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Abstract: The recent increase in energy consumption worldwide has accelerated global warming.
Thus, developed countries are aiming to reduce energy consumption in cities and promote eco-
friendly policies. Buildings account for most of the energy used in a city. Therefore, it is necessary to
identify the factors that affect electrical energy consumption in urban buildings. In this study, we
use multiscale geographically weighted regression (MGWR) to analyze these urban characteristic
factors at the global and local scales in Seoul, Korea. It is found that population and household
characteristics, outdoor temperature, green and water areas, building area according to building
usage, and construction age significantly affect the electrical energy consumption of buildings. In
addition, the influences of these variables change with the region. Variables with different coefficients
by region are winter temperature, green and water area, and households with three or more persons.
The results confirm that even within a city, the influence of the aforementioned factors varies in terms
of spatial distribution and patterns. This study is significant as it carried out basic research for energy
consumption reduction in buildings by deriving related influencing factors.

Keywords: energy consumption; building energy; spatial autocorrelation; multiscale geographically
weighted regression (MGWR)

1. Introduction

Recently, global warming owing to an unprecedented increase in energy consumption
has emerged as a growing concern. According to predictions made using the Shared
Socioeconomic Pathways (SSP) scenario linked to socioeconomic activities in terms of
population, economy, land use, energy use, and carbon emissions, the global average
temperature will increase by 1.5 ◦C by 2040 compared to preindustrial levels, regardless of
the scenario [1]. Climate change is the reality we are faced with. Therefore, efforts have been
undertaken by various organizations and governments to develop carbon-neutral cities.
Given increasing urban population and the development of high-rise buildings, buildings
now use 2.5 times more electricity than they did in the past [2]. In addition, global building
energy consumption accounts for 40% of the total global energy consumption. Owing
to continuous urbanization, high-density, high-rise buildings are the primary residential
constructions in cities [3]. In light of this, many studies have been conducted to elucidate
the causes and consequences of global warming. The literature suggests that anthropogenic
activities have accelerated warming of the atmosphere, ocean, and land [4]. To cope with
climate change, the European Union (EU) has initiated various environmental policies
and proposed to reduce energy consumption and carbon emissions from human activities
by 40% by 2030 [5]. Similarly, various efforts have been undertaken to reduce the energy
consumption of buildings in cities for mitigating the environmental toll of urbanization [6].
In this context, various physical factors that affect the energy consumption of buildings
have been studied [7–9]. Furthermore, to reduce the energy consumption of cities, it is
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crucial to identify the primary causes and phenomena affecting the energy consumption of
buildings [10,11].

Several researchers have studied the electrical energy consumption of buildings [12–17].
In addition, numerous studies have reported that the electrical energy consumption of
buildings has a spatial correlation [18–21]. Similarly, in this study, the urban characteristics
of buildings in Seoul, Korea, and their correlation with the energy consumption of these
buildings were explored. Buildings in cities are spatially distributed, and buildings with
similar level characteristics appear in a dense form [22]. According to the first law of
geography, each building exhibits spatial autocorrelation owing to this distribution [23].
Therefore, the energy consumption of these buildings, too, must exhibit spatial autocorrela-
tion owing to the spatial pattern of buildings. Considering the aforementioned factors, in
this study, the distribution of spatial patterns and the local relationships of each factor are
analyzed using a geo-weighted model, which is a known spatial analysis technique.

Seoul is a large city with a population of 10 million. It is expected that the characteris-
tics of each region within Seoul vary because the city has a large urban and green areas,
and the Han River runs through the city from east to west. As such, Seoul has peculiar
spatial patterns of energy use, but the existing studies reflecting the urban characteristics of
Seoul are insufficient. Although many researchers have analyzed the energy consumption
of Seoul, they have not considered the influence of spatial patterns [24–28]. In addition,
these researchers considered only partial variables in the analysis. By contrast, variables
mentioned as significant or important are considered comprehensively in the present study.
Among the previous studies on Seoul’s energy consumption, the geographically weighted
regression (GWR) model was used to analyze energy consumption in only one study [29].
However, even in this study, carbon dioxide emissions were used to measure energy
consumption, which is an indirect method. In light of these points, we conduct a more
developed study based on spatial analysis and variables that considers the characteristics
of Seoul.

The objective of this study is to identify the variables that affect the electrical energy
consumption of buildings by performing spatial regression analysis. Moreover, we attempt
to determine the effects of significant variables on electrical energy consumption in urban
spaces. GWR is a representative model for performing spatial analysis. It can be used to
examine the influence of each regression formula considering the bandwidth corresponding
to the analysis unit. Thus, the GWR model can provide results that are relevant to the
objective of this study. Herein, the effect of diverse variables on electrical energy usage
is examined comprehensively by using the multiscale geographically weighted regres-
sion (MGWR) model, which can check the local part among models that consider spatial
influence. The MGWR model is based on the GWR model, and it sets the bandwidth
differently for each independent variable. The characteristic that the spatial distribution of
each variable is different is reflected in the analysis. Therefore, the MGWR model facilitates
more accurate local unit analysis. Consequently, this analysis method that considers space
is expected to yield significant results in this study. Finally, the analysis results of this study
can be used as basic building energy consumption data at the local level to achieve the
energy reduction goal set by the city in the future.

