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Abstract: A single M13 bacteriophage color sensor was previously utilized for discriminating the
geographical origins of agricultural products (garlic, onion, and perilla). The resulting discrimination
accuracy was acceptable, ranging from 88.6% to 94.0%. To improve the accuracy further, the use of
three separate M13 bacteriophage color sensors containing different amino acid residues providing
unique individual color changes (Wild sensor: glutamic acid (E)-glycine (G)-aspartic acid (D), WHW
sensor: tryptophan (W)-histidine (H)-tryptophan (W), 4E sensor: four repeating glutamic acids
(E)) was proposed. This study was driven by the possibility of enhancing sample discrimination
by combining mutually characteristic and complimentary RGB signals obtained from each color
sensor, which resulted from dissimilar interactions of sample odors with the employed color sensors.
When each color sensor was used individually, the discrimination accuracy based on support vector
machine (SVM) ranged from 91.8–94.0%, 88.6–90.3%, and 89.8–92.1% for garlic, onion, and perilla
samples, respectively. Accuracy improved to 98.0%, 97.5%, and 97.1%, respectively, by integrating
all of the RGB signals acquired from the three color sensors. Therefore, the proposed strategy was
effective for improving sample discriminability. To further examine the dissimilar responses of each
color sensor to odor molecules, typical odor components in the samples (allyl disulfide, allyl methyl
disulfide, and perillaldehyde) were measured using each color sensor, and differences in RGB signals
were analyzed.

Keywords: bacteriophage-based structural color sensor; multiple color sensors; discrimination of
geographical origin; garlic; onion; perilla

1. Introduction

Correct identification of the geographical origin of agricultural products is an essential
step to fair evaluation of their commercial value. Separation methods, such as LC-MS [1–3],
which are able to analyze the components of each sample, are typically adopted for this
purpose. Due to the rapid increase in international trading of agricultural products, large
numbers of samples originating from different countries must be analyzed. Therefore, a
simple and rapid screening method enabling on-site measurement is needed. To address
this demand, our research group previously demonstrated the M13 bacteriophage-based
color sensor (hereinafter, simply referred to as color sensor), which exhibits structural color
change on interaction with gaseous molecules to discriminate the geographical origins
of three different agricultural products (garlic, onion, and perilla) [4]. The swelling of
self-assembled phages on the color sensor induced by interaction of its amino acid residues
with odor components changes its structural color, and the dissimilar composition of odors
in each sample enabled discrimination of geographical origin. Although the feasibility
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of this methodology was previously found, further improvement of accuracy such as by
enhancing the discriminability of odor components was necessary to facilitate practical use
of the color sensor.

Since the physical interaction of target odors with amino acids on the sensor’s sur-
face is the source of the color change, the phage-based color sensor’s responses are not
highly chemical structure-specific. Thus, it is difficult to differentiate components with
similar molecular structures, and the selectivity of a given color sensor is not high. To
overcome this limitation, a strategy utilizing multiple color sensors, wherein the surface of
each color sensor possesses different amino acid residues with diverse functional groups
and integration of these complimentary RGB signals for discriminant analysis, was ex-
plored in this study. With this approach, individual components in an odor are more
discriminable since the interactions of a component with each color sensor are dissimilar,
and subsequent color changes are characteristic. Combined color changes could be more
component-descriptive and advantageous for improving the discrimination of samples. In
parallel, the introduction of different amino acid residues into the M13 bacteriophage can
be readily accomplishable by genetic engineering [5–10].

To examine the accuracy of the proposed approach, three multiple bacteriophage-
based color sensors containing different amino acid residues (Wild sensor: glutamic acid
(E)-glycine (G)-aspartic acid (D), WHW sensor: tryptophan (W)-histidine (H)-tryptophan
(W), 4E sensor: four repeating glutamic acids (E)) were prepared. The Wild sensor contained
hydrophilic (glutamic and aspartic acid) and hydrophobic (glycine) components, and the
WHW sensor [11] consisted of hydrophilic histidine and an amphipathic tryptophan, which
contains an indole ring. The surface of the 4E sensor is the most hydrophilic due to its four
consecutive glutamic acid units [12,13]. Therefore, the surface characteristics of the color
sensors differed. RGB signals of the odors from three agricultural products (garlic, onion,
and perilla) were acquired using the color sensors, and the color changes that occurred
with each color sensor were compared. Next, RGB signals from each color sensor were
used separately to discriminate the geographical origin of the samples using support vector
machine (SVM) [14–16]. In addition, RGB signals obtained from each color sensor were
combined, and these integrated RGB data were used for discrimination. Discrimination
accuracy using single and multiple color sensors was compared. In addition, for detailed
investigation of color sensor response to odor-generating components, odor molecules (allyl
disulfide, allyl methyl disulfide, and perillaldehyde) common to the employed agricultural
samples were individually measured, and their RGB signals were analyzed in relation to
their molecular structure and the respective amino acid residues on the sensors.

