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ABSTRACT Learning binary weights to minimize the difference between target and actual outputs can
be considered as a parameter optimization task within the given constraints, and thus, it belongs to the
application domain of the Lagrange multiplier method (LMM). Based on the LMM, we propose a novel
event-based weight binarization (eWB) algorithm for spiking neural networks (SNNs) with binary synaptic
weights (−1, 1). The algorithm features (i) event-based asymptotic weight binarization using local data only,
(ii) full compatibility with event-based end-to-end learning algorithms (e.g., event-driven random backprop-
agation (eRBP) algorithm), and (iii) the capability to address various constraints (including the binary weight
constraint). As a proof of concept, we combine eWB with eRBP (eWB-eRBP) to obtain a single algorithm
for learning binary weights to generate correct classifications. Fully connected SNNs were trained using
eWB-eRBP and achieved an accuracy of 95.35% on MNIST. To the best of our knowledge, this is the first
report on completely binary SNNs trained using an event-based learning algorithm. Given that eRBP with
full-precision (32-bit) weights exhibited 97.20% accuracy, the binarization comes at the cost of an accuracy
reduction of approximately 1.85%. The python code is available online: https://github.com/galactico7/eWB.

INDEX TERMS Event-based weight binarization, event-driven learning algorithm, Lagrange multiplier
method, spiking neural networks.

I. INTRODUCTION
There has been growing interest in fast, efficient, and compact
neuromorphic computing for high-performance processing of
large amounts of data for on-chip learning. Spiking neural
networks (SNNs) are a promising model for energy-efficient
neuromorphic computing [1]–[3]. Their energy efficiency
is mainly due to the sparse event-based asynchronous data
processing and learning weights, as opposed to the case
for deep neural networks (DNNs), which utilize error-
backpropagation algorithms (BP) for layer-wise synchronous
weight updates in dedicated learning phases [1]. Fur-
ther efficiency improvements are gained when SNNs are
implemented on dedicated neuromorphic hardware [4], [5].
To date, several event-based learning algorithms have
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been proposed, including spike timing-dependent plastic-
ity (STDP) [6]–[8], event-driven random backpropagation
(eRBP) [9], sequence-predicting SNN [10], ReSuMe [11],
tempotron [12], and Spikeprop [13]. However, because most
of these event-based algorithms use multi-bit weights, their
hardware implementation requires large on-chip memory
capacity and intensive computing power, which degrades
their energy efficiency. Weight quantization has been consid-
ered to address this issue, for example, in recent STDP-based
algorithms with quantized weights [7], [8], [14]–[16]. How-
ever, achieving a competitive classification accuracy com-
monly requires (i) a large number of trainable parameters,
especially those related to hidden neurons, (ii) an inhomo-
geneous learning framework to consider BP and STDP sepa-
rately, and (iii) multi-bit weights for output evaluation.

Learning binary weights is an extreme case of weight
quantization. The use of 1-bit weights significantly reduces
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on-chip memory usage considering the O(n2) memory com-
plexity of synapses. Additionally, the leaky integrate-and-fire
(LIF) model with an exponentially decaying synaptic current
kernel involves the multiplication of weights and low-pass
filtered spikes [17]. Thus, learning binary weights avoids
multiplication and significantly reduces power consumption
and processing time.

To this end, we propose an event-driven weight binariza-
tion (eWB) algorithm to learn binary weights (−1, 1) in an
event-based manner. The eWB algorithm uses the Lagrange
multiplier method (LMM) based on a Lagrange function
that combines a conventional loss function and constraints
on binary weights. Each synapse is given a binary weight
constraint function and a Lagrange multiplier. The binariza-
tion of each weight is independent of the variables in the
other synapses. This ensures the locality of eWB. Because
a conventional loss function is also used, eWB is not a stan-
dalone learning algorithm. Instead, it requires an additional
event-based supervised learning algorithm based on a loss
function such as eRBP. As a proof of concept, we combine
eWB and eRBP (eWB-eRBP) to train fully connected mul-
tilayer SNNs on MNIST. The results demonstrate successful
weight binarization at the cost of an accuracy reduction by
approximately 1.85%.

The primary contributions of this study are as follows:

• We introduce a novel weight binarization algorithm
(eWB), which is an event-driven algorithm with locality.

• We elaborate on the scaling of eWB to eRBP (eWB-
eRBP).

• We evaluate the performance of eWB-eRBP in training
fully connected multilayer SNNs on MNIST.