The remainder of this paper is organized as follows. Section 2 discusses the previ-
ous studies related to the use of electrical energy and spatial characteristics of buildings.
Section 3 describes the methodology used in the present study. The dependent and indepen-
dent variables constructed to provide spatial and temporal explanations and a description
of the analysis target are provided. In addition, the analysis methods used herein, namely
GWR and MGWR, are discussed. Section 4 describes the basic statistical results, as well
as the results of ordinary least squares (OLS) and MGWR analyses. Section 5 discusses
the policy implications of this study based on the results presented in Section 4. Section 6
describes the significance and limitations of this study (Figure 1).
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Figure 1. Flowchart of research methodology.

2. Literature Review

In this section, previous studies on the electrical energy consumption of buildings are
discussed. Several studies have analyzed the electrical energy consumption of buildings
based on their spatial characteristics and derived urban-characteristic factors that affect
electrical energy usage in buildings. The characteristic factors considered include physical,
socioeconomic, and environmental factors. Among them, studies on physical factors have
made the most significant contributions to the literature. In these studies, it has been
reported that various physical factors, such as the area, density, height, age of construction,
and building materials, affect the electrical energy consumption of buildings [7–14]. In
addition, more electrical energy is used for heating and cooling in high-density and high-
rise buildings owing to solar radiation and restricted airflow around such buildings [30–32].
Furthermore, as the total floor area of buildings increases, the amount of electrical energy
required increases. Several studies [33,34] have reported the use of glass windows and
insulation materials as critical factors that influence the power consumption of buildings.
It has been observed that older buildings have a weaker insulation effect. Therefore, they
require more energy for heating and cooling.

Income, real estate, tax, and the number of household members are the socioeconomic
factors that significantly influence energy consumption. In general, it is observed that
the more affluent a region, the higher is the consumption of electrical energy. Similarly,
income significantly influences energy consumption [35,36]. Studies on the effects of
socioeconomic factors on energy consumption have analyzed the energy consumption of
buildings based on their purpose [35–37]. It has been reported that the amount of energy
consumed by a building varies depending on the primary use of the building. Therefore,
the characteristics and electrical energy consumption patterns of residential, commercial,
and industrial buildings differ [12–14,17]. The electricity consumption of a household is
correlated to taxes, real estate prices [38], number of household members, and income [35].
In commercial buildings, factors such as population, income, building type, and amount
of heating and cooling influence the amount of energy consumed [39]. The amount of
electricity consumed based on building type can be ordered as follows: retail > office >
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restaurant > school. While the aforementioned order can differ somewhat depending on
building characteristics in each country, retail and business buildings consume the highest
amounts of energy.

Environmental factors, such as indoor and outdoor temperature, climate, wind speed,
humidity, and vegetation, have various effects on energy consumption. Among the en-
vironmental factors, temperature has the most significant effect on electrical energy con-
sumption [17,31,40–45]. In general, in a city with hot weather, owing to the strong heat
island effect, electricity consumption is related to cooling. Similarly, in a city with cold
weather, electricity consumption is related to heating. In general, owing to the heat island
phenomenon, more energy is used for cooling in summer, but less energy is consumed
for heating in winters [40,41]. Therefore, it can be concluded that temperature outside a
building plays a significant role in determining the amount of energy required to maintain
the internal temperature of the building. Many studies [35–47] have reported that vegeta-
tion is one of the factors that reduces the heat island effect in cities and, therefore, energy
consumption, by lowering the ambient temperature. Therefore, green spaces, such as urban
parks, vegetation zones, and water systems, need to be promoted in urban environments.

Our review of previous studies confirmed that various city-specific factors influence
the electrical energy consumption of buildings. Recent studies have suggested that to
reduce the energy consumption of buildings, it is necessary to check the energy consump-
tion patterns of multiple buildings [7,13]. Given that these energy consumption patterns
change according to the characteristics of cities, various other factors must be considered as
well [18,35–37]. Characteristics such as demographic factors indicate that humans consume
energy when engaging in social activities, which seem to follow a certain spatial pattern [35].
However, the spatial correlations of and changes in all variables are not equal. The unique
spatial patterns of each variable affect energy consumption in various manners. Therefore,
it is crucial to identify unique spatial patterns for identifying the factors affecting energy
consumption [18]. Although several studies have considered spatial autocorrelation in the
use of electrical energy, studies that comprehensively address urban characteristic factors
are lacking. In light of this, this study uses a more advanced model than the GWR model
and comprehensively accounts for the variables employed in the literature.