2. Materials and Methods
2.1. Sample Preparation and Measurement of Samples Using Color Sensors

The same garlic, onion, and perilla samples used in our previous publication [4]
were employed in this study. For each product, a total of 40 samples (20 domestic and
20 imported samples) harvested in various regions were collected to incorporate a wide
compositional variation in the sample set, as previously described. Initially, M13 bacte-
riophages were prepared in a Tris-buffered saline solution and allowed to self-assemble
on an Au-coated Si wafer via a pulling technique [9,17,18]. The concentration of M13
bacteriophages in the buffer solution was 5 mg/mL. Three sections (referred to as sections
I, II, and III) of self-assembled bacteriophages were produced on the sensor surface by
varying the pulling speed. Figure 1 shows the Wild, WHW, and 4E sensors and sections I,
II, and III in each sensor. The colors on the sensor are from the reflection of white LED light.
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Figure 1. Wild, WHW, and 4E sensors containing the amino acid residues of glutamic acid (E)-glycine
(G)-aspartic acid (D), tryptophan (W)-histidine (H)-tryptophan (W), and four repeating glutamic
acids (E), respectively.

A razor-cut 1.0-g piece of garlic, a 1.0-g piece of onion, and 0.2 g of perilla seeds were
prepared for color sensor analysis. Each prepared sample was introduced into a 500-mL
sealed plastic chamber containing color sensors for measurement. After loading a piece of
sample on a metal heating block, the temperature was increased from 30 ◦C to 60 ◦C in 40 s
(0.75 ◦C/s) and was maintained at 60 ◦C for 252 s. Then, the temperature was again elevated
from 60 ◦C to 90 ◦C over 40 s and was kept at 90 ◦C for 252 s. During the temperature
elevation, RGB signals were acquired on sections I, II, and III of the color sensor using a
CCD microscope camera (Celestron LCC., Torrance, CA, USA). Figure 2 shows the overall
experimental setup including the closed measurement chamber embedded with a CCD
camera, temperature control unit, and data acquisition/processing unit. Each color sensor
was positioned under the CCD camera.

Figure 2. Overall experimental setup for measurement of samples using color sensors.
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2.2. Discriminant Analysis Using SVM

For the SVM kernel function, linear as well as radial basis functions [19,20] were evalu-
ated. In cases employing a linear kernel, the degree varied from 1 to 5, and simultaneously
the cost constant (C) changed from 1, 10, 100, 1000, to 10,000. Next, the optimal combina-
tion of the degree and cost constant yielding maximized discrimination performance was
identified. When the radial basis function was adopted, the sigma varied from 1, 10, 100,
1000, to 10,000 with the same variation of cost constant to assess discrimination accuracy at
different combinations. To run the SVM, R 3.2.0 software (R Development Core Team., 2005)
provided by the Comprehensive R Archive Network (CRAN) at http://cran.r-project.org/
was employed.

3. Results
3.1. Examination of RGB Signals of Garlic Samples Measured with Each Color Sensor

Figure 3 shows the variation in average ∆RGB intensity at the three sections of the
Wild (first row), WHW (second row), and 4E (third row) sensors in the measurement of
garlic samples. The ∆RGB intensity corresponded to the change in color relative to the
control in the absence of sample. Domestic and imported garlic samples are represented
by solid and dotted lines, respectively. For each case, the average of 60 ∆RGB intensities
obtained from 20 samples (triplicate measurements for each sample) is shown. The same
∆RGB intensities with standard deviation (indicated by the overlapped shades) for the
domestic (left plot) and imported garlic samples (right plot) are presented in Figure 4. The
standard deviation represents the intensity variation among the samples. The variation
in RGB signals, such as direction and magnitude of color change, in the measurements
using Wild and WHW sensors is generally analogous, except that blue color changes
differed considerably.