• The code for eWB-eRBP is available on-line
(https://github.com/galactico7/eWB).

Section II (Related work) briefly overviews several rele-
vant studies. Section III introduces the basic principles of
LMM (Section III. A), eWB (Section III. B), and eWB-eRBP
(Section III. C). Section IV presents the experimental results
(prediction accuracy, weight binarization and efficiency anal-
ysis) on MNIST. A comparison with state-of-the-art weight
binarization in SNNs is given in SectionV. Finally, SectionVI
concludes this study.

II. RELATED WORK
To date, the proposed methods for learning binary weights in
SNNs can bemainly classified into two groups: (i) conversion
of binary neural networks (BNNs) [18] or binary weight net-
works (BWNs) [19] into SNNs and (ii) probabilistic learning.
The first approach is motivated by recent successes in weight
binarization in DNNs [18]–[21]. Lu and Sengupta [22] pro-
posed a method to map BWNs onto VGG-15-like SNNs with
perfect integrate-and-fire (IF) neurons. The IF neuron is con-
sidered to encode an input spike train as a firing rate, thereby
ensuring its similarity to a rectified linear unit (ReLU).

The second approach uses weights that probabilisti-
cally toggle between the binary weights 0 and 1. However,

it is common to use auxiliary variables to determine the
probability of weight updates. Suri et al. [14] proposed
an STDP-based stochastic algorithm using binary weights.
Potentiation (0→1) and depression (1→0) occur with prob-
abilities based on the temporal order of presynaptic and
postsynaptic spikes. Nevertheless, a challenge in STDP is its
inability to scale to deep SNNs. STDP is hence commonly
limited to shallow SNNs. Yousefzadeh et al. [7] also pro-
posed an STDP-based stochastic algorithm to learn binary
weights. The algorithm requires additional operations such as
weight normalization and threshold adjustment for individual
neurons. The considered network is shallow (one feature
extraction layer and one classifier) because of the aforemen-
tioned limitation of STDP. Additionally, it does not support
end-to-end training. Srinivasan and Roy [8] proposed the
Hybrid-STDP (HB-STDP) algorithm based on probabilistic
STDP. Notably, HB-STDP includes a dead zone in the STDP
time window, in which neither potentiation nor depression is
allowed. HB-STDP captures temporally correlated inputs by
preventing excessive potentiation and depression; however,
its low accuracy is a challenge.

The learning of low-precision weights in SNNs as gener-
ative models is a subject of interest. Stromatias et al. [23]
tailored contrastive divergence (CD) to deep belief net-
works with spiking neurons. The original double-precision
floating-point weights are converted to a lower precision
floating-point format to reduce memory consumption. How-
ever, the reduction in precision comes with the cost of sig-
nificant performance degradation. Neftci et al. [16] proposed
the event-driven CD (eCD) algorithm to train restricted Boltz-
mann machines with spiking neurons. In eCD, the weight
update is fine-tuned by STDP. Low-precision (down to 2-bit)
weights were tested; however, a significant reduction in accu-
racy was unavoidable.

The eWB algorithm adopts an approach that parameterizes
the degree of binary-constraint fulfillment and asymptoti-
cally optimizes the degree upon the occurrence of events,
whereas the aforementioned precision-reduction methods
merely round the full-precision weights. Therefore, eWB
cannot be classified as any of the aforementioned approaches.

III. eWB ALGORITHM
A. LAGRANGE MULTIPLIER METHOD
LMM is a strategy to solve general nonlinear program-
ming problems (NLPs) [24]. An NLP is an optimization
problem whose optimal solution is determined by nonlin-
ear constraints in conjunction with a nonlinear objective
function. In the minimization problem, a general continuous
equality-constrained NLP can be stated as

minimize l (w) ;w = [w1,w2, · · · ,wn]

subject to g (w)= 0; g = [g1,g2, · · · ,gm] .

The LMM calculates the local maxima or minima of the
objective function within the given equality constraints.
The Lagrange function L for the objective function l and
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constraints g is expressed as

L (w,λ)=l (w)+ λ · g(w), (1)

where λ (= [λ1,λ2, · · · ,λm]) is a vector of Lagrange multi-
pliers with onemultiplier for each of them constraints. Ifw∗ is
a local extremum point of the objective function l(w) subject
to g(w) = 0, the following equalities hold:{

∇wl (w)+ λ · ∇wg (w)= 0 at w∗

g
(
w∗
)
= 0.