In sum up, our literature review confirmed the existence of various factors affecting
the energy consumption of buildings, such as demographic factors, socioeconomic factors,
environmental factors, and building characteristics. However, previous studies have
not considered the spatial autocorrelation that may occur when analyzing these factors
individually or in complex analyses. Therefore, in this study, the aforementioned factors
are analyzed comprehensively.

3. Methodology
3.1. Electric Power Consumption Data and Variables

In this study, the GWR model was used to identify the urban characteristic factors that
affected the electrical energy consumption of buildings in 424 administrative districts in
Seoul in 2020. The electrical energy consumption data of these buildings in Seoul were used
as the dependent variables. The values obtained by taking the natural logarithm of the
total amount of electrical energy used in the buildings in each administrative dong were
used as the dependent variables. The electrical energy consumption data of the buildings
in question was provided by the Korea Real Estate Agency. The independent variables
were composed based on the variables considered as the factors influencing the electrical
energy consumption in buildings in previous studies (Figure 2).
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Figure 2. Electrical energy consumption by administrative dong in Seoul in 2020.

First, a set of variables related to temperature, a factor that significantly affects the
energy consumption of buildings, was constructed. The average temperatures during
spring, summer, autumn, and winter were constructed as variables because the temper-
ature changes across these four seasons are distinct in Korea. In addition, because the
temperature in the city is affected by vegetation, the total area covered by vegetation
and water bodies was constructed as a variable. Next, as the population and household
variables, the living population and the numbers of single-person households, two-person
households, and three or-more-person households were selected as variables. Considering
that electricity consumption is generally high in regions with large active populations,
living population data that aggregate the active population in a region were used instead
of resident population data. Smartphone communication data from an area were used to
derive the living population data. According to previous studies, the energy consump-
tion per person increases as the number of household members decreases. In this study,
the variables were set by categorizing the households into one-, two-, and three-or-more-
person households based on the number of household members. Household income,
which has been considered a significant factor affecting electricity consumption in previous
studies [35,36], was considered in this study as well. In previous studies, the physical
characteristics of buildings and building types were considered significant factors affecting
electrical energy consumption. Therefore, in this study, the average number of floors;
average age of buildings in administrative dongs (the smallest administrative district in
Korea); and total floor areas of apartments, detached houses, commercial facilities, educa-
tion facilities, and business facilities were considered as building type variables. Given that
most of the industrial facilities in Seoul are light industries (Table 1), industrial facilities
were not considered as a separate variable.
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Table 1. Definition of variables.

Division Variable Description Source

Population and household
factors

Living population
Total population of administrative dong

estimated using public big data and
communication data

Seoul Open Data Plaza

One-person household Number of households with one member
Seoul Commercial
Analysis Service

Two-person household Number of households with two members
Three-or-more-person

household
Number of households with three or more

members

Socioeconomic factors Household income Average household income in administrative
dong

Building characteristic factors

Average number of floors Average number of floors in a building

EAIS
(Electronic Architectural

Administration
Information System)

Average building age Average number of years of a building
Apartment area Total floor area of an apartment

Detached house area Total floor area of a single house
Commercial building area Total floor area of a commercial building
Education building area Total floor area of an educational building

Office building area Total floor area of an official building

Environmental factors

Spring temperature Average air temperature in spring
Meteorological Agency in

Korea
Summer temperature Average air temperature in summer

Fall temperature Average air temperature in fall
Winter temperature Average air temperature in winter

Green and water areas Total area covered by vegetation and water
bodies within an administrative dong

EGIS
(Environmental

Geographic Information
Service)

3.2. Spatial Analysis
3.2.1. GWR

General regression analysis methods do not consider spatial influence relationships
and they describe only global relationships among variables [48]. GWR applies spatial
weights to the existing OLS model to facilitate local spatial analysis. Hence, spatial autocor-
relation and heterogeneity were considered through spatial weights. Spatial weights were
applied to the GWR model by using the coordinates (u, v) of each spatial analysis unit [49]
according to the following Equation (1).

yi =
m

∑
j=0

β j(ui, vi)xij + εi (1)

In the above equation, yi represents the electrical energy consumption of an admin-
istrative dong i, and β j is the coefficient of the j independent variables of administrative
dong i. The coordinates of each administrative dong ui, vi were applied to each space, as
expressed in (1). A regression equation was derived for as many administrative dongs as
possible, and the statistical analysis results of each target site were checked. In this study,
the geographic weight of the GWR model was applied to the kernel function. Subsequently,
a fixed kernel randomly selected by the authors and a statistically manipulated adaptive
kernel were used. Because GWR yields local regression results, the spatial correlations
and heterogeneity that conventional OLS cannot consider were accounted for. However,
the GWR model is vulnerable to multicollinearity [50]. Various GWR models have been
developed to mitigate this problem [51].

