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Abstract: This paper introduces an off-grid DoA estimation via two-stage cascaded network which
can resolve a mismatch between true direction-of-arrival (DoA) and discrete angular grid. In the
first-stage network, the initial DoAs are estimated with a convolutional neural network (CNN), where
initial DoAs are mapped on the discrete angular grid. To deal with the mismatch between initially
estimated DoAs and true DoAs, the second-stage network estimates a tuning vector which represents
the difference between true DoAs and nearest discrete angles. By using tuning vector, the final DoAs
are estimated by moving initially estimated DoAs as much as the difference between true DoAs
and nearest discrete angles. The limitation on estimation accuracy induced by the discrete angular
grid can be resolved with the proposed two-stage network so that the estimation accuracy can be
further enhanced. Simulation results show that adding the second-stage network after the first-stage
network helps improve the estimation accuracy by resolving mismatch induced by the discretized
grid. In the aspect of the implementation of machine learning, results also show that using CNN and
using PReLU as the activation function is the best option for accurate estimation.

Keywords: off-grid direction-of-arrival (DoA) estimation; machine learning; cascaded neural net-
work; convolutional neural network (CNN); deep neural network (DNN); sparse representation

1. Introduction

Direction-of-arrival (DoA) estimation is one of the long-studied research topics in
array signal processing. DoA estimation algorithms have been adopted in various appli-
cations, such as localization and radar [1]. The DoA estimation can also take essential
role in cooperative localization for vehicular networks, where the cooperative localization
between vehicles requires the relative distances and DoAs of neighboring vehicles [2,3].
Using the aforementioned information, the position of vehicles that are derived from a
global positioning system (GPS) can be estimated using cooperative localization [2,3]. As
the commercialization of an automotive multiple-input multiple-output (MIMO) radar
progresses [4], it is possible for vehicles to harness DoAs of other vehicles using the DoA
estimation algorithm.

Traditional DoA estimation algorithms such as MUSIC [5] have high estimation
accuracy and resolution. However, they require a large number of snapshots and cannot
properly estimate DoAs of coherent signal sources. To overcome these disadvantages,
compressive sensing (CS)-based DoA estimation algorithms have been proposed in [6–8],
where the CS-based DoA estimation exploits the discrete grid which consists of angular
bases. Regardless of the type of CS, such as basis pursuit (BP) [9] and sparse Bayesian
learning (SBL) [10], CS-based DoA estimation algorithms are commonly robust against low
signal-to-noise ratio (SNR) and fewer snapshots [11]. CS-based DoA estimation exploits the
discrete angular grid which consists of angular bases; however, there is a high possibility
that the true DoAs do not correspond perfectly with the angular bases in practice. The
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mismatch between the DoAs and the angular bases is generally referred to as a grid-
mismatch and induces an inevitable estimation error [12].

Aside from the aforementioned studies, an attempt to exploit the machine learning
to the DoA estimation has first been proposed in [13,14], and continues to be studied as
the deep learning theory and methods are developing fast [15,16]. In [13,14], a support
vector regression (SVR) approximates the function that maps the received signals to DoAs.
Results in [13,14] show that the DoA can be successfully estimated with SVR, where SVR
is a machine learning technique that is mainly used for pattern recognition problems.
However, the estimation accuracy of algorithms in [13,14] is inferior to the traditional DoA
estimation algorithm such as MUSIC [5]. As computational resources that can support
large datasets are not viable currently, small amounts of data are used for training, and this
causes low estimation accuracy.

After the introduction of a neural network (NN) [16], DoA estimation algorithms based
on various types of NN were proposed in [17–21], where these algorithms are trained and
tested with the massive amounts of data. Although deep neural network (DNN)-based
algorithms in [17,18] have higher estimation accuracy and resolution than traditional DoA
estimation algorithms, they can only estimate the fixed number of DoAs as the number
of DoAs that DNN can estimate is also fixed. In practice, the number of signal sources is
unfixed and unknown so that the number of DoAs can vary. Thus, algorithms in [17,18]
are not suitable for practical situations. Unlike in [17,18], the algorithms in [19,20] can cope
with the varying number of DoAs by setting the output of network as an angular grid,
where the idea of [19,20] is motivated by the CS-based DoA estimation. The angular grid
represents the discretized angular domain and maps where DoAs belong within the grid.
In this case, DoAs can be successfully estimated if every DoA matches with one of the
discrete angles within the grid, regardless of the number of DoAs. However, the algorithms
in [19,20] suffer from the identical problem of CS-based DoA estimation, as a true DoA may
not perfectly match with the discrete angles in practice. Thus, the inevitable estimation
error occurs when estimating DoAs with algorithms in [19,20].