(2)

This optimal solution w∗ can be calculated from the gradient
of Eq. (1):

∇w,λL (w,λ)

=∇w [l (w)+λ · g (w)]+∇λ [l (w)+λ · g (w)] .

The condition∇w,λL (w,λ)= 0 is equivalent to the following
conditions:{
∇w [l (w)+λ · g (w)]=∇wl (w)+λ·∇wg (w)= 0
∇λ [l (w)+λ · g (w)] = g (w) = 0,

which are identical to the conditions in Eq. (2). Therefore,
the optimal point w∗ leads to

∇w,λL (w,λ)= 0. (3)

The solution to Eq. (3) can be calculated using a basic dif-
ferential multiplier method [25], in which the optimal w and
λ are calculated using a gradient descent and ascent method,
respectively, i.e.,{

wk+1 = wk − ηw∇Lw(wk ,λk )

λk+1 = λk + ηλg
(
wk
)
,

(4)

where ηw and ηλ are learning rates. Note that this method
is compatible with the BP in DNNs if the model parameters
w are updated using a gradient descent method but with the
Lagrange function L rather than the loss function l taken as
the objective function.

B. eWB ALGORITHM
The eWB algorithm is based on LMM with binary weight
constraints. The key feature of this algorithm is that the
configuration of binary weights over the network is subject
to optimization, unlike common weight binarization methods
that force the weights to assume binary values using partic-
ular binarization functions. Because each synapse is given a
binary weight constraint and a Lagrange multiplier, the total
numbers of constraints and Lagrange multipliers are equal
to the number of synapses in the SNNs. Here, we select the
binary weight constraint g for a given synapse as

gi (wi, t) =
(
1− w2

i

)
si (t) , (5)

which is zero if wi = ±1. We introduce the spike function si,
which yields one when a presynaptic (or postsynaptic) spike
occurs and zero otherwise, and hence enables event-based

asymptotic binarization. The loss function l(w,t) should be
chosen to enable event-based weight updates and satisfy

∂l
∂wi
= h (w, t) si (t) ,

where h is the product of the backpropagating error and the
derivative of postsynaptic output. The Lagrange function L is
given by

L (w,λ, t) = l (w, t)+
∑

i
λi

(
1− w2

i

)
si (t) .

Consequently, the weight and Lagrange multiplier are
updated upon a presynaptic (or postsynaptic) spike of synapse
wi conforming to Eq. (4):

wi← wi − ηw
∂L
∂wi

λi← λi + ηλ
∂L
∂λi

.

(6)

These real-valued weights and Lagrange multipliers are
stored in the memory for successive event-based updates.
However, during training with eWB, both signal forward
propagation and error backpropagation use the forced-to-
be-binary weights wb:

wb
i= Sign (wi) =

{
+1 if wi ≥ 0
−1 otherwise.

(7)

This avoids the multiplication of real-valued weights and
low-pass filtered spikes in the LIF model, thereby signif-
icantly reducing the computational complexity and, thus,
the power consumption.

FIGURE 1. SNN architecture for eRBP. The error-coding layer (E) consists
of two error-coding neurons for each label dimension that encode false
positive and negative errors between labels (L) and predictions (P).
During training, each of the hidden (in H1 and H2) and prediction (in P)
neurons receives random feedback from the error neurons with fixed
random weights (dashed arrows). The input layer is indicated by I.

C. eWB-eRBP ALGORITHM
As a proof of concept, we chose eRBP for combination
with eWB (eWB-eRBP). As shown in Fig. 1, eRBP is a
three-factor rule based on (i) presynaptic events, (ii) approx-
imated gradients of postsynaptic activation, and (iii) error
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signals through random feedback channels [9]. The eRBP
algorithm is elaborated in theAppendix. Accordingly, the loss
function l is considered to be the mean-squared difference
between the target and actual outputs. The eRBP algorithm
defines the derivative of the loss function with respect to the
weight wij between the presynaptic neuron j and postsynaptic
neuron i as

∂l
∂wij

def
=Ti(t)2(Ii)s

pre
j (t), (8)

where Ti is a random backpropagation error for the weight
update. The gradient of the postsynaptic activation is approxi-
mated by a boxcar function2with two transition points (bmin
and bmax), which is a function of the synaptic current Ii:

2(Ii) =

{
1 if bmin < Ii < bmax
0 otherwise.