3.2.2. Multiscale GWR

The general GWR model is limited, in that it applies only one spatial scale. It considers
only a single fixed bandwidth value in the analysis model. Thus, the model is vulnerable to
multicollinearity. Additionally, each independent variable has global or local characteristics
depending on the characteristics of the overall data. Therefore, considering the characteris-
tics of the variables and the limitations of the GWR model, GWR analysis methods that
apply a bandwidth suitable for each variable have been developed. Among such methods,
mixed GWR separates global and local independent variables, and the multiscale GWR
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(MGWR) sets the local coefficient value that has the optimal Akaike Information Criterion
(AICc) value in the analysis model [52].

Thus, the best model is selected based on the AICc value. In this study, the MGWR
model was applied using a backfitting algorithm (Figure 3). In general, the initial local
coefficient of the MGWR model is based on the results of GWR analysis, and the subsequent
local coefficients are estimated through corrections. The local coefficients are estimated
repeatedly until they reach the desired levels, and the same method is repeated for all
independent variables. SOC-RSS (Residual Sum of Squares) (2) are used as the iterative
work termination criteria. The coefficient values are estimated using the proportionality
of the residual sum of squares (RSS) and the SOC-f method (3), which corrects the GWR
analysis results. Therefore, in this study, we used the SOC-f method. When the SOC-f value
was less than 0.0005, the next independent variable was set. The adaptive kernel function
was applied to each independent variable to select the bandwidth value. In addition,
the model in which AICc attained the minimum value was selected by combining the
bandwidth values [53].

SOCRSS =
|RSSnew − RSSold|

RSSnew
(2)

SOC f =

√√√√√√√∑
p
j=1

∑n
i=1

(
f new
ij − f old

ij

)2

n

∑n
i=1

(
∑

p
j=1 fij

new
)2 (3)

where SOC-RSS is the proportional change in the residual sum of squares, and SOC-f is the
change in the GWR smoother.
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4. Analysis Results
4.1. Descriptive Statistics

The reliability of the data constructed for analysis is confirmed through basic statistical
analysis. In addition, the basic statistics serve as a starting point for conducting spatial
regression analysis by displaying data distributions and patterns in this study. The descrip-
tive statistics of the independent variables used in the analysis and the electrical energy
consumption of buildings by administrative dong, the dependent variable in this study,
are as follows: first, the number of administrative dongs in Seoul, which is the analysis
target, is 424; the administrative dong is the unit of analysis in this study. Because the
existing distribution of electrical energy consumption does not exhibit a general linear
form, it is converted to a linear form by taking its natural logarithm. Among seasonal
temperatures, the temperatures in spring and autumn are similar, as can be observed
from the overall statistical values. By contrast, the summer and winter temperatures are
noticeably different. The temperature distribution used in this study reflects the seasonal
characteristics of Korea, which has four distinct seasons. Based on the results reported
in previous studies, we considered temperature a significant factor affecting the amount
of electrical energy required for heating and cooling in buildings. The average number
of floors in each administrative dong varied from 2 to 18. The average building age in
each dong ranged from 5 to 55 years. Among the variables pertaining to each building
type, the areas of detached houses and education and business facilities are zero in several
administrative dongs because these dongs house densely populated buildings of the same
type. Household income levels ranged from 1836 USD per month to 5714 USD per month,
and the average household income was 2849 USD per month (Table 2).

Table 2. Descriptive statistics of variables.

Division Variable Minimum Maximum Mean Standard Dev. Variance VIF

Dependent Log of building
electrical energy consumption 14.07 22.71 18.11 0.97 0.94 -

Independent

Living population 57106.00 1253928.00 298939.89 142864.43 20410244485.88 3.593
One-person household 115.00 16971.00 4192.66 2457.34 6038503.79 2.968
Two-person household 20.00 6152.00 2187.68 881.79 777547.92 2.318

Three-or-more-person household 29.00 11217.00 3875.65 1848.23 3415942.81 2.298
Household income 2230710.00 6945812.00 3460789.90 1019302.25 1038977085862.02 2.005

Average number of floors 2.00 18.00 4.11 2.08 4.33 2.170
Average building age 5.00 55.00 28.08 6.20 38.45 1.771

Apartment area 527.00 28482642.00 803712.85 1707951.48 2917098242892.06 1.081
Detached house area 0.00 560122.00 138281.46 104137.33 10844584450.76 2.384

Commercial building area 2063.00 1340807.00 161112.39 148799.38 22141254757.75 2.312
Education building area 0.00 1766866.67 83258.86 156400.18 24461015913.75 1.193

Office building area 0.00 4472947.89 156292.92 404878.90 163926920148.92 2.057
Spring temperature 13.58 21.27 17.98 1.38 1.91 4.701

Summer temperature 19.56 28.50 24.08 1.59 2.53 1.365
Fall temperature 14.15 19.92 17.40 1.06 1.12 4.801

Winter temperature −1.56 2.75 1.24 0.67 0.45 1.451
Green cover and water areas 548.24 3834250.60 126512.09 314705.56 99039587845.58 1.220

