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ABSTRACT Recently, semantic segmentation based on deep neural network (DNN) has attracted attention as
it exhibits high accuracy, and many studies have been conducted on this. However, DNN-based segmentation
studies focused mainly on improving accuracy, thus greatly increasing the computational demand and
memory footprint of the segmentation network. For this reason, the segmentation network requires a lot
of hardware resources and power consumption, and it is difficult to be applied to an environment where
they are limited, such as an embedded system. In this paper, we propose a binarized encoder-decoder
network (BEDN ) and a binarized deconvolution engine (BiDE) accelerating the network to realize low-
power, real-time semantic segmentation. BiDE implements a binarized segmentation network with custom
hardware, greatly reducing the hardware resource usage and greatly increasing the throughput of network
implementation. The deconvolution used for upsampling in a segmentation network includes zero padding.
In order to enable deconvolution in a binarized segmentation network that cannot express zero, we introduce
zero-aware binarized deconvolution which skips padded zero activations and zero-aware batch normaliza-
tion embedded binary activation considering zero-skipped convolution. The BEDN, which is a binarized
segmentation network proposed to be accelerated on BiDE, has acceptable accuracy while greatly reducing
the computational and memory demands of the segmentation network through full-binarization and simple
structure. BEDN has a network size of 0.21 MB, and its maximum memory usage is 1.38 MB. BiDE was
implemented on Xilinx ZU7EV field-programmable gate array (FPGA) to operate at 187.5 MHz. BiDE
accelerated the proposedBEDN within CamVid11 images of 480×360 size at 25.89 frames per second (FPS)
achieving a performance of 1.682 Tera operations per second (TOPS) and 824 Giga operations per second
per watt (GOPS/W).

INDEX TERMS Binarized neural network, binarized deconvolution, binarized segmentation network,
zero-aware deconvolution, zero-skip deconvolution, neural network accelerator.

I. INTRODUCTION
Recently, the demands for semantic segmentation have grown
in various fields such as autonomous driving, surveillance
systems, smart factories, and bio-medical image diagnosis.

The associate editor coordinating the review of this manuscript and

approving it for publication was Wei Wei .

For this reason, many studies have been conducted on seman-
tic segmentation. With the advent of fully convolutional net-
work (FCN) [1], semantic segmentation based on deep neural
network (DNN) began to attract attention as it showed higher
accuracy and precision compared to segmentation based on
classical image processing. After FCN, many studies on seg-
mentation network have been conducted, and segmentation
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accuracy and precision have been greatly improved [2]–[5].
However, the segmentation network has a deep and wide
structure to enhance accuracy and especially has a net-
work architecture including feature map concatenation or
max-unpool layer due to bypass connection, which greatly
increases the computation requirement and memory foot-
print. In an environment where sufficient power is supplied,
this segmentation network could be operated through accel-
eration using an enterprise PC and graphic card. Meanwhile,
applications that have to operate in environments with limited
computing resources and power budgets, such as autonomous
driving and surveillance systems, lack system performance
and power, making it difficult to operate segmentation
networks.

Therefore, in order to reduce the computational demand
and memory footprint of the segmentation network, studies
on compact network design (CND) have appeared [6]–[9].
The CND studies improved the network structure to reduce
the number of parameters and multiply and accumula-
tion (MAC) operations, enabling the segmentation network
to operate on a mobile graphics processing unit (GPU).
Nonetheless, since data and operations are basically
expressed in and performed on a 32-bit floating-point
(or 16-bit fixed-point), there are limits to the increase in
performance and reduction in power consumption of the
segmentation network implementations. In order to reduce
memory and computation overhead due to the large bit-width
expression, studies that apply quantization to the weights
and activations of segmentation networks have appeared
[10]–[12]. The segmentation networks were quantized
with various bit-widths under 8-bit, and the computa-
tional demands and memory footprints were greatly reduced
while minimizing the loss of accuracy due to quantization.
Nevertheless, the power consumption was large due to the
implementation of the networks on the central processing
unit (CPU) or GPU as software, and the performance gain
compared to the bit-width reduced by quantization was not
large because the bit-lane and memory of computing logic
were not efficiently utilized.