The observed color changes originated from two causes. First, upon adsorption of odor
components on the sensor, M-13 bacteriophage bundles swelled and/or shrunk in response,
resulting in changes in the coherent scattering from the phage bundles, subsequently
promoting distinct structural color change [6]. Second, the level of HOMO-LUMO in amino
acid residues on the sensor surface shifted after adsorption of odor components, which
changed the refractive index of the amino acid residues [21]. The varied refractive index
caused the observed color changes. As described earlier, hydrophilic (glutamic and aspartic
acid) and hydrophobic (glycine) components were both present in the Wild sensor, and
the WHW sensor consisted of a hydrophilic histidine and amphipathic tryptophan, which
contained a benzene ring. Therefore, the surface of the WHW sensor was slightly more
hydrophilic than that of the Wild sensor, but not noticeably different, which explains the
analogous color changes for the two sensors. Meanwhile, since the aromatic ring in the
WHW sensor was able to induce π-π interaction, the interactions of the color sensors with
the garlic odor components were expected to be somewhat dissimilar, as seen with the
variation in blue color change.

http://cran.r-project.org/


Sensors 2021, 21, 986 5 of 17

Figure 3. Average ∆RGB intensity of garlic samples measured in the three sections of Wild, WHW,
and 4E sensors. The solid and dotted lines indicate the domestic and imported samples, respectively.
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Figure 4. The same ∆RGB intensities shown in Figure 3 with standard deviation (shading) for the domestic (left plot) and
imported samples (right plot).

The color change patterns acquired using the 4E sensor were considerably different
from those using the Wild and WHW sensors. In particular, the directions of red and blue
color changes in sections I and II were opposite. The surface of the 4E sensor was composed
of four consecutive glutamic acid units and was mostly hydrophilic; its interaction with the
odor components was obviously dissimilar to the other color sensors. Overall, the variation
in RGB signals obtained from the three color sensors was individually characteristic due
to the differences in surface polarity and functional groups. The magnitude of standard
deviation (shaded areas) was greater among domestic samples, which indicated that the
odor composition in the domestic samples was more diverse and/or the concentration of
odor components was higher. According to a previous report, sulfur-containing compounds
such as methyl methylthiomethyl disulfide and di-(thiomethylmethyl) disulfide are the
predominant components (comprising more than 60~65%) of the approximately 50 volatile
components including monoterpenes present in garlic odor [22]. Thus, it was of interest to
examine the responses of each color sensor when a single odor component was measured.
Allyl disulfide was chosen as a representative odor compound and was measured using
the color sensors under the same experimental conditions. The results are shown in
Figure 5. The average ∆RGB intensities based on three replicate measurements and the
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corresponding standard deviation (shaded areas) are also presented. As expected, the
intensities were much smaller (note the magnitude of the y-scale) compared to those
obtained from the garlic samples, because the RGB signals resulted from only a single
component rather than multiple components. In addition, the color change patterns were
dissimilar from sensor to sensor; in particular, the blue color change for the 4E sensor
was more distinct from that of the Wild and WHW sensors. Similar to the measurement
of garlic samples, the 4E sensor exhibited more different variation in color change in the
measurement of the single allyl disulfide component.

Figure 5. Average ∆RGB intensity of allyl disulfide acquired using Wild, WHW, and 4E sensors. The
molecular structure of allyl disulfide is also shown.

3.2. Examination of RGB Signals of Onion Samples Measured with Each Color Sensor

Figure 6 shows variation in average ∆RGB intensity that occurred in the three sec-
tions of the Wild (first row), WHW (second row), and 4E (third row) color sensors in
the measurement of onion samples (solid line: domestic sample, dotted line: imported
sample). Figure 7 indicates the same average ∆RGB intensities for the domestic (left plot)
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and imported garlic samples (right plot) with standard deviation. The most noticeable
observation is that the overall color change magnitudes were larger (note the magnitude of
the y-scale) than those of garlic samples. In particular, the blue color changes in sections I
and II of the 4E sensor were considerably larger, and their directions were reversed. The
overall large color changes probably originated from the strong interaction of pungent
odor components with the color sensors and/or a large amount of odor components.

Figure 6. Variation of average ∆RGB intensity occurring in the three sections of Wild, WHW,
and 4E sensors in the measurement of onion samples (solid line: domestic sample, dotted line:
imported sample).
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Figure 7. The same ∆RGB intensities shown in Figure 6 with standard deviation (shading) for the domestic (left plot) and
imported samples (right plot).

The RGB change patterns observed from the color sensors were mutually different
due to the interactions of onion odor components with the dissimilar amino acid residues
on each sensor. The concentration of sulfide species responsible for the intense onion smell
comprised nearly 90% of the total odor components, with dipropyl disulfide being the most
abundant (53%), as noted in a previous paper [23]. Therefore, allyl methyl disulfide, which
has a similar molecular structure to dipropyl disulfide, was chosen for single component
analysis, and its RGB signals on each color sensor examined, as shown in Figure 8. Again,
the color change magnitude was small due to exposure to only a single component. The
color change patterns obtained from the Wild and WHW sensors were slightly different
from each other. Of note, there was a large change in section III of the 4E sensor with
different patterns, suggesting a stronger interaction of allyl methyl disulfide with glutamic
acid residues.
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Figure 8. Average ∆RGB intensity of allyl methyl disulfide individually acquired using Wild, WHW,
and 4E sensors. The molecular structure of allyl methyl disulfide is also shown.

3.3. Examination of RGB Signals of Perilla Samples Measured with Each Color Sensor

Figure 9 shows the variation in average ∆RGB intensity in the three sections of the
Wild (first row), WHW (second row), and 4E (third row) sensors in the measurement of
perilla samples (solid line: domestic sample, dotted line: imported sample). Figure 10
shows the same average ∆RGB intensity with standard deviation for the domestic (left
plot) and imported perilla samples (right plot). Distinctly different from the measurement
of garlic and onion samples, the overall color change magnitudes were much smaller (note
the magnitude of the y-scale), which indicates much weaker interactions of perilla odor
components with the color sensors. It was previously found that 1-(3-furanyl)-4-methyl-1-
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pentanone (perillaketone) was the major component (44.4–69.2%) in perilla odor, followed
by isoegomaketone (7.3–27.6%), and 16 other components [24].

Figure 9. Average ∆RGB intensity of perilla samples measured in the three sections of Wild, WHW,
and 4E sensors. The solid and dotted lines indicate the domestic and imported samples, respectively.

Since these components are relatively hydrophobic, their interactions with the color
sensors were weak; therefore, the overall observed color change magnitudes were small.
Another interesting observation was that the color variations acquired by the Wild sensor
were greatest, especially red and green colors on section III, since the surface of the Wild
sensor is relatively more hydrophobic compared to the other sensors. Again, the color
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change patterns observed from all the color sensors were somewhat different, and the
obtained RGB signals were mutually complimentary for sample discrimination. To examine
RGB responses for a single component, perillaldehyde (a major component in perilla
oil) [25–27] was chosen since perillaketone and isoegomaketone were difficult to obtain.
Figure 11 shows the ∆RGB intensity of perillaldehyde acquired using each color sensor. In
comparison with the measurements of allyl disulfide (Figure 5) and allyl methyl disulfide
(Figure 8), the intensity variation measured with the Wild and 4E sensors was considerably
smaller. This confirms weak interaction of perillaldehyde with these two color sensors.
Meanwhile, the color changes were more notable on the WHW sensor, which possessed
an aromatic residue. The increased variation probably originated from π-π interactions
between the double bond in perillaldehyde and the indole in the WHW sensor.

Figure 10. The same ∆RGB intensities shown in Figure 9 with standard deviation (shading) for the domestic (left plot) and
imported samples (right plot).
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Figure 11. Average ∆RGB intensity of perillaldehyde individually acquired using Wild, WHW, and
4E sensors. The molecular structure of perillaldehyde is also shown.

3.4. Examination of Discrimination Accuracy Using SVM

Before the estimation of discrimination accuracy, the specificity of each sensor was ex-
amined by comparing the RGB signals measured from allyl disulfide, allyl methyl disulfide,
and perillaldehyde, as shown in Figure 12. The allyl disulfide and allyl methyl disulfide
signals are of particular interest, since the molecular structures of both components are
similar except the number of double bonds. The RGB signal shapes of allyl disulfide and
allyl methyl disulfide at each section of the color sensors varied, although the red color
signals were relatively similar in sections I and II of the WHW sensor. This demonstrates
that the responses of each color sensor were molecular structure-dependent and able to
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differentiate odor molecules with analogous structure. In the case of perillaldehyde, the
RGB signals were generally dissimilar to those of allyl disulfide and allyl methyl disulfide,
except the blue signal in section II of the Wild sensor, the red signal in section III of the
Wild sensor, the green signal in section I of the WHW sensor, the green signal in section III
of the WHW sensor, and the red signal in section II of the 4E sensor. Overall, each color
sensor responded differently to the odor molecules and the sensor-to-sensor responses
were independent.

Figure 12. Average ∆RGB intensity of allyl disulfide, allyl methyl disulfide, and perillaldehyde
measured using Wild (top), WHW (bottom), and 4E sensors (bottom).
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The RGB data measured from the three sections on each color sensor were adopted
for the discrimination of domestic and imported samples using SVM. The accuracy was
evaluated with 1000-time cross validation by randomly selecting 15 samples from each
group for training and employing the remaining five samples for validation. The obtained
accuracy, sensitivity, and specificity calculated by ((TP + TN)/(TP + FP + FN + TN)) ×
100, (TP/(TP + FN)) × 100, and (TN/(TN + FP)) × 100, respectively, are summarized in
Table 1. TP, TN, FP, and FN represent True Positive, True Negative, False Positive, and False
Negative, respectively. When a single sensor was used separately, the accuracy ranged
from 91.8–94.0%, 88.6–90.3%, and 89.8–92.1% for discrimination of geographical origin for
garlic, onion, and perilla samples, respectively. For all three cases, use of the radial function
with a sigma of 1 and cost constant of 1000 provided the best discrimination accuracy. As
highlighted earlier, the responses of each color sensor were individually characteristic and
potentially complementary, such that integration of RGB signals obtained from the three
color sensors for discrimination would improve accuracy. To test this supposition, the RGB
signals of each color sensor were merged, and the merged RGB signals were used for SVM.
As shown in Table 1, the accuracy improved to 98.0%, 97.5%, and 97.1% for discrimination
of garlic, onion, and perilla samples, respectively. Again, use of the radial function with
the same parameters resulted in the most accurate discrimination.

Table 1. Accuracy, sensitivity, and specificity of discrimination of domestic and imported garlic,
onion, and perilla samples using SVM. The numbers in parentheses indicate the corresponding
standard deviation in 1000-time cross validation.

Sample Sensor Accuracy Sensitivity Specificity

Garlic

Wild 91.8% (0.4%) 97.5% (0.5%) 86.1% (0.9%)
WHW 91.5% (0.5%) 95.3% (0.7%) 87.9% (0.9%)

4E 94.0% (0.3%) 97.6% (0.4%) 90.4% (0.9%)
Wild + WHW + 4E 98.0% (0.3%) 98.6% (0.4%) 97.4% (0.4%)

Onion

Wild 89.8% (0.5%) 89.8% (0.9%) 90.0% (1.1%)
WHW 90.3% (0.5%) 90.3% (1.0%) 90.3% (1.0%)

4E 88.6% (0.5%) 86.4% (1.1%) 91.0% (1.0%)
Wild + WHW + 4E 97.5% (0.3%) 97.7% (0.4%) 97.5% (0.5%)

Perilla

Wild 89.8% (0.4%) 86.7% (1.9%) 92.6% (1.6%)
WHW 92.1% (0.5%) 87.1% (1.0%) 96.9% (0.9%)

4E 91.6% (0.4%) 94.2% (1.1%) 89.1% (1.2%)
Wild + WHW + 4E 97.1% (0.4%) 97.4% (1.4%) 96.8% (1.4%)

To statistically assess accuracy improvement, t-tests were used. For each sample,
the sensor providing the highest accuracy was chosen from among the three sensors (4E
sensor for garlic, WHW sensor for onion, WHW sensor for perilla) and the corresponding
accuracy was compared with that using the combined Wild + WHW + 4E sensor. The
resulting p-values for all three cases were much smaller than 0.01 (nearly zero), so accuracy
improvement was significant at the 99.0% confidence level. This result demonstrates the
utility of combining these three color sensors as a means to enhance sample discrimination.

4. Conclusions

Combining the RGB signals obtained from three independent color sensors was ef-
fective for improving the discrimination accuracy for garlic, onion, and perilla samples
according to their geographical origins. Since M13 bacteriophages composed of different
amino acid residues are readily producible by genetic engineering, employing an even
larger number of odor-response characteristic color sensors (more than the three used in
this study) should provide further improvement of sample discriminability. Therefore,
we are currently preparing 3 × 3 and 4 × 4 color sensor arrays to detect and identify
hazardous in-house gaseous compounds such as formaldehyde, which causes sick building
syndrome [28–31]. In parallel, an advanced discrimination algorithm able to more effec-
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tively handle multi-array RGB data, which are not like conventional visible spectroscopic
data, is needed.
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