4.2. Evaluation of Model

According to the literature [18–21], there exists a spatial effect on the consumption of
electrical energy in buildings. Therefore, a GWR analysis considering spatial autocorre-
lation was conducted. Before spatial regression analysis, the dependent variable, that is,
the electrical energy consumption of each administrative dong, was examined to identify
spatial autocorrelations. Moran’s index was calculated by performing Moran’s I analysis
of ArcGIS to examine global spatial autocorrelations and spatial distribution patterns. A
Moran’s index value of 0.1153, which represents a significant level, was obtained in the
analysis. This indicated a positive spatial autocorrelation. Furthermore, the Z-Score value
indicated that the degree of clustering was 6.249, meaning that the spatial pattern was
extremely clustered (Table 3). Moran’s Index was calculated using the MGWR residual
to determine whether the spatial autocorrelation was controlled by the MGWR model.
The value of Moran’s Index was −0.0278, which was lower than the Moran’s Index value
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obtained using the OLS model. In addition, the probability for spatial autocorrelation of
the MGWR model was not significant, meaning that spatial autocorrelation was controlled.

Table 3. Analysis of spatial autocorrelation.

Criteria OLS MGWR

Moran’s Index 0.1153 −0.0278
Expected Index −0.0023 −0.0023

Variance 0.0003 0.0003
Z-score 6.2490 −1.3575
p-value 0.000 0 0.17461

Subsequently, the fits of three models were compared, namely, the global OLS, spatial
GWR, and MGWR models, considering various criteria. In this study, the residual sum of
squares (RSS), AIC, AICc, R2, and adjusted R2 were considered to identify the most suitable
model. The RSS, AIC, and AICc values decreased gradually in the order of OLS, GWR,
and MGWR. This indicates that MGWR had the best model fit. In addition, the R2 of the
OLS model was 0.555. However, the R2 of the GWR model was 0.661, R2 of the MGWR
model was 0.74, and adjusted R2 of the MGWR model was 0.685. Thus, it can be concluded
that the MGWR model had the highest explanatory power. Consequently, iterative work
was performed to determine the optimal model fit and bandwidth of the MGWR model.
Through iteration, the model with the lowest AICc was selected as the final model. In this
study, 36 iterations were performed to determine the final model (Table 4).

Table 4. Model fit summary of OLS, GWR, and MGWR models.

Criteria OLS GWR MGWR

RSS 186.38 143.92 109.671
AIC 894.76 863.36 784.07
AICc 899.06 882. 88 818.87

R2 0.5 55 0.661 0.74 0
Adj. R2 0.536 0.607 0.685

No. of iteration - - 36

In general GWR analysis, the adjusted R2 value indicates the explanatory power of the
entire global model, and the local R2 value representing each variable locally is presented
separately. In this study, the adjusted R2 value of the MGWR analysis model was 0.685. The
region with the lowest local R2 value of 0.63 was located toward the northeast and southeast
of Seoul. The region with the highest explanatory power was the southwestern region.
Note that the closer it is to the region, the higher is its explanatory power. The region with
the strongest explanatory power had an R2 value of 0.78, indicating the existence of regions
with explanatory powers higher than 0.685, which was the overall explanatory power of
the model (Figure 4).

4.3. Result of Spatial Analysis

In this study, the bandwidth value applied to each independent variable in the MGWR
model differed from that in the GWR model. According to the spatial distribution of the
data of each variable, iterative work was performed using an appropriate bandwidth value.
As mentioned above, a total of 36 operations were performed. Variables representing 423
of the bandwidth values that appeared had the characteristics of global variables rather
than local variables. Other variables included variables with strong local characteristics,
such as summer temperature, winter temperature, households with three or more people,
green and water-covered areas, average building age, average apartment area, average
educational facility area, and average business facility area (Table 5).
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Table 5. Optimal bandwidth of each parameter in GWR and MGWR analyses.

Division
Bandwidth

Variable GWR Multiscale GWR

Intercept Intercept 264 58

Population and
household factors

Living population 264 423
One-person household 264 423
Two-person household 264 423

Three-or-more-person household 264 103
Socioeconomic factors Household income 264 423

Building
characteristic factors

Average number of floors 264 423
Average building age 264 418

Apartment area 264 314
Detached house area 264 423

Commercial building area 264 423
Education building area 264 145

Office building area 264 334

Environmental factors

Spring temperature 264 423
Summer temperature 264 235

Fall temperature 264 423
Winter temperature 264 78

Green and water areas 264 109

The analysis results obtained using the global OLS model and the MGWR model
were compared and reviewed. Firstly, the analysis results were reviewed centering on the
variables significantly derived from OLS. The summer temperature exhibited a significant
influence at 0.111, and the winter temperature exhibited a significant influence at−0.106. In
the MGWR analysis, the average values of the local coefficients of these two variables had
a positive influence. However, in terms of the minimum, median, and maximum values of
winter temperature, there were regions with local negative and positive effects. In the OLS
analysis results, living population had a significant positive influence, and in the MGWR
results, it also had a positive influence globally. This finding is consistent with the results
of previous studies, which indicated that the larger the population in an area, the greater
the electrical energy consumption. Next, green and water areas had a significant positive
influence. In general, green and water areas play a significant role in alleviating the urban
heat island phenomenon. Furthermore, they have a negative influence on electrical energy
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consumption for cooling. However, note that green and water areas alone do not reduce
the heat island phenomenon. The heat island phenomenon is additionally affected by the
permeability, density, and surrounding environment of an area [42]. However, the OLS
results obtained in this study showed their positive effect, which is contrary to the results
obtained in a previous study. This can be attributed to the factors other than green and
water areas that significantly reduced electrical energy consumption.