In the case of a network with a bit-width of 8-bit or
less, the optimal performance and power consumption of
network implementation can be derived by designing custom
hardware optimized for the network. In the field of image
classification, many studies on hardware acceleration of
quantized neural networks under 8-bit have been conducted.
Among them, the binarized neural network (BNN), which has
the highest quantization level, showed the smallest memory
footprint and computational demand [13]–[17]. In addition,
the BNN custom hardware design has a high compute logic
utilization and on-chip memory bandwidth, resulting in the
reduction in power consumption and increase in perfor-
mance compared to the CPU/GPU implementation being very
large [18]. In the field of semantic segmentation, there have
been studies that accelerated segmentation networks through
bit-widths of 8-bit or more with hardware [19]–[24]. These
studies accelerated the segmentation network by presenting a

hardware architecture for deconvolution. Nonetheless, since
they use a large bit-width of 8-bit or more, a large logic is
required for operation, and a lot of memory is required to
store parameters and feature maps. To the best of our knowl-
edge, studies on the implementation of custom hardware for
segmentation networkswith a bit-width of less than 8-bit have
not been conducted.

Therefore, this paper aims to design a binarized segmen-
tation network and a hardware engine that accelerates it to
boost its inference speed and lower the power consumption.
To this end, we perform thorough analysis on hardware accel-
eration of segmentation network and BNN, identify some
challenges arising from hardware implementation of bina-
rized segmentation network, and find ways to solve them.
First, the segmentation network employs a deconvolution
layer unlike the traditional classification network, and decon-
volution includes many zero activations due to zero padding.
Since BNN cannot express zero, operation and storage of
zero activations in deconvolution must be skipped. Second,
the number of nonzero activations differs for each convo-
lution sliding window due to zero padding of deconvolu-
tion. In the BNN accelerator, batch normalization is embed-
ded in the activation function and processed as thresholding
[14], [15]. Due to the variation in the number of nonzero acti-
vations in the sliding window, a range mismatch occurs when
comparing the threshold and the convolution output. To solve
this, it is necessary to perform thresholding in consideration
of the number of nonzero activations for each sliding window.
Third, the segmentation network has very large feature maps
transferred between layers and has a complex structure that
maintains feature maps or pool indices while executingmulti-
ple layers, such as feature map concatenation or max-unpool,
so the memory requirement is very high. Therefore, in order
to minimize the memory requirement due to feature maps,
a simple segmentation network and hardware architecture
minimizing feature map storage are needed.

In this paper, we propose binarized encoder-decoder
network (BEDN), a binarized segmentation network with
a simple structure, and design binarized deconvolution
engine (BiDE), implementing it on field programmable
gate array (FPGA) for accelerating BEDN to realize the
above-described solutions. Our contribution is as follows.
• We design BEDN with a simple segmentation net-
work structure focused on considering hardware con-
straints and minimizing the memory overheads caused
by feature maps of network inference. Moreover,
we designed BiDE, a hardware engine for segmen-
tation inference based on a heterogeneous streaming
architecture that consumes all feature maps in on-chip,
eliminating off-chip memory accesses of feature
maps.

• We propose an encoder-decoder structure with sim-
ple unit blocks and organize the network training
methodology of BNN with deconvolution layers and a
straight-through estimator using hyperbolic tangent for
image segmentation neural network.

VOLUME 9, 2021 8007



H. Kim et al.: BEDN and BiDE for Semantic Segmentation

• We propose the zero-aware binarized deconvolution
hardware architecture that skips the operation and
storage of zero activation and performs binarized
deconvolution.

• For the batch normalization and activation function
of zero-aware binarized convolution, we propose
zero-aware batch normalization embedded binary acti-
vation that considers the number of nonzero activa-
tions in the sliding window and a hardware architecture
performing this.

• The accuracy and memory footprint of the proposed
BEDN are evaluated and compared with other segmen-
tation networks for a representative semantic segmenta-
tion dataset. Also, the performance, power consumption,
and resource utilization of the proposed BiDE are eval-
uated and compared with the conventional segmentation
network accelerator.

This paper is organized as follows. II deals with the
background and related works on segmentation networks,
BNNs and their hardware implementation. III describes the
binarization of segmentation network and BEDN structure.
IV explains the zero-aware binarized deconvolution and
zero-aware batch normalization embedded binary activation
techniques, and describes the BiDE architecture. V reports
the evaluation and analysis results of BEDN and BiDE.
VI discuss features about proposed BEDN and BiDE, and
VII presents the conclusion of this paper.