To prevent the inevitable estimation error induced by mismatch between true DoAs
and discrete angles within the grid, we propose a novel off-grid DoA estimation algorithm
based on the two-stage cascaded NN. A design of the two-stage cascaded NN is motivated
by a two-step approach in [22]. In the first stage, the DoAs are initially estimated with
the convolutional neural network (CNN). As the initial DoAs estimated by the first-stage
network are mapped on the discrete angular grid, the initially estimated DoAs contain
the estimation error induced by the mismatch. In the second stage, the mismatch between
the true DoA and angles within the grid is resolved by DNN. The second-stage network
estimates a tuning vector which represents the difference between true DoAs and nearest
discrete angles. The final estimated DoA can be obtained by moving initial DoA as much as
the difference between the true DoA and the nearest discrete angle. By using this two-stage
cascaded NN, the estimation accuracy is no longer limited by the discrete angular grid
so that the estimation accuracy can be further enhanced. Simulation results prove that
the two-stage cascaded NN can achieve higher estimation accuracy than using a single
network by resolving the mismatch induced by the discrete angular grid.

Notations: We use lower case and upper case bold characters to, respectively, represent
vectors and matrices throughout this paper. (·)T , (·)H , and (·)∗, respectively, denote the
transpose, conjugate transpose, and complex conjugation. ⊗ denotes Kronecker product.
Trace(·) denotes the trace of a matrix. real(·) and imag(·), respectively, denote the real
part and imaginary part. a(i) denotes the i-th element in a vector a, and A(i, j) denotes
the (i, j)-th element in a matrix A. ‖a‖ denotes the L2 norm of a. 0N denotes a N × 1 zero
vector, and IN denotes a N × N identity matrix. diag(·) denotes a vector whose entries
are diagonal elements of a given matrix. CM×N , RM×N , and RM×N

+ , respectively, denote
M× N matrix whose elements are complex, real, and real positive numbers. If N = 1, they
are M× 1 vectors.
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2. Signal Model

We assume that P uncorrelated narrowband signals impinging on the uniform linear
array (ULA) with M elements. Here, P narrowband signals have same carrier frequency.
The spacing between adjacent antennas is set to half-wavelength λ/2, where λ denotes the
wavelength of the signals. DoAs of P signals are denoted as Θ, where Θ = [θ1, . . . , θP]

T .
When the narrowband signal impinges on the antenna array, an identical signal arrives at
each antenna with a different time delay, where the time delay is dependent on the DoA of
the signal. For narrowband signal, the time delay can be translated as a phase shift, and a
vector that models the phase shift of each antenna according to DoA is generally known as
array manifold vector or steering vector [23]. An array manifold vector whose DoA is θ,
a(θ) can be given by follows as in [23].

a(θ) =
[
1, ejπ cos θ , . . . , ej(M−1)π cos θ

]T
∈ CM×1. (1)

An array manifold matrix for P signal sources, A(Θ) is

A(Θ) = [a(θ1), . . . , a(θP)] ∈ CM×P. (2)

The received signal X can be written as

X = A(Θ)S + N ∈ CM×D, (3)

where D is the number of snapshots. S = [s1, . . . , sP]
T , where sp ∈ CD×1 denotes the

p-th signal vector. N is an additive white Gaussian noise matrix whose columns follow
CN (0M, σ2IM), where 0M is a M× 1 zero vector, IM is a M×M identity matrix, and σ2

denotes the power of the noise. RX, the covariance matrix of X, can be defined as

RX = E
[
XXH

]
= A(Θ)RSA(Θ)H + σ2IM ≈

XXH

D
∈ CM×M, (4)

where RS = E
[
SSH]. As every signal source is uncorrelated with each other, RS is a

diagonal matrix where its p-th diagonal element equals to the power of the p-th signal
source. We define z ∈ RP×1

+ such that z = diag(RS). The (i, j)-th element of RX, RX(i, j)
can be given by

RX =
P

∑
p=1

z(p)a(θp)a(θp)
H + σ2IM, (5)

where z(p) is the p-th element of z, which denotes the power of the p-th signal source and
satisfies that z(p) = E

[
sH

p sp

]
. A vectorized covariance matrix y can be given by

y =
P

∑
p=1

z(p)a(θp)
∗ ⊗ a(θp) + σ2i = A(Θ)z + σ2i = vec(RX) ∈ CM2×1, (6)

where vec(·) denotes the vectorization of the matrix,A(Θ) = [a(θ1)
∗ ⊗ a(θ1), . . . , a(θP)

∗ ⊗
a(θP)] ∈ CM2×P, and i = vec(IM).