In terms of building area, significant positive results were observed for apartments,
education buildings, and business buildings. According to the OLS and MGWR analysis
results, the building areas of apartments and business buildings had a global positive effect.
Regarding the area of educational buildings, the OLS result was positive, but the MGWR
results found regions with a negative influence. In addition, both the OLS and MGWR
analyses showed the significant positive influence of household income (Table 6).

Table 6. Factors affecting the consumption of electrical energy in buildings: OLS and MGWR
analysis results.

Division Variable OLS
Multiscale GWR

Mean Standard Deviation Min Median Max

- Intercept −0.023 0.161 −0.394 0.001 0.342

Population and
household

factors

Living population. 0.388 *** 0.411 0.005 0.399 0.411 0.421
One-person household 0.036 0.033 0.004 0.024 0.033 0.042
Two-person household −0.023 −0.027 0.013 −0.054 −0.022 −0.009
Three-or-more-person

household −0.011 0.005 0.08 −0.158 −0.003 0.204

Socioeconomic
factors Household income 0.156 *** 0.215 0.001 0.212 0.216 0.217

Building
characteristic

factors

Average number of floors 0.028 −0.024 0.01 −0.044 −0.025 0.002
Average building age 0.030 0.042 0.004 0.034 0.041 0.052

Apartment area 0.107 *** 0.1 0.045 0.044 0.08 0.169
Detached house area −0.055 −0.077 0.009 −0.086 −0.082 −0.053
Commercial building

area 0.066 0.089 0.004 0.08 0.088 0.102

Education building area 0.215 *** 0.199 0.104 −0.015 0.2 0.404
Office building area 0.094 * 0.14 0.02 0.098 0.144 0.169

Environmental
factors

Spring Temperature 0.031 0.091 0.007 0.079 0.089 0.108
Summer Temperature 0.111 *** 0.071 0.071 −0.043 0.054 0.225

Fall Temperature 0.015 0.01 0.014 −0.006 0.003 0.039
Winter Temperature −0.106 *** −0.101 0.119 −0.481 −0.086 0.163

Green and water areas 0.076 * 0.103 0.142 −0.105 0.085 0.363

* p < 0.1, *** p < 0.01.

The local results of the variables that appear significantly in the MGWR analysis results
are as follows. Summer temperature had significant positive effects in most of the regions.
These results were similar to those of the related studies in which MGWR was used, and
the higher the summer temperature, the stronger the influence on energy consumption [54].
Electrical energy consumption due to cooling is high in summer. Therefore, it was identified
to have a positive effect across the city [45]. The bandwidth used for summer temperature
was 235. Therefore, summer temperature was shown to be a variable that influenced a large
area of the city. This indicates that the summer temperature across administrative dongs in
Seoul was similarly high overall. In addition, it was observed that the closer a region was to
Gangnam, the more significant the effect of summer temperature on energy consumption
in that region. Notably, this result confirmed that the influence of summer temperature was
weaker in regions closer to Mt. Bukhan, which is in the northern part of Seoul. This reflects
the spatial characteristics of a region with small building areas and large mountainous
areas (Figure 5a). Winter temperature also had significant positive effects. However, it
had a negative influence on the CBD areas, Gangnam, and Jongro. The bandwidth used
for winter temperature was 78. Thus, winter temperature had a smaller bandwidth than
summer temperature, indicating a regional temperature difference, and we can conclude
that the energy used for heating increases as the temperature outside buildings in a region
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decreases (Figure 5b). These results suggest a relationship between seasonal temperature
and energy usage, and it was confirmed that energy usage differs depending on the region
owing to the temperature differences stemming from the heat island effect or density [31].
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Previous studies have reported that green and water areas alleviate the urban heat
island phenomenon and reduce electrical energy consumption by maintaining the tempera-
ture in the city at a comfortable level [42]. However, in contrast to the results of previous
studies, the analysis results of this study confirmed that the average coefficient value had a
positive influence on electric energy consumption. A related study using MGWR confirmed
that all variables related to green areas had positive effects, unlike the analysis results of
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this study [54]. By contrast, we assumed that green areas may have local effects depending
on the region and that there may be differences in influence depending on the area, as
mentioned in the Introduction. In addition, by checking the local coefficient of green and
water areas, it can be inferred that the green and water areas had a weak negative influence
on Seoul overall. However, strong positive effects were observed in the Gangnam and
Gangseo areas (Figure 5c). The bandwidth of the green and water area variable was 109.
Thus, the effect of green and water areas in Seoul is more local than city-wide. Therefore,
it can be concluded that a strong positive influence was observed for a high average lo-
cal coefficient value. This result can be attributed to the high building density and high
electrical energy consumption, despite the large-scale green and water areas. The Gimpo
Airport (8.63 km2) in Gangseo consumes the highest amount of electrical energy among
all of the administrative dongs in Seoul. In the Jamsil district, which corresponds to the
Songpa area, there are large green areas, such as Seokchon Lake and Olympic Park. In
addition, many high-rise buildings, such as the Jamsil Lotte Tower and Lotte World, are
located in this area. However, Eunpyeong and Gwanak, the regions in which Mt. Bukhan
and Mt. Gwanak are located, respectively, and Yeongdeungpo and Yongsan, which are
close to Mt. Gwanak and the Han River, were found to be negatively affected. We assumed
that the green and water areas in these regions reduced the use of electrical energy by
maintaining the temperature at a relatively comfortable level. These results show that
superficial green and water areas alone cannot significantly affect energy reduction, as
mentioned in previous studies (Figure 6).
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In the case of household income, significant positive effects were confirmed in all
regions except Gangseo. A study conducted using GWR yielded the same results as the
present study, with a positive impact across the city [55]. This result is consistent with the
social belief that high-income people use more electrical energy than low-income people.
This was confirmed by the fact that a greater amount of electrical energy was consumed in
Gangdong and Gangnam in 2020, where the average household income is relatively high,
compared to that in Gangseo, where the average household income is relatively low. In a
related study conducted using MGWR, energy consumption increased as income increased
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across the city. Moreover, as the interregional income difference increased, the influence
increased, as reported in a previous study [56] (Figure 5d).