II. BACKGROUND
A. PIXEL-WISE SEMANTIC SEGMENTATION NETWORKS
The DNN approaches of pixel-wise semantic segmentation
show excellent performance in various benchmark datasets
[25]–[27]. In particular, DNN-based semantic segmentation
has the advantage of obtaining a segmented image from
an input image in an end-to-end manner. This segmenta-
tion network mainly has an encoder-decoder structure as
shown in Fig. 1. The encoder extracts high-dimensional
semantic information through convolution while reducing
the spatial dimension by downsampling, and the decoder
gradually restores the loss of spatial information due to
the spatial dimension reduction through upsampling. An
existing classification network model can be adopted as a

FIGURE 1. Conventional encoder-decoder segmentation network
architecture [4].

baseline for the encoder. In general, strided convolution or
max-pool is employed for downsampling, and deconvolution
or max-unpool is adopted for upsampling. The max-pool
stores the indices when pooling in the encoder, max-unpool
restores the inputs at the positions indicated by the indices
and restores the spatial dimension by filling the remaining
pixels with zeros when unpooling in the decoder [4]. Like
convolution, deconvolution restores the spatial dimension of a
feature map using trainable weight filters and an input feature
map [1], [3], [5]. According to the operation method, decon-
volution can be classified into padding free deconvolution
and zero padding deconvolution [24]. padding free deconvo-
lution performs scalar-matrix products that multiply a single
input through elements of a filter matrix, and constructs an
output feature map with the resulting windows as illustrated
in Fig. 2a. Depending on the stride, windows overlap and
the values of this part are summed. zero padding deconvo-
lution pads zeros between activations of the input feature
map according to the stride and convolves the expanded input
feature map and flipped weight filters to obtain the output
feature map as shown in Fig. 2b. The decoded feature map
is transferred to the last layer and pixel-wise classification is
performed. Through this, the segmented image is obtained by
classifying the class of each pixel in the image.

FIGURE 2. Deconvolution methods. (a) Padding free deconvolution,
(b) zero padding deconvolution. (Best viewed in color).

B. BINARIZED NEURAL NETWORKS
BNN is a quantized network in which the weights or both of
weights and activations are limited to +1 and −1, and unlike
the traditional network expressed in 32-bit Full-Precision
(FP), BNN is expressed in 1-bit. [28]. This BNN is obtained
by quantizing activations and weights during the training
process of the network. The key to BNN training is to min-
imize the loss of accuracy of the network by reducing the
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quantization error, which is the difference between FP weight
and 1-bit weight. In the training process, weight binarization
is performed by obtaining errors between the ground truths
and the results inferred from forward propagation using 1-bit
weights and updating the gradients obtained from the errors
to the FP weights in backward propagation. This training
method increases training time because the weights used in
the forward path and the weights utilized in the update path
are different, making it difficult to converge the weights.
The binarization of activations is achieved by using the
sign (signum) function as the activation function. The deriva-
tive of the sign function has a problem of the gradients not
propagating well because the slopes are zero in all input range
except at 0 (x = 0) during backward propagation. To solve
this problem, straight-through estimator (STE) [28], [29] was
proposed. In STE, the derivative is designed so that it has a
shape similar to the derivative of the sign function and has
slopes in a significant input range, and the problem is solved
by replacing the existing derivative with the designed one. At
this time, the accuracy and training speed of the network vary
according to the shape of the derivative that has replaced the
existing one of sign function.

BNN has a loss of accuracy due to loss of information from
quantization, but it has been attracting attention as a neural
network application solution in environments where power
and hardware resources are limited because it greatly reduces
the memory footprint and computational demand of neural
network inference. BNN binarization can be classified into
partial-binarization, which binarizes only weights, and full-
binarization, which binarizes both weights and activations.
Partial-binarization [30], [31] has the advantage of greatly
reducing theweight size so that all parameters can be stored in
the on-chip memory, and the loss of accuracy is small because
the activations are maintained in FP. Full-binarization [28],
[32], [33] has the advantage of significantly reducing the
memory footprint by reducing the size of feature maps trans-
ferred between layers while taking more loss of accuracy by
binarizing activation.

C. BINARIZED NEURAL NETWORK OPERATION
OPTIMIZATIONS
BNN can reduce the number of computations and hard-
ware resources used for computations by optimizing neural
network operations because data is limited to +1 and −1.
Operations optimized in BNN include MAC operation, batch
normalization operation, and activation function. MAC oper-
ation is the main operation of convolution, which multi-
plies input activation and weight, accumulating it in units of
the sliding window. There are only 4 multiplication opera-
tions possible with data consisting of +1 and −1, as shown
in Table. 1. Here, if −1 is expressed as 0, data can be
expressed in 1-bit, and the multiplication operation is the
same as XNOR. Therefore, the multiplication of BNN can be
implemented as an XNOR gate instead of a multiplier with a
large logic size [28], [32].

TABLE 1. Relationship between +1, −1 multiplication and XNOR.

Accumulation is the addition of all the multiplica-
tion results in the sliding window, and the multiplication
results are only +1 or −1, so accumulation can be calcu-
lated with the number of ones − the number of minus ones
in the sliding window. Since the number of −1 is
fan-in of sliding window− the number of ones, accumulation
can be obtained by simply counting the population (pop-
count), which is the number of ones in the sliding window.
Here, fan-in refers to the number of elements of the slid-
ing window. Therefore, the accumulation of BNN can be
implemented with popcount logic. Since BNNmultiplication
is carried out by XNOR, a multiplication result of −1 is
output as 0. Popcount can be implemented in signed popcount
[14], [16], [34] which accumulates by changing 0 into−1 and
unsigned popcount [15], [35] which adds 0 as it is.

Batch normalization is performed through complex math-
ematical calculations such as (1) using the average µ and
variance σ of the input batch, and the learned parameters γ
and β.

YNorm = γ
(Y − µ)
√
σ 2 + ε

+ β (1)

Y refers to a convolution output calculated through MAC
operation in a sliding window unit, and YNorm refers to a
normalized convolution output. If the batch normalization
formula is summarized for Y , it becomes (2).

YNorm =
γ

√
σ2 + ε

{Y − (µ−

√
σ 2 + ε

γ
β)}

= λ{Y − (µ−
β

λ
)} (2)

For simplicity of expression, in this paper, the scale term
γ /
√
σ2 + ε is expressed as λ. BNN performs binarization

and activation of the convolution output through the sign
activation function.

If the network architecture is an architecture in which
the activation function follows batch normalization, the sign
activation function is equal to (3) and activates when the nor-
malized convolution output (YNorm) is greater than or equal
to 0.

Activation =

{
1, YNorm ≥ 0
0, otherwise

(3)

Since only the sign of YNrom is needed in the sign activa-
tion function, the λ scale of (2) can be ignored. Eventually,
if λ is positive, the sign activation function is to activate

VOLUME 9, 2021 8009



H. Kim et al.: BEDN and BiDE for Semantic Segmentation

if Y − (µ− β/λ) ≥ 0, so it can be expressed as (4).

Activation =

{
1, Y ≥ µ− β

λ

0, otherwise
(4)

If λ is negative, that is, if γ is negative, the inequality sign
of (4) is reversed. By using µ − β/λ of (4) as a thresh-
old and activating only Y that exceeds the threshold, batch
normalization and sign activation can be performed at once
[14], [15]. We call this as batch normalization embedded
binary activation (BNEBA).
µ, σ , γ , and β are parameters determined during training.

Therefore, since the thresholds can be calculated in advance
off-line, the complex operations of batch normalization do
not need to be carried out at run-time. When unsigned pop-
counts are utilized during calculating convolution outputs,
it is necessary to make the ranges of convolution outputs and
thresholds equal. In the case of using unsigned popcount,
the range of the convolution outputs is [0,+fan-in], but the
thresholds use signed accumulation during training, so the
range is [−fan-in,+fan-in]. Therefore, the thresholds are
shifted and scaled like (5) to match the convolution outputs
and the thresholds ranges [15].

thnew = (thold + fan-in)/2 (5)

thold is the threshold precompute during training, and thnew is
the threshold in which the range is matched to the convolution
output.

D. RELATED WORKS
Early segmentation networks were developed in the direction
of increasing accuracy, and this resulted in complex structures
with a large number of parameters and operations [1]–[5].
These networks are based on the encoder-decoder structure,
and the multi-scale feature maps generated by the encoder are
concatenated in the decoder [1], [3], [5] or either max-unpool
is used in the decoder [2], [4]. Such a complex structure
requires the storage of feature maps or pool indices, resulting
in a very large memory footprint. Therefore, these networks
require high-end graphics card acceleration such as NVIDIA
Titan [3], [4] or Tesla K40c [1] even for inference. In the case
of FCN [1], the PASCAL Visual Object Classes (PASCAL
VOC) 2011, 2012 test sets are inferred with the latency of
< 175 ms on NVIDIA Tesla K40c.
In order to reduce the computational demand and memory

footprint of a segmentation network, studies have emerged to
reduce bit-width by quantizing the activations and weights of
the network. Fixed point U-Net [10] proposed U-Net quan-
tized with various bit-widths from 16-bit to partial binary.
This study reduced the memory requirement by 8 times
compared to FP with a 4-bit weight, 6-bit activation network,
and showed only dice score losses of 2.21%, 0.57% and
2.09% for the spinal cord gray matter segmentation (GM),
electron microscopic (EM), and public national institute of
health (NIH) datasets, respectively. Quantized FCN [11]
quantized FCN to 7, 5, and 3-bit. This study reduced memory

usage by 4.6× and improved dice score by 1% compared to
FP network [36] with a 7-bit network for the medical image
computing and computer assisted interventions (MICCAI)
Gland dataset. The binarized FCN [12] partially binarized
the FCN, and showed 7% and 4.7% mean intersection over
union (mIoU) loss for PASCAL VOC 2012 and Cityscapes
datasets, respectively, and inferred 256 × 160 images on
Tegra K1 CPU at a rate of 0.81 frames per second (FPS).
However, these studies still have large memory footprints by
using complex network structures such as FCN and U-Net.
Furthermore, because the quantized neural network was
implemented as software on the CPU or GPU, the bit-lane
utilization of the compute logic was poor, with limited
performance gain.

Therefore, in order to accelerate the quantized segmenta-
tion network and reduce the power consumed by it, many
studies have appeared in accelerating by custom hardware.
The main difference between the traditional classification
networks and the segmentation networks is the deconvolution
layer, so these studies focused on the acceleration of decon-
volution, presenting hardware architectures for padding free
deconvolution or zero padding deconvolution. Liu et al. [20]
and FCN-engine [23] accelerated the padding free deconvo-
lution of an 8-bit network with FPGA and application specific
integrated circuit (ASIC), respectively. Liu et al. inferred
the 256 × 256 images at 1.79 FPS/W. PAI-FCNN [22], DT-
CNN [21], and RED [24] accelerated zero padding deconvo-
lution by hardware, and took approaches to skip the operation
of zero activation. PAI-FCNN accelerated a 3-bit weight,
an 8-bit activation network with FPGA and inferred 300×300
images at 10.1 frames per second per watt (FPS/W). DT-CNN
designed an ASIC that accelerates an 8-bit network and
inferred 288 × 288 images at 349 FPS/W. The high FPS/W
of DT-CNN was possible because of the very low number
of operations in network and power consumption. RED
designed a memristor that accelerates the Resistance Random
Access Memory-based (ReRAM-based) FP network.
Deconvolution is an operation that is also adopted in gen-
erative adversarial networks (GAN), and there have been
many studies on deconvolution accelerators for GANs.
Wang et al. [37], Song et al. [38], GANAX [39], Ler-
GAN [40] accelerated the 16-bit network, and GNA [41]
implemented deconvolution accelerator that supports flexible
bit-width of 8-bit and 16-bit.

We have noticed several factors that hinder performance
and increase power consumption in conventional quan-
tized segmentation networks and hardware accelerations.
Traditional quantized segmentation networks have large
memory requirements due to feature map concatenation or
max-unpool. According to our calculation, the maximum
memory usage of 480 × 360 image inference of CamVid
dataset [42] is 416 mega bytes (MB) for FCN, 45 MB for
SegNet, and 28MB for DeepLabV3+. The size of the feature
maps can be greatly reduced by performing binarization,
but the segmentation networks have been studied only down
to partial binarization, and there has been no research on
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full binarization. Researches on hardware acceleration have
only been conducted down to 8-bit using large logic for
computation. In addition, traditional segmentation network
accelerator studies process layers sequentially, and because
featuremaps are large, off-chipmemory accesses occur due to
feature maps transferred between layers. The resulting power
consumption and latency are expected to be large, but existing
studies have not considered it [21]–[23], [37], [39], [41].
Liu et al. [20] and Song et al. [38] store all feature maps in
on-chip memory. This was possible because the former sig-
nificantly reduced the image size and network channel size,
and the latter was GAN, the input image and network channel
size being small. In general, a segmentation network has
large-sized inputs and large-sized channels, so the size of fea-
ture maps is large. Our proposed BEDN reduces the memory
footprint through a simple structure and greatly reduces the
parameter size, feature map size, and computational demand
through full binarization. Moreover, BiDE, which accelerates
BEDN, is designed based on a heterogeneous streaming archi-
tecture, and processes all feature maps transferred between
layers in on-chip, showing high performance and low power
consumption through binarized convolution and deconvo-
lution operations. Table. 2 summarizes the advantages and
disadvantages of previous implementations and ours.

TABLE 2. Pros and Cons of various segmentation network
implementations.

III. BINARIZED ENCODER-DECODER NETWORK
This chapter describes the architecture of the proposed BEDN
and its binary-quantization that reduces the computational
demand and memory footprint of the network for BiDE.

A. NETWORK ARCHITECTURE
BEDN architecture is illustrated in Fig. 3. The architecture
of BEDN is designed in consideration of hardware con-
straints. There are two representative methods of configuring
a layer of a fully binarized neural network. The first is
a method applied to BEDN, which was first proposed by
Hubara et al. [28], consisting of a unit block of Fig. 3a.
This unit block performs sign activation at the end so that
the 1-bit binarized activations are transferred between layers.
The second method was proposed in Xnor-Net [32] and
Bi-real net [33] to improve accuracy, and its architecture is
depicted in Fig. 3b. This architecture binarizes the activations
through the sign activation function just before the convo-
lution operations, so 1-bit activations are only used during

the convolution operations. After convolution, activations are
restored to FP by multiplying the convolution outputs by the
scale parameters and performing batch normalization, so FP
activations (FP feature map) are transferred between layers.
Therefore, there is an advantage of designing a network
model with higher accuracy using this FP feature map. Even
so, in the case of a segmentation network, the size of feature
maps is much larger than that of the classification network,
so designing a segmentation network based on the unit block
in Fig. 3b increases the memory footprint a lot. In this regard,
as in Yang et al. [43], the memory footprint can be reduced by
grouping two unit blocks and streaming the FP feature map
without storing it in memory. However, since the FP feature
map cannot be utilized, this method has the same model as
the network model using the unit block of Fig. 3a. Therefore,
BEDN is designed based on the unit block of Fig. 3a to reduce
the memory footprint.
BEDN has an encoder-decoder structure in which the unit

block of Fig. 3a is repeated as in Fig. 3c. The encoder
extracts features of the input image using binarized convo-
lution, and the decoder expands the features using binarized
deconvolution, creating a segmented image of the same size
as that of the input image. BEDN has a simple and repetitive
architecture like SegNet or U-Net but does not employ bypass
connections such as feature map concatenation of U-Net or
max-unpool of SegNet to reduce the memory footprint. The
BEDN model is shown in Table. 3. The basic model con-
sists of a total of 11 convolution layers. Layer 1–6 compose
encoder and extract features of the input image while reduc-
ing the spatial dimension by performing strided convolution
in layers 3 and 5. In the case of using the max-pool for spa-
tial dimension reduction in a network with 1-bit activations,
since activations have only one of two values −1 and +1,
many values in the pooling window are maximized, greatly
reducing the effect of the max-pool. Therefore, BEDN uti-
lizes strided convolution instead of the max-pool. Layer 6–11
constitute decoder and restore the spatial dimension by
expanding features through deconvolution in layers 7 and 9.

TABLE 3. BEDN model for CamVid11 dataset segmentation.
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FIGURE 3. BEDN architecture. (a) 1-bit Unit Block, (b) 32-bit Unit Block, (c) BEDN model.

The convolutional unit of the last layer does not have an
activation function to obtain a segmented image consisting of
scores of each class, thus the normalized convolution results
being output as scores. In this BEDN architecture, the model
can be easily changed by repeating and removing unit blocks,
and the designer can intuitively modify the model to trade-off
the accuracy and the number of operations (OPs). The number
of OPs for each layer in Table. 3 is calculated using (6).

OPs = (ICH × OCH × IW × IH × K 2)/St2 (6)

The number of physical giga operations (GOPs) is calculated
by considering the input feature maps excluding padded
zeros, and the number of logical GOPs is calculated by
considering the input feature maps including padded zeros
in the deconvolution layer.

B. NETWORK TRