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1. Introduction

Recently, “carbon neutrality”, the state of net-zero carbon dioxide emission, has been
one of the most frequently used terms in the sustainable development of environmental
and energy industries. Indeed, many efforts have been made to advance novel technologies
for resource recovery, material synthesis, and energy saving from various municipal and in-
dustrial wastes [1–9]. In particular, the development of energy-efficient water technologies
and resource recovery from wastewater has become a non-trivial problem as (i) almost 4%
of the global non-CO2 greenhouse gases (GHGs) are emitted from wastewater treatment
plants (WWTPs) [10] and (ii) wastewater contains various organic/inorganic resources
and even heat energy [11]. Therefore, many efforts have been put into improving energy
self-sufficiency in sustainable WWTPs and developing sustainable processes for the recov-
ery of many useful resources from WWTPs such as chemicals, nutrients, energy, and even
water itself.

In the aspect of theoretical studies, Borzooei et al., suggested that the introduction of
an advanced thickening stage and sludge pre-treatment can positively influence the energy-
saving and GHGs emission from WWTPs [12]. Hao et al. investigated the environmental
impact of resource recovery from WWPTs by life cycle assessment (LCA), which concluded
that (i) water reuse via effluent recycling is not sufficient for net-zero impact, and (ii) thermal
energy recovery can play a significant role on environmental impact while phosphorus
recovery limited the contribution [13]. Another LCA study concluded that (i) ozonation has
the lowest life cycle costs compared to other options such as photo-Fenton and granular
activated carbon and (ii) pyrolysis has the best profit compared to those of anaerobic
digestion, wet air oxidation, and composting [14].

In the aspect of experimental studies, a pyrolysis product, known as biochar, from
various organic wastes in agricultural activities and sludge of WWTPs, has been also
considered as a promising up-cycled material for the treatment of wastewater. In particular,
the efficient removal of organic and heavy-metal contaminants [15,16] can reduce the
GHGs emission from agricultural and environmental industries and produce clean water
economically. Microbial fuel cells (MFCs) have also been extensively studied in the field of
wastewater treatment as they can reduce the sludge disposal cost (accounting for almost
50% cost of WWTPs) [17]. Moreover, the additional possibility not only for the production
of bioelectricity, but also the recovery of high-value products such as hydrogen (H2),
methane (CH4), and hydrogen peroxide (H2O2), has brought more attention to the WWTPs
related researchers [18].

As discussed above, the sustainable development of WWTPs has become a hot topic
worldwide. Thus, this Special Issue aimed to collect the state-of-the-art for the advances
in WWTPs fields. Indeed, the papers published in this Special Issue cover a broad range
of important issues; biochar application for wastewater treatment [19–21], LCA and cost
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optimization studies of WWTPs [22–24], enhanced anaerobic digestion [25], MFC of swine
wastewater [26,27], and removal of radioactive and pharmaceutical pollutants by chemical
processes [28,29]. In the next section, we provide a brief review of the papers published,
roughly classifying them according to the thematic areas mentioned above.

2. Short Review of the Contributions in This Issue

Many papers can be grouped under the broad heading of Science and Technology.
The first topic is the recycling of carbon wastes for wastewater treatment. Many novel

biochars were introduced in this Special Issue for the wastewater treatment contaminated
by various aqueous pollutants. Kim et al. synthesized magnetic biochar from steel slag
waste and pine sawdust (MSSB) for efficient NH4-N removal in an aqueous phase. They
found that NH4-N was adsorbed on the MSSB surface via co-precipitation of Mg(NH4)PO4
from magnesium and phosphate in biochar suspension [21]. The experimental results
showed that the adsorption capacities of NH4-N can be influenced by many parameters
such as NH4-N concentration, the ratio of steel slag to pine sawdust, and pyrolysis temper-
ature. Another biochar was prepared by Lee et al. by using ground coffee residue with
NaOH activation (GCRB-N). The BET area of GCRB-N was almost 100 times higher than
that of GCRB without NaOH treatment [20], which resulted in the enhanced removal of
three herbicides (i.e., Alachlor, Diuron, and Simazine) significantly. Zhao et al. succeeded
the synthesis of optimized biochar derived from apple tree branches at different pyrolysis
temperatures [19]. The optimized biochar prepared at 500 ◦C showed the efficient sorption
capacity toward aqueous Cr(II) and Zn(II), which was proceeded via surface precipitation,
ion exchange, and cation–pi interaction.

The second topic is the optimization of energy saving and cost-effectiveness in WWTP.
Szulc et al. showed the overall environmental impact of a WWTP in Poland by analyz-
ing the LCA from the database in 2019 [22]. They concluded that energy components
(e.g., WWTP process demand and electricity production) were the key factors to determine
the sum of environmental impact. Karolinczak et al. investigated the cost analysis of the
septage pre-treatment in subsurface vertical flow constructed wetland (SS-VF) prior to
the municipal treatment plant [23]. The high cost-effectiveness of septage pre-treatment
process in SS-VF (particularly in the rural area) compared to the conventional WWTP
resulted from the low construction and operation costs coming from the reduction in
the electricity consumption in biological section operation and lower cost of sludge man-
agement. Similarly, Gretzschel et al. concluded that implementing electrolysis operated
with regenerative energy in combination with micropollutant removal using ozonation
and activated carbon filter is a reasonable and sustainable option for climate and water
protection [24]. Damtie et al. revealed that co-digestion of microalgae and primary sludge
in thermophilic aerobic conditions can increase the methane yield up to 36%, while the
anaerobic pretreatment did not show any synergistic effect on the co-digestion process [25].
Therefore, the authors suggested the careful optimization of operating conditions during
the production of methane from biological pretreatment of co-digestion.

The third topic is the MFC study. Ni et al. investigated the microbial community of an-
odic biofilm during the microbial fuel cells (MFCs) operation with swine wastewater [26,27].
They prepared three different modified anode carbon clothes and concluded that acid ther-
mal modification can increase the power density up to 350% rather than that without
modification [26]. The modified anode also showed a significant impact on the micro-
bial community, which was beneficial to improve the performance of MFCs in this study.
Furthermore, they found that different concentrations of swine wastewater resulted in
changes in the output voltage of MFC and COD removal rate, and microbial community
diversity [27].

The last topic is the efficient chemical treatments for radioactive pollutant (i.e., cesium,
Cs) and pharmaceutical contaminated wastewaters. Kim et al., demonstrated that the
desorbed Cs from hydrobiotite could be treated by a sequential treatment method, i.e.,
pre-chemical precipitation (addition of Ca(OH)2) of non-radioactive cations and heavy
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metals, then post-Cs removal by sodium tetraphenylborate [29]. Lee et al. showed the
enhanced oxidation of 17α-ethinylestradiol, ibuprofen, and atenolol by microbubble ozona-
tion process [28]. This was due to the higher specific area of ozone microbubbles than that
of millibubbles, which could improve the mass transfer at the gas–water interface.

3. Conclusions

This Special Issue addresses the state-of-the-art findings in the field of WWTPs for
sustainable development of WWTPs and implementation of carbon-neutrality. In partic-
ular, the contributions include the development of efficient and eco-friendly materials,
assessment of cost and energy, energy-saving anaerobic digestion, and efficient chemical
treatment. These papers can advance our fundamental knowledge of efficient management
and operation of WWTPs and provide new insight to step forward for the accomplishment
of carbon-neutrality of WWTPs in near future.
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