Living population had no significant influence on the Gangbuk region around Mt.
Bukhan. However, the closer a region was to Gangnam and Gangseo, the more significant
the positive influence. This is consistent with the results of previous studies, in which it
was demonstrated that the electrical energy consumption of buildings increases in areas
with a high density of buildings and more floating populations than that in mountainous
terrain [3,4]. In another study conducted using MGWR, the effect of population differed
depending on the region, but it was found to have a positive effect overall. This is consistent
with the general conclusion that the higher the population density, the higher is the energy
consumption [57]. In addition, the analysis results indicated that the impact of living
population on Seoul is large (Figure 5e). In addition, various local factors affect households
with three or more persons in Seoul. The bandwidth used for households with three or
more persons was 103. In other studies conducted using MGWR, the influence of regional
differences was different from that in the present study. Previous studies have mentioned
households as an important variable. Moreover, the previous studies reported consistent
results throughout the city with no regional differences [54,58]. Unlike previous studies,
we identified differences in influence due to the regional characteristics mentioned in the
introduction. Living population had a positive influence in the Gangnam, Yeouido, Mapo,
and Yongsan regions. Thus, it can be inferred that in these areas, the higher the number
of households with three or more persons, the higher the electricity consumption. This
was validated by the fact that these regions have households with relatively high income
levels in Seoul. Therefore, they possibly use a large amount of electrical energy. By contrast,
a negative influence was observed in Gangseo, Jungnang, Gwanak, Gangdong, and the
entire city, meaning that the higher the number of households with three or more people,
the lower the electrical energy consumption. These results indicate that as the number of
household members increases, the amount of energy consumed by one person per unit area
in a building decreases. Moreover, previous studies have demonstrated that an increase
in the number of household members leads to a decrease in energy consumption because
it increases the population density [38]. Thus, it can be concluded that in general, an
increase in the number of household members leads to a reduction in energy consumption
(Figure 5f).

Among building types, apartment buildings had a significant positive influence in
the Gangdong and Gangbuk regions, but no significant effect in the Gangseo region. In
the case of apartment buildings, given that multiple households reside in one building,
the amount of electrical energy used by the building is higher than that used in other
types of housing. This claim was validated by the results of the present study (Figure 7a).
By contrast, detached houses had a negative influence. Unlike apartments, a detached
house is often inhabited by a single household. Hence, compared to an entire apartment
building, the amount of energy consumed is lower because the total floor area of a detached
house is lower than that of an apartment building (Figure 7b). Educational buildings had a
significant positive influence, except in the Gangnam, Eunpyeong, and Mapo regions. The
bandwidth used for educational buildings was 145. In the Gwanak region, where Seoul
National University is located, educational buildings had the strongest influence. This
indicates that universities consume a large amount of electrical energy (Figure 7c). Among
educational buildings, the amount of energy used by each school level was different, but
university buildings used large amounts of energy [59]. Furthermore, it was found that
building age had a significant positive effect. OLS analysis did not yield any significance,
but MGWR analysis yielded some significance in the city center, which houses relatively
old buildings. Thus, as reported in a previous study [60], the results of this study confirmed
that building age affects the insulation and energy consumption of buildings. Therefore,
old buildings should be repaired to reduce electrical energy consumption and increase
energy efficiency (Figure 7d).
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5. Discussions

In this study, we conducted an MGWR analysis to identify the factors affecting elec-
trical energy consumption, especially the factors that were not detected in OLS analysis.
The analysis results confirmed that the influence of the factors considered here may differ
across regions. Therefore, we propose several suggestions for reducing the electrical energy
consumption of buildings based on the analysis results.

We found that the outdoor temperature during winter and summer has a significant
effect on electrical energy consumption. In summer, electricity consumption increases
throughout the city because of an increase in cooling demand. This is consistent with the
results of previous studies [10,38,54]. By contrast, several regions consumed more electrical
energy during winter to maintain a relatively comfortable temperature in the building.
This result confirmed the existence of regional differences in electrical energy consumption
used for heating in winter, which did not appear in other studies. The area with the
highest electrical energy consumption had a high density of buildings. It was found that
this area used plenty of electrical energy for heating and cooling to maintain comfortable
temperatures inside buildings. Thus, the application of technology that maintains indoor
temperatures can reduce the electrical energy required for heating and cooling in winter
and summer, respectively.

Furthermore, the OLS analysis results indicated that the green and water areas have a
positive influence. However, the MGWR results show that the degree of influence differs
across regions. This indicates that green and water areas do not necessarily affect the
electrical energy consumption within a city. However, in some regions, green and water
areas can somewhat influence electrical energy consumption. Even in the areas with plenty
of green areas and water bodies, we found areas with high temperatures depending on
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solar orientation. Likewise, even in areas with a high density of green areas, some patches
may not be significantly influenced by green cover. Therefore, a novel method is required
for assessing the relationship between energy consumption and the density and degree of
influence of green and water areas.

In the case of the influence of population, the analysis results showed that the higher
the absolute population, the higher the energy consumption; this result is consistent
with the existing perception that a compact city is more suitable for reducing energy
consumption.

Studies have reported that older buildings consume more electrical energy, which is
consistent with our analysis results. Therefore, the insulation effect of old buildings should
be improved through repair and reconstruction. The Jongro region of Seoul has many aging
buildings, and their energy efficiency is low. Hence, active redevelopment and repair work
is required in Seoul to increase the electrical energy efficiency of these buildings.

6. Conclusions

In this study, characteristic urban factors affecting the energy consumption of buildings
were analyzed across the administrative districts in Seoul in 2020. The local influences of
variables were determined using the MGWR model, a local spatial regression model. This
model was used to consider the spatial autocorrelations of the electrical energy consumption
of buildings by applying a backfitting algorithm to the GWR model. Consequently, the
resulting model confirmed that the influences of the factors affecting electrical energy usage
varies by region.

Moreover, the analysis results confirmed that summer and winter temperatures affect
the electrical energy consumption of buildings. In addition, they confirmed that in some
regions, green and water areas reduce electrical energy consumption by alleviating the heat
island phenomenon, as reported in previous studies. However, in regions with large-scale
facilities or buildings, the influence of large green areas or water areas was not significant.
Hence, the relationship between green and water areas and electrical energy consumption
warrants further investigation. In the case of population and households, the analysis
results showed that the number of household members had a significant effect on the use
of electrical energy. An increase in the number of household members reduced electrical
energy consumption. In addition, electricity consumption varied according to building
type. Furthermore, it was confirmed that the influence of building type on electrical energy
consumption differed across regions.

Variables with different influences across regions were identified using the MGWR
model. The variables with differing influence across regions were winter temperature,
green and water areas, and households with three or more members. This result did not
appear in previous studies, and it could not be confirmed by the results of OLS analysis.
Therefore, it is reasonable to use the MGWR model, which can reflect the spatial distribution
characteristics of variables.

The present work is significant as a fundamental study for reducing the energy con-
sumption of buildings by analyzing various factors that affect their electrical energy con-
sumption. However, this study has a few limitations. First, this case study targeted Seoul,
a city with an annual gross regional domestic product (GRDP) of 360 billion US dollars and
one of the most active global economic centers. Moreover, Seoul is a densely populated
metropolis with approximately 10 million inhabitants. In terms of natural environment,
the city has large natural green areas, and Han River runs from east to west across the
city. In addition, the built-up areas house numerous high-rise buildings. It is difficult to
generalize the results of this study to all cities in the world because of the peculiar spatial
characteristics of Seoul. Second, we did not consider indoor temperature, unlike previous
studies, owing to data limitations. Because approximately 82% of the buildings in Seoul are
made of reinforced concrete, we did not consider building materials as a variable. These
are different from other previous studies in this study. Therefore, subsequent studies will
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be able to generate superior results by adopting a variety of variables depending on their
unique situations.
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