(9)

The spike train of the presynaptic neuron j is denoted by sprej .
This term allows weight update upon the occurrence of
presynaptic events only; therefore, eRBP is a presynaptic
event-based learning algorithm. We tailor the binary weight
constraint function g to eRBP such that

g
(
wij
)
= (1−w2

ij)2(Ii)s
pre
j (t). (10)

The modification can be seen by comparing with Eq. (5).
For compatibility with eRBP, eWB is also assumed to be
driven by presynaptic events. Additionally, we incorporate
the approximated postsynaptic activation gradient 2 into the
constraint function. 2 is included in the constraint function
to synchronize the weight update for reducing the constraint
function g with the update for reducing the loss function l.
Otherwise, it may be possible that only the constraint g is
reduced during the weight update, irrespective of the loss
function l, especially when 2 = 0.

The derivative of the boxcar function 2 in Eq. (9) is
zero except for the two transition points (bmin and bmax),
which are singular points. Thus, the boxcar function is non-
differentiable. As a workaround, we assume that the synaptic
current Ii avoids these transition points when presynaptic
events occur, which is highly probable because the probabil-
ity of the current being equal to either of the two particular
values is extremely low. Therefore, the following equation
holds:

∂g
∂wij
= −2wij2(Ii) s

pre
j (t)+

(
1− w2

ij

)
sprej (t)

∂2 (Ii)
∂Ii

∂Ii
∂wij

≈ −2wij2(Ii) s
pre
j (t) . (11)

Using Eqs. (6), (8), and (11), we evaluate the updates on the
weight wij and the Lagrange multiplier λij:
1wij = −ηw

∂L
∂wij
= −ηw

(
∂l
∂wij
+ λij

∂g
∂wij

)
= −ηw

(
Ti (t)− 2λijwij

)
2(Ii) s

pre
j (t)

1λij = ηλ
∂L
∂λij
= ηλg = ηλ

(
1− w2

ij

)
2(Ii) s

pre
j (t) .

(12)

As highlighted in the previous section, the weights for the
forward paths (to calculate current input Ii) and backward
paths (to calculate Ti) are forcibly binarized (Eq. (7)) to
reduce the hardware computing workload.

The weights are initialized using the Xavier uniform ini-
tialization [26], whereas the Lagrange multipliers are ini-
tialized to zero. We confine each weight to between −1
and 1 by projecting w to −1 (1) when the updated weight is
smaller than−1 (larger than 1). This weight clipping prevents
unlimited weight growth. The eWB-eRBP algorithm is given
in pseudocode in Algorithm 1.

Algorithm 1 eWB-eRBP Algorithm.
Initialize w, λ
while True do
wb← Binarize(w)
for k ∈ {presynaptic event indices spre} do
if bmin < I < bmax then
w← Clip{w− ηw∇wL,−1, 1}
λ← λ+ ηλ∇λL

end if
end for

return wb

D. NON-OPTIMAL WEIGHT BINARIZATION METHOD
The defining feature of eWB is the optimization of the
binary weight distribution over the SNN. To highlight the
performance of eWB, we compare eWB-eRBP with eRBP in
conjunction with forced-to-be-binary weights conforming to
Eq. (7), referred to as fWB-eRBP. Note that fWB stands for
forced weight binarization. In fWB-eRBP, the binary weight
distribution is non-optimal, and the real-valued weights are
optimized using the loss function l only. In eWB-eRBP, the
real-valued weights are used for weight update only, and the
signal forward propagation and error backpropagation use the
binarized weights given by Eq. (7) instead. The fWB-eRBP
algorithm is given in pseudocode in Algorithm 2.

Algorithm 2 fWB-eRBP Algorithm.
Initialize w
while True do
wb← Binarize(w)
for k ∈ {presynaptic spike indices spre} do
if bmin < I < bmax then
w← Clip{w− η1∇wf ,−1, 1}

end if
end for

return wb

IV. RESULTS
We trained three types of fully connected SNNs (784-h-
h-10; h = 200, 500, and 1000) on MNIST. One training
epoch consisted of 60,000 full training data that were selected
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randomly and input into the SNN. The intensity of each
pixel in each hand-written digit image was encoded as the
firing rate of input spikes (10–265 Hz) in proportion to the
intensity. Note that even blank pixels were encoded at 10 Hz
to serve as low-frequency background noise. Each image was
shown to the SNN for 200 ms. To avoid interference from
the previous training image, all neuronal variables were reset
to zero before the onset of the current training image. The
classification accuracy was evaluated once every 500 training
data using the 10,000 test data. The predicted output was
identified by counting the number of spikes from each output
neuron for 200 ms. The parameters used are listed in Table 1.

