, which shows the average inter-disk distan-
ces between each disk and its first Voronoi neighbors and
the disk speeds at the last moment of the time horizon,
respectively. We make the following observations: i) Aver-
age distance is inversely proportional to density: This
means that a higher density leaves a smaller allowable space
for disk moves; ii) Disk speeds are roughly constant;

7.7 Influence of the Coefficient of the Restitutions

We studied the frequency of the events occurring over the
time horizon using the RESTITE-VARIED data set for the
variable coefficient of the restitutions. Fig. 22a and 22b
shows the frequency of a flip and that of the collision events.
In this experiment, we used a time horizon up to 1,000 to
obtain a steady state. There are five curves where each cor-
responds to a coefficient of restitution s: Green: 0.6; Yellow:
0.7; Blue: 0.8; Red: 0.9; Black: 1.0. Each point in the curves
represents the number of events in the most recent time

interval of 10 units. In other words, the point on the black
curve of Fig. 22a at 500 on the time horizon denotes the
number of flip events that have occurred during the time
units ½490; 500Þ. We make the following observations: i) If
s ¼ 1:0, the system quickly reaches a steady state; ii) If
s < 1:0, the system goes through a transient state before
reaching a steady state; iii) When s < 1:0, the higher s is,
the longer the transient state is. The rapid increase during
the transient state of the black curve is due to the large
speed gain of the small to tiny disks, which would have
caused the increases of both the flip and collision events.
The two sharp peaks in Fig. 22b correspond to the situation
where a tiny disk is captured and bounces back and forth
several times between the container boundary and a very
large disk.

8 APPLICATION: COLLISION-FREE PATH PLANNING

FOR A SWARM OF MOVING VEHICLES

The dynamic Voronoi diagram can be a vital tool for colli-
sion-free path planning of moving objects in space. In addi-
tion to well-known crowd and dancing simulation, there
are examples such as conjunction prediction for space situa-
tional awareness in geo-space, midair airplane collision pre-
diction, prediction of collisions between flying drones, and
collisions between underwater objects.

One of the key technical challenges of choreographing a
big swarm of drones, such as the opening ceremony of the
2018 Winter Olympic in Pyeongchang, Korea, is to avoid a
collision between drones. Fig. 23 shows collision-free path
planning among five moving disks in the plane. See the

Fig. 21. Influence of densities (Data set: DENSITY-VARIED). Ten sets
of 1,000 disks whose density r: 0:05; 0:10; . . . ; 0:50. The disk radius is
randomly set in ½1:0; 10:0�. The initial speed of the disks: 1.0. Random
moving directions for the disks. t1 ¼ 1; 000. s ¼ 1:0. (a) The number of
events occurring. (b) The average distances between a disk and its first
neighbors. (c) The speed of the disks.

Fig. 22. Frequency of the dynamic Voronoi diagram events (Data set:
RESTITE-VARIED). 5 sets of 300 disks whose coefficients of restitution
are 0.6, 0.7, . . ., and 1.0. The initial speed of the disks: 1.0. Random
moving directions for the disks. t1 ¼ 1; 000. r 	 0:05. (a) frequency of
the flip events, and (b) frequency of the collision events.

Fig. 23. Collision avoiding path planning for a swarm of drones (See the
accompanying video). Five drones are moving linearly through the dot-
ted line segments during the period from t0 to t1. The predicted collision
between d� and da at ta is avoided by slowing down the speed of da (red)
while keeping the speed for d� (green) the same. The other predicted col-
lisions at tb, tc, and td can be similarly avoided.
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accompanying video. For presentation convenience, the
disks are of the same size, assuming the same level of loca-
tion uncertainty, and the path of each disk is assumed to be
linear. The five disks are vertically located at t0 on the left, and
each disk moves to the location corresponding to t1 on the
right. Each diskmoves linearlywith a constant initial speed at
t0 given by the line segment between the two points at t0 and
t1 and the time difference t1 � t0. Suppose that the disks are
d�, da, db, dc, and dd from bottom to top at t0 and their speeds
are v�, va, vb, vc, and vd, respectively. Let VD ðt0Þ be the Voronoi
diagram of the five disks at t0. The disks are configured so
that d� contacts da at ta > t0, which can be predicted from
VD ðt0Þ. Hence, we change the speeds of both d� and da at
t�a < ta respectively to v

0
� and v0a so that the predicted collision

can be avoided. The red and green colors of d� and da denote
speed changes. Then, after the collision is avoided at tþa > ta,
we change the speeds of the two disks once more, v00� and v00a,
so that the original goal of simultaneous arrival is met. Note
that there are different strategies to decide ta � t�a , t

þ
a � ta, v

0
�,

v0a, v
00
� , and v00a where all can be easily calculated. In the figure,

the red and green colors correspond to the changed and
unchanged speeds, respectively, while the path geometries
remain linear. In fact, the collisions are avoided by slowing
down the speeds of the red disks.

After the first collision is avoided, a second collision is
predicted between d� and db at tb from VD ðtþa Þ. We change

the speeds of both d� and db at t�b < tb respectively to v000�
and v0b so that the second collision can be avoided and, at
tþb > tb, we change the speeds of the two disks once more,
say v0000� and v00b , to simultaneously arrive at the targets. Simi-
lar processes can avoid a third predicted collision between
d� and dc and a fourth one between d� and dd.

There could be a number of ways to avoid a predicted col-
lision between two disks. The approach used above is to
change the speeds of the disks while the geometry of their
respective linear paths is preserved and can be applied to
copters with four, six, eight, or more wings. On the other
hand, it is also possible to provide curved path(s) for one of
either disk or both by taking advantage of the information
available in the Voronoi diagram. This applies to those
drones with fixed wings where a changed speed cannot be
realized due to the aerodynamic constraints.We note that col-
lision-avoidance may require a series of more complicated
operations, whichwewill leave for a future paper to report.

See Fig. 24a. We want to transform twenty objects from
the configuration of a rectangle at t0 to that of a circle at t1.
Consider that the dotted line segments between the objects
of the two configuration denote a 1-to-1 correspondence.
We want the objects move linearly through the 1-to-1 map-
ping. Fig. 24b and 24c show the Voronoi diagrams of the
objects in the two configurations. Fig. 25 shows some inter-
mediate states of the transformation at t0 < ta, tb, tc, and
td < t1. Fig. 26 shows the step-by-step of Fig. 25. Note that
the red and green objects in each red ellipse denote that
their speeds are modified to avoid anticipated collisions.

9 CONCLUSION

Dynamic Voronoi diagram is useful for understanding the
spatial properties of moving objects. Here, we propose a
topology-oriented event-increment algorithm and its data
structure for robust and efficient construction of a Voronoi
diagram of moving disks. The main idea is to find all
moments of the Voronoi diagram’s topology change over
time horizon and store the moments with related data in an
event history. By scanning the event history, a Voronoi

Fig. 24. (a) The tiny disks initially positioned on a square moves linearly
through the black dotted line segments to arrive at the circle. (b) and (c)
The Voronoi diagrams.

Fig. 25. Motion planning of 20 vehicles through collision-free paths. Each
dot represents a linearly moving vehicle. The scene transforms from the
initial scene (at t0) to the final scene (at t1) after going through interme-
diate scenes (ta, tb, tc, and tc). Each region bounded by a dotted vertical
separator corresponds to the space where the vehicles are located at
the corresponding moment. Hence, the horizontal axis corresponds to
both time t and the x-coordinate.

Fig. 26. Collision-free vehicle motion plan produced using a dynamic
Voronoi diagram. The pair of red and green dots in each red ellipse is
the vehicles that need to adjust speeds to avoid a predicted collision. (a)
Initial scene (t0 ¼ 0), (b), (c), (d), (e) intermediate scenes (ta, tb, tc, and
tc, resp.), (f) final scene (t1).
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diagram at a specific moment in time horizon can be quickly
constructed. The proposed algorithm was implemented and
tested. The dynamic Voronoi diagram will be a useful plat-
form for unmanned vehicle traffic management.
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