Following CS-based DoA estimation and a machine learning-based DoA estimation
framework [6–8,19,20], y can be represented as a product of a discretized angular grid and
a sparse vector. Here, the discretized angular grid covers the potential DoAs that range
between [0◦, 180◦]. The discretized angular grid Φ can be given by

Φ = [a(ϑ1)
∗ ⊗ a(ϑ1), . . . , a(ϑG)

∗ ⊗ a(ϑG)] ∈ CM2×G, (7)
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where G denotes the size of the angular grid, and ϑg denotes the g-th discrete DoA such
that ϑg = (180g/G)◦. Assuming θ1, . . . , θP corresponds with one of ϑ1, . . . , ϑG, y can be
rewritten as

y = Φη+ σ2i ∈ CM2×1. (8)

η ∈ RG×1 denotes the sparse vector, where the majority of the elements of η are 0. If θp = ϑg,
η(g) = z(p).

3. Off-Grid DoA Estimation via Cascaded Convolutional Neural Network

In practice, θ1, . . . , θP may not perfectly correspond to the potential DoAs in Φ. For ex-
ample, when θp = 75.3◦ and G = 180, none of the potential DoAs in Φ matches perfectly
with θp. Thus, we propose the DoA estimation algorithm based on the two-stage cascaded
NN, which can resolve the mismatch between the true DoAs and the discrete angular
grid. In the first stage, the discrete angles that are nearest to the true DoAs are estimated
by CNN. In the second stage, the difference from the true DoA and the nearest discrete
angle is estimated by DNN. The overall structure of the two-stage cascaded NN is given
in Figure 1. Throughout the paper, the term first-stage network denotes the network that
initially estimates discrete angles, and the term second-stage network denotes the network
that estimates the difference from the true DoA and the nearest discrete angles.

Figure 1. The structure of the two-stage cascaded NN. 1D convolutional layers construct the first-
stage network, and dense layers construct the second-stage network.

3.1. First Stage: DoA Estimation via Convolutional Neural Network

The CNN used in the first stage follows the network structure in [20], where 1D
convolutional layers in the CNN extract the features from the input and reconstruct η. As
the CNN in [20] does not use pooling, the number of rows of the input should be equal to
the size of the output, where the size of the output is G. To form the input whose number
of rows equals to G, η̃ is formulated as follows.

η̃ = Φ†y = ΦH(ΦΦH)y ∈ CG×1. (9)

As all elements of the input have to be real numbers, the input ζ is given by

ζ = [real(η̃), imag(η̃)] ∈ RG×2. (10)

An output of the k-th 1D convolutional layer, ck, can be represented as in [20]:

c(k) = Z
{

fAct

(
W(k−1) ∗ c(k−1) + b(k−1)

)}
, for k = 1, . . . , K, (11)

where ∗ denotes the convolution, c(0) = ζ, and K denotes the number of convolutional
layers. W(k) and b(k) denote the convolution kernel and the bias of the k-th convolutional
layers. f k

Act(·) denotes the activation function that the CNN is using. The padding operator
Z(·) adds zeros on both sides of the output of the activation function so that the size of ck
remains constant for k = 1, . . . , K.
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The loss function of the CNN is given by mean squared error (MSE), ‖η̂− η‖2, where
η̂ denotes the estimation of η. The convolution kernel and the bias that minimize the loss
function can be given by follows as in [20].{

Ŵ(k), b̂(k)
}K

k=1
= argmin
{W(k),b(k)}K

k=1

‖η̂− η‖2, (12)

where Ŵ(k) and b̂(k) denotes the convolution kernel and the bias of the k-th convolutional
layer that minimize the loss function.

The input data and the output data of the first-stage network can be summarized
as follows.

• Input data: ζ ∈ RG×2

• Output data: η̂ ∈ RG×1, trained by η

3.2. Second Stage: Resolving Mismatch via Deep Neural Network

The second-stage network followed by the first-stage network resolves the mismatch
by estimating the tuning vector ψ ∈ RG×1. ψ represents the difference between true DoAs
and nearest discrete angles. After obtaining η̂ from the first-stage network, the second-stage
network yields ψ̂ with ζ and η̂, where ψ̂ denotes the estimation of ψ. Figure 2 explains
how the DoAs are estimated when G = 180 and Θ = [80.4◦, 89.8◦]T . If the estimation is
accurate, the 80-th and the 90-th elements of η̂, respectively, are z(1) and z(2), and the 80-th
and the 90-th elements of ψ̂ are +0.4◦ and−0.2◦, respectively. To obtain the final estimated
DoAs, the initial DoAs are estimated from the discretized angular grid by finding peaks
in η̂. Then, the initial DoAs are moved as much as the difference between true DoAs and
nearest discrete angles by using ψ̂.

Figure 2. Determination of final estimated DoAs by using the output of the first-stage network η̂ and
the output of the second-stage network ψ̂.

As the input of the DNN must be a real vector, the input of the DNN χ is formulated as

χ =
[
vec(ζ)T , η̂T

]T
=
[
real(η̃)T , imag(η̃)T , η̂T

]T
∈ R3G×1. (13)

Letting L, d(l), and I(l), respectively, denote the number of dense layers, the output of the
l-th layer, and the size of d(l), d(l)(j) can be given by

d(l)(j) = tanh

I(l−1)

∑
i=1

U(l)(j, i)d(l−1)(j) + v(l)(j)

, l = 1, . . . , L, (14)

where d(0) = χ. U(l) and v(l) denote the weights and the bias of the l-th layers, respectively.
In the second stage, a hyperbolic tangent function tanh is employed for the activation
function. The reason for selecting tanh as the activation function is that the output vector of
the second-stage network must be capable of representing a negative value. For example,
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if G = 180 so that the angular grid is discretized into units of 1◦, elements of ψ̂ should be
able to range between −0.5◦ and +0.5◦. Note that ReLU and sigmoid cannot be employed
as the activation function of the second-stage network as ReLU and sigmoid can only yield
the value equal to or greater than 0.

The loss function of the DNN is given by MSE, ‖ψ̂−ψ‖2. The weights and the bias
that minimize the loss function can be denoted as{

Û(l), v̂(l)
}L

l=1
= argmin
{U(l),v(l)}L

l=1

‖ψ̂−ψ‖2, (15)

where Û(l) and v̂(l), respectively, denote the weights and the bias of the l-th dense layer
that minimize the loss function.

The input data and the output data of the second stage DNN can be summarized
as follows.

• Input data: χ ∈ R3G×1 (ζ and η̂)
• Output data: ψ̂ ∈ RG×1, trained by ψ

4. Simulation Results and Discussions
4.1. Simulation Settings

The performance of the proposed algorithm and L1-SVD [6] are compared in this sec-
tion. Even though the proposed algorithm is motivated by the work in [22], the comparison
with the work in [22] is omitted as the algorithm in [22] exploits the co-prime array [24]
and targets for the wideband signal. M = 8 and P = 2. For all algorithms, a size of the grid
G is set to 180 so that a discrete grid spacing is set to 1◦. The signal-to-noise ratio (SNR) is
defined as

SNR =
Trace(RS)

σ2M
=

1
σ2M

P

∑
p=1

z(p). (16)

The root mean square error (RMSE) is defined as

RMSE =

√√√√ 1
PQ

Q

∑
q=1

{
P

∑
p=1

(
θ̂

q
p − θ

q
p

)2
}

, (17)

where Q is the number of Monte Carlo trials for RMSE calculation, and θ
q
p and θ̂

q
p, respec-

tively, denote the true DoA and the estimated DoA of the p-th signal source on the q-th
trial.

For training, a total of 106,800 training data are used, and 20 percent of the training
data is used for the test. When generating the received signal for the training, the SNR is
randomly set between 0 and 10 dB while the number of snapshots is set to 256. DoAs are
randomly set between [30◦, 150◦], and z = [1, 1]T . Once the DoAs and SNR are determined,
the received signal X is generated as (3), and the covariance matrix RX is formulated as (4).
Using RX, the input data of the first-stage network ζ can be formulated by following the
procedure of (6)–(8) and (10). The output data of the first-stage network used for training
η can be generated by z and DoAs. If Θ = [80.4◦, 89.8◦]T , and z = [1, 1]T , η becomes a
sparse vector whose 80-th and 90-th elements are 1. Finally, the first-stage network is
trained by 85,440 different sets of ζ and η. The input data of the second-stage network
χ are generated as (13), where χ is a combination of input and output of the first-stage
network. The output data of the second-stage network used for training ψ can be generated
by DoAs. If Θ = [80.4◦, 89.8◦]T , ψ becomes a sparse vector whose 80-th and 90-th elements
are, respectively, +0.4◦ and −0.2◦. The second-stage network is trained by 85,440 different
sets of χ and ψ.

In the first-stage network, the DNN is implemented as well as the CNN to compare
the performance according to the type of the network. When the DNN is used for the first
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stage, the input ζ ∈ G× 2 is vectorized as the DNN can only support vector for both input
and output. The output is identical to η̂ in both CNN- and DNN-based first-stage networks.
Regardless of the type of network that the first stage is using, three types of activation
functions—PReLU, ReLU, and tanh—are used, and the number of convolutional layers
and dense layers in the first-stage network is set to 4. If the CNN is used at the first stage,
the kernel size of each layer is set to 25× 12, 15× 6, 5× 3, and 3× 1. If the DNN is used
at the first stage, the number of nodes in every layer is set to 200. The number of dense
layers in the second-stage network, L equals 4. Here, the number of nodes in every layer
is set to 200. Number of epochs of the first-stage network and the second-stage network
are, respectively, set to 300 and 500, and the batch size is uniformly set to 64. The overall
training settings are organized in Table 1.

Table 1. Simulation settings for training.

First Stage Second Stage

CNN DNN DNN

Activation function PReLU, ReLU, tanh tanh

Number of training data 106,800 (85,440 for training and 21,360 for test)

Number of layers (K, L) 4

Kernel size 25 × 12, 15 × 6, 5 × 3, 3
× 1 -

Number of nodes - 200

Batch size 64

The number of epochs 300 500

4.2. Performance Analysis According to Hyperparameters

The performance of the NN varies with hyperparameters, where hyperparameters
include the number of epochs and the type of the activation function. The performance
of the first-stage network is compared with respect to the number of epochs and the type
of the activation function in Figure 3. Figure 3 shows that the test MSE is lower in the
order of CNN with PReLU, DNN with PReLU, CNN with tanh, DNN with tanh, and DNN
with ReLU. PReLU has the low test MSE while tanh has the high test MSE, where the
test MSE means the loss function obtained by test data. Overall, the test MSE tends to
converge around the 200-th epoch, except the DNN with tanh which converges around the
700-th epoch. Moreover, CNN has a lower test MSE than DNN if an identical activation
function is used. From Figure 3, we can conclude that CNN whose activation function is
PReLU is best suited for the DoA estimation at the first stage. Note that the test MSE of the
second-stage network according to hyperparameters is omitted as the activation function
of the second-stage network is fixed to tanh. In case of the second-stage network, the test
MSE converges around the 500-th epoch.

Figure 4 shows outputs of the first-stage network and the second-stage network
according to the type of NN and the activation function. Note that only results of CNN
with PReLU, CNN with ReLU, and DNN with ReLU are presented as the others have
higher test MSE, and figures in the second row show the true DoAs and the final estimated
DoAs determined by two-stage cascaded NN. In Figure 4, CNN with PReLU yields distinct
peaks around true DoAs at the first stage and achieves the highest estimation accuracy
with the help of the second-stage network. However, DNN with PReLU yields obscure
peaks at the first stage, and the output of the second stage shows poor performance when
using DNN with PReLU. From Figures 3 and 4, we can tell that CNN whose activation
function is PReLU is the best option, and the output of the first-stage network affects the
output of the second-stage network.
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Figure 3. The test mean squared error (MSE) over epochs. The convolutional neural network
(CNN)-based first-stage network and the deep neural network (DNN)-based first-stage network are
compared, and three types of activation functions—PReLU, ReLU, and tanh—are used.

Figure 4. Outputs of the first-stage network and the second-stage network according to the type of
NN and the activation function. The first row presents outputs of the first-stage network, and the
second row presents outputs of the second-stage network.

4.3. Analysis on Estimation Accuracy and Resolution

Before presenting simulation results, an explanation of the terms that are used in
figures and analysis is given to avoid unclear understanding. The term single-stage denotes
the DoA estimation without the second-stage network, and the term two-stage means that
the second-stage network is added after the first-stage network. A type of the first-stage
network is described after the number of stage that the algorithm is using. Here, the type
of the first-stage network is either CNN or DNN. For example, two-stage CNN means that
there is the second-stage network followed by the first-stage network and the first-stage
network is CNN. Since Figure 3 shows that PReLU outperforms other types of activation
functions, the activation function of the first-stage network is fixed to PReLU.

Figure 5 shows the root mean square error (RMSE) of DoA estimation algorithms
when the SNR and the number of snapshots vary. Figure 5 shows that the proposed
two-stage CNN presents the best estimation accuracy among other algorithms, except
when fewer snapshots are used. When training the network, the number of snapshots
is fixed to 256 so that the condition with the fewer snapshots is not considered. Thus,
the RMSE of L1-SVD becomes lower than that of two-stage CNN and single-stage CNN
when the number of snapshots is below 18. In Figure 5a,b, the RMSE of single-stage CNN,
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single-stage DNN, and L1-SVD does not fall below 0.2◦. When the second-stage network
is added after CNN, the RMSE falls below 0.2◦ by resolving the mismatch between true
DoAs and discrete angular grid. However, when DoAs are incorrectly estimated at the first
stage, the second-stage network does not improve the RMSE as the incorrect output of the
first-stage network affects the performance of the second-stage network.

(a) (b)
Figure 5. (a) The RMSE for different SNR. Q = 1000 and D = 256. (b) The RMSE for different
number of snapshots. Q = 1000 and the SNR is set to 10 dB.

To analyze the resolution of DoA estimation algorithms, we present the RMSE when
the difference between two adjacent DoAs varies. We define a distance between two
adjacent DoAs τ as τ = |(cos θ1 − cos θ2)/2|, where τ is used as a criterion of resolution
in [25–27]. Figure 6 shows the RMSE versus τ and presents that the second-stage network
helps improve RMSE. The RMSE of the single-stage CNN and the two-stage CNN con-
verges when τ = 0.02, and the RMSE of the single-stage DNN and the two-stage DNN
converges when τ = 0.03. The RMSE of L1-SVD is higher than that of the CNN-based
DoA estimation and the DNN-based DoA estimation at every τ. From this result, we
can conclude that the CNN-based DoA estimation has the highest resolution, and the
second-stage network helps to increase the estimation accuracy furthermore.

Figure 6. The RMSE versus τ. Q = 1000 and the SNR is set to 10 dB. |θ1 − θ2| is about 1.7◦ around
90◦ when τ = 0.015 and is about 5.2◦ around 90◦ when τ = 0.045.

5. Conclusions

In this paper, we propose the off-grid DoA estimation algorithm which can resolve
mismatch induced by discretized angular grid via two-stage cascaded NN. The first-stage
network employs CNN, and a resized covariance matrix to fit the output dimension of
CNN is used as an input. The first-stage network estimates initial DoAs that can be
represented as discrete angles. Thus, there is a mismatch between true DoAs and initially
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estimated DoAs. The second-stage network employs DNN, and both input and output
of the first-stage network are used as input. The output of the second-stage network is
the tuning vector which represents the difference between true DoAs and nearest discrete
angles. By using outputs of the first-stage network and the second-stage network, final
estimated DoAs can be obtained. Simulation results show that using the cascaded NN
improves the RMSE by resolving mismatch induced by the discretized grid. Furthermore,
results show that using CNN and using PReLU as the activation function is the best option
for DoA estimation considering both estimation accuracy and resolution. The proposed
algorithm can be an attractive option for applications such as far-field localization and
far-field radar. These applications require high estimation accuracy since a small DoA
estimation error may cause large performance degradation. However, the performance of
the proposed algorithm is analyzed only when the number of signal sources is fixed. In
practice, the number of signal sources can vary so that the performance of the proposed
algorithm may decrease. Thus, a method that addresses this issue needs to be studied for
the practical implementation of the NN-based DoA estimation algorithm.
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