TABLE 1. Parameters for simulations.

TABLE 2. Classification accuracy on the MNIST dataset for eRBP,
eWB-eRBP, and fWB-eRBP after 25 epochs.

A. CLASSIFICATION ACCURACY
We used the three aforementioned algorithms (eRBP,
eWB-eRBP, and fWB-eRBP) to train the three SNNs
(784-h-h-10; h = 200, 500, and 1000). The final clas-
sification accuracy for each case was measured after the
25th training epoch (Table 2). For all three algorithms,
the 784-1000-1000-10 SNN achieved the best accuracy.
The accuracy evolution of this SNN for each algorithm is
shown in Fig. 2. It is noted that weight binarization using
either algorithm results in the loss of classification accuracy.

FIGURE 2. Classification accuracies of 784-1000-1000-10 SNNs on MNIST
that were trained using eRBP, fWB-eRBP, and eWB-eRBP.

Nevertheless, eWB-eRBP outperforms fWB-eRBP in terms
of the loss for all SNNs. For example, for 784-1000-1000-
10, the losses for eWB-eRBP and fWB-eRBP are 1.85%
and 2.43%, respectively. This highlights the importance
of optimal weight binarization for inference. Fig. 2 also
shows that the fluctuations in accuracy over the inference
period for eWB-eRBP are negligible compared with those for
fWB-eRBP. This stability results from eWB asymptotically
driving the real-valued weights toward the binary weights
during training. Thus, the forced-to-be-binary weights con-
forming to Eq. (7) that are used for inference negligibly alter
the accuracy over successive inference periods, particularly
when the weights are close to binary values.

B. WEIGHT BINARIZATION
To evaluate the degree of weight binarization during training,
we introduce a constraint failure score (CFS) for a real-valued
weight matrix w ∈ RN×M as follows:

CFS = 1−
1
NM

∑N

i=1

∑M

j=1
w2
ij.

Therefore, when all weights are binarized, the CFS equals
zero.Wemonitored the change in CFS over the training epoch
(using eWB-eRBP or fWB-eRBP) for the 784-1000-1000-
10 SNN. There are three weight matrices:ww(hi) (between the
first hidden layer and the input layer), ww(hh) (between
the second and first hidden layers), and ww(oh) (between
the output layer and the second hidden layer). The changes
in CFS for these matrices are shown in Figs. 3(a), (b),
and (c), respectively. The CFS for eWB-eRBP asymptotically
decreases to zero, ensuring successful weight binarization.
For eWB-eRBP, the distributions of the trained real-valued
weights in the weight matrices ww(hi), ww(hh), and ww(oh)

are plotted in Figs. 3(d), (e), and (f), respectively. These
distributions are compared with the distributions of the initial
weights. Considering a weight w (|w| > 0.9) to be fully
binarized, the proportions of such fully binarized weights
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FIGURE 3. Weight distribution of eWB-eRBP and fWB-eRBP for w (hi ) (between the first hidden layer
and input layer), w (hh) (between the second and first hidden layers), and w (oh) (between the output
layer and the second hidden layer). (a)–(c) Changes in CFS over epoch for eWB-eRBP and fWB-eRBP. The
weight distribution of the initial and trained real-valued weights for (d)–(f) eWB-eRBP and (g)–(i)
fWB-eRBP.

are 84.7%, 53.9%, and 72.9% in ww(hi), ww(hh), and ww(oh),
respectively. The main cause of imperfect binarization is
discussed in the following section. In contrast, the weight
distribution for fWB-eRBP is rather diffusive over the entire
weight range [Figs. 3(g)–(i)]. Consequently, the proportions
of fully binarized weights after training are 30.0%, 27.1%,
and 18.0% for ww(hi), ww(hh), and ww(oh), respectively.

C. COMPUTATIONAL COMPLEXITY
Although the eWB algorithm is proposed for neuromor-
phic processors, for the moment, neuromorphic processors
that serve as platforms for algorithm studies with high
degrees of freedom are not available at hand. Instead,
we used a GPU workstation (CPU: Intel Xeon Silver
4110 2.10GHz, GPU: RTX 2080 Ti). The algorithm was
implemented in Python (the code is available online:
https://github.com/galactico7/eWB). Because eWB is not a
standalone learning algorithm, we measured the time com-
plexity of eWB from the difference in time complexity
between RBP and eWB-eRBP. The eRBP and eWB-eRBP
algorithms applied to a 784-500-500-10 SNN on MNIST for
25 learning epochs, yielding awall-clock time of 4.99E5 s and
6.27E5 s, respectively (Table 3). The additional wall-clock
to eRBP (1.28E5 s) arose from eWB. Additionally, we mea-
sured the space complexity for eRBP and eWB-eRBP,
366.0 and 368.0 MB, respectively. The MNIST dataset occu-
pies 360.0 MB, so that eRBP and eWB-eRBP occupy 6.0 and
8.0 MB, respectively.

This computational complexity should differ from that
measured on neuromorphic hardware, particularly, wall-
clock time. However, for digital neuromorphic hardware,

TABLE 3. Time and space complexities for eRBP and eWB-eRBP.

the measure of memory usage (for the dataset, parame-
ters, and hyper-parameters) may hold because the same data
should be stored in on-chip memory. Additionally, given that
most studies on SNN learning algorithms are conducted on
general-purpose workstations for the moment, the complex-
ity measure on general-purpose workstations is practically
helpful.

Akin to multiply-accumulate operations (MACs) for deep
learning implemented in general-purpose hardware, synaptic
operations (SynOps) in neuromorphic hardware are known to
consume considerable power, so that the number of SynOps
can be a relative measure of energy-efficiency for learning.
We evaluated the number of SynOps required for training
a 784-500-500-10 SNN on MNIST using eWB-eRBP. The
SNN was trained for 25 epochs in aggregate. Fig. 4 shows
the evaluated number of SynOps and classification accuracy
for each learning epoch.

For a comparison with binarized neural network
(BNN) [18], we measured the number of MACs required for
training a 784-500-500-10 BNN on MNIST. Each MNIST
image was pre-binarized to ±1 using the sign function.
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FIGURE 4. Efficiency in learning. (a) Number of SynOps for a
784-500-500-10 SNN with eWB-eRBP algorithm. BNN (784-500-500-10
network) is compared with the eWB-eRBP in terms of the number MACs
required for reaching a given accuracy for the MNIST learning task.

We used Batch Normalization with a minibatch size of
100. The square hinge loss was minimized using Adam
optimizer. We employed an exponentially decaying global
learning rate and Glorot initialization. Dropout layers were
deployed to regularize the BNN. The evaluation results are
co-plotted in Fig. 4, indicating that both networks require
similar same numbers of operations to reach an accuracy
approximately 0.93.

The comparison indicates similar operational complexity
for both cases. Yet, power-efficiency for eWB-eRBP likely
outperforms BNN when implemented in neuromorphic hard-
ware. Power-efficiency is the defining feature of neuromor-
phic hardware. For instance, Loihi (digital neuromorphic
processor) [27] highlights high power-efficiency, approxi-
mately 300 times that of graphics processing units [28].
Thus, we expect a two orders of magnitude increase in
power-efficiency when eWB-eRBP is embedded in neuro-
morphic hardware.

V. DISCUSSION
Generally, event-based learning algorithms update a weight
only if a presynaptic or postsynaptic event (local to the
synapse) occurs, unlike BP, which updates all weights layer-
wise. Specifically, eWB-eRBP addresses only the synapses
that satisfy the two conditions of (i) presence of presynaptic
spike, and (ii) non-zero boxcar function of the postsynaptic
activation, as described in Eq. (12). During training, several
synapses were inactive (and their presynaptic neurons qui-
escent), and thus, they maintained their initial weights until
the end of training. The high proportion of fully binarized
weights in ww(hi) (84.7%) is due to the blank pixels being
encoded at a 10-Hz spike rate rather than being left inactive.

Table 4 presents a comparison of the performance of
eWB-eRBP with that of relevant works using limited-
precision weights (≤ 8-bit). For a fair comparison, we chose
event-based algorithms applied to fully connected SNNs.
Notably, most of them use higher precision than 1-bit.

TABLE 4. Comparison of reported classification accuracy of quantized
fully connected SNNs on the MNIST dataset.

Nevertheless, the classification accuracy is lower than or only
slightly better than that of our work. This highlights the
performance of eWB.

The works by Yousefzadeh et al. [7] and Srinivasan and
Roy [8] partly use 1-bit weights, but the usage is limited
to only the weights between the input and hidden layers.
The weights between the hidden and output layers are of
higher precision to minimize the classification accuracy loss.
Therefore, eWB is the first event-driven weight binarization
algorithm with locality that ensures high performance.

The accuracy loss caused by the use of binary weights is
compensated for to some extent by increasing the number
of hidden neurons as shown in the comparison with eRBP
in Tables 2 and 4. The same holds for DNNs with binary
weights, e.g., BNN [18] and BinaryConnect [20], which
includemuchmore parameters than full-precisionweight net-
works to achieve comparable performance. From a perspec-
tive of memory usage, one should consider the total memory
usage for trainable parameters in the networks with binary
weights in comparison with full-precision weight networks
to estimate the gain in memory-efficiency.

We can estimate the additional computation for eWB to
eRBP from Eq. (12). The weight update evaluation 1wij
requires one multiplication (λij × wij) and one subtraction
(Ti − 2λijwij) operations in addition to eRBP. The evaluation
of the Lagrange multiplier update requires one subtraction
(1 − w2

ij) and three multiplication (wij × wij,
(
1− w2

ij

)
×

2, ηλ ×
(
1− w2

ij

)
2). Thus, the computational cost of a

single update is two substraction and four multiplication
operations in addition to eRBP.

The eWB-eRBP algorithm is an example to demon-
strate the compatibility of eWB with event-based learn-
ing algorithms. In principle, eWB can also be combined
with other event-based learning algorithms with appropriate
modifications and can serve as a common weight binariza-
tion algorithm for various event-based learning algorithms.
In this regard, attention should be paid to the performance
reduction resulting from optimal weight binarization instead
of the absolute performance when evaluating the perfor-
mance of eWB. This is because the absolute performance
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is mainly determined by the learning algorithm combined
with eWB.

Although we have applied LMM to weight binarization in
this study, any other constraints can be considered as long as
they are mathematically well-defined. For instance, ternary
weight (0, ±1; 2-bit precision) constraints with eRBP can
be formulated as g

(
wij
)
= wij(1−w2

ij)2(Ii)s
pre
j (t) instead of

Eq. (10). This constraint function outputs zero when wij =
0 orwij = ±1, enabling the algorithm to learn optimal ternary
weights. Further, 3-bit weight (0, ±1, ±2, ±3) constraints
can be considered using the constraint function g

(
wij
)
=

wij(1−w2
i??)(4−w

2
ij)(9−w

2
ij)2(Ii)s

pre
j (t). Therefore, the pro-

posed LMM-based learning algorithm forms the foundation
for event-based learning with various constraints.

The use of limited-precision weights improves not only
memory efficiency but also energy efficiency. Energy effi-
ciency is a key attribute of neuromorphic computing and is
a defining motivation for event-based learning algorithms
as alternatives to layer-wise synchronous learning such as
BP. In digital neuromorphic hardware, a lower precision of
the data format reduces the energy consumed in arithmetic
operations. Horowitz [29] identified a 30-fold (18.5-fold)
improvement in the energy efficiency by replacing 32-bit
floating-point data with 8-bit fixed-point data in addition
(multiplication) operations. The use of binary weights com-
pletely avoids the multiplication of weights and low-pass
filtered spikes, which are otherwise needed for every synaptic
operation. Given that synaptic operations impose the most
significant workload on neuromorphic hardware, as is the
case for multiply-accumulate operations in DNNs [16], SNNs
with binary weights can achieve a large improvement in
energy efficiency. Nevertheless, the degree of improvement
depends on neuromorphic hardware design, which is not
specified in this study.

VI. CONCLUSION
In this study, we proposed an eWB algorithm that optimally
binarizes weights in an SNN based on local events. The
optimal configuration of binary weights is calculated using
the LMM with binary weight constraints. Given that eWB
addresses local data only to update weights in an event-based
manner, it is inherently compatible with multicore neuromor-
phic hardware. When combined with an event-based learning
algorithm using an appropriate loss function, eWB enables
the network to learn binary weights that minimize the loss
function. This was demonstrated using eWB-eRBP (eWB
combined with eRBP), which was applied to train fully con-
nected SNNs onMNIST. The consequent classification accu-
racy is 95.35%, whereas eRBP with 32-bit weights yielded
an accuracy of 97.20%. The results indicate an accuracy
reduction of 1.85% as the cost of optimal weight binarization.
To the best of our knowledge, eWB is the first method to learn
binary weights based on events; therefore, a comparison with
directly related methods is unavailable at the moment. Never-
theless, to highlight the importance of optimal binary weights
in performance, eWB-eRBP was compared with fWB-eRBP

(with non-optimal binary weights that were forcibly bina-
rized) and was shown to yield better performance and more
stable performance evolution over the training epoch than
fWB-eRBP.

Finally, eWB is scalable to any event-based learning algo-
rithm with appropriate modifications, thus serving as a com-
mon weight binarization method. The LMM is also scalable
to any weight constraint as long as the constraint functions
are mathematically well-defined. The eWB algorithm is an
example that demonstrates this scalability.

APPENDIX
The eRBP algorithm is a presynaptic event-driven local learn-
ing rule that uses direct feedback alignment (Fig. 1). In eRBP,
the weight update with a mean-squared loss function is for-
mulated as

1wij (t) = −Ti(t)2(Ii)s
pre
j (t), (13)

which realizes a three-factor rule with (i) presynaptic
spike (sprej ), (ii) postsynaptic signal 2, corresponding to
the derivative of the postsynaptic activation, and (iii) error
signal Ti, which backpropagates through random feedback
channels.

(i) The presynaptic spikes are the output of neuron i,which
is modeled using an LIF model that includes two defining
variables, namely, the synaptic current Ii and subthreshold
somatic membrane potential Vi:

τsyn
d
dt
Ii = −Ii +

∑
j
wijsj(t)ξ (t)

C
d
dt
Vi = −gVVi + Ii,

where wij, sj, and ξ denote the weight between neurons j and
i, spikes from neuron j, and a stochastic Bernoulli process
with probability (1 −p), respectively. The time constant for
the synaptic current is denoted by τsyn. The ion conductance
through the membrane is denoted as gV .
(ii) As a workaround for the postsynaptic activation being

non-differentiable, the derivative of the postsynaptic activa-
tion is approximated as a boxcar function 2:

2(Ii) =

{
1 if bmin < Ii < bmax
0 otherwise.

This corresponds to the derivative of a hard sigmoid function
with two transition points (bmin and bmax).
(iii) The error signal Ti is formulated as

Ti(t) =
∑

k
ek (t) gik , (14)

where ek is the error signal from the error-coding neuron k .
The constant gik denotes the fixed random feedback weight
from the error-coding neuron k to the hidden neuron i.
It is noteworthy that this error signal is non-local to the
synapse wij, and thus unavailable for updating the weight
wij using Eq. (13). It is conceivable that the data may be
moved from the location of error evaluation to the synapse
during updating; however, this is not an optimal strategy
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for neuromorphic hardware in which neurons communicate
using events only. To render the error local to the target
synapses, eRBP uses two error-coding neurons with somatic
potentials V E+ and V E− for each output dimension. They
code for false positive and negative errors, respectively. Their
subthreshold behaviors are modeled using a perfect integrate-
and-fire model

C
d
dt
V E±
= ±wE (sP(t)−sL(t)),

where sP and sL are the spike trains from the prediction
neurons and labels, and wE is a positive constant. The false
positive error coding neuron (potential V E+ and weight wE )
spikes and generates the spike train sE+ when sp = 1 and
sL = 0, whereas the false negative error coding neuron
(potential V E− and weight −wE ) spikes and generates the
spike train sE− when sp = 0 and sL = 1. The consequent spike
trains sE+j and sE−j (from the two error-coding neurons for
label j), rather than the error data themselves, are relayed to
the target synapses through the random weight gij so that the
communication architecture is well suited for neuromorphic
hardware.

The error spike trains sE+j and sE−j from label j are sub-
sequently encoded as firing rates to eventually realize the
error signal Ti in Eq. (14). To this end, each neuron in the
output and hidden layers is given a dendritic compartment
that calculates the dendritic potential (Uh

i for hidden neuron
i and Up

i for prediction neuron i) using a leaky integrated
model

C
d
dt
Uh
i = −gUU

h
i +

∑
j

gij(sE+j (t)−sE−j (t)),

and

C
d
dt
Up
i = −gUU

p
i + w

E (s
E+
i (t)−sE−i (t)).

This dendritic potential is equivalent to the error signal Ti and
is local to each target synapse. Therefore, the learning rule in
Eq. (13) can be rewritten as

1wij = ηUi2(Ii)sj(t).

The parameters used in this study are listed in Table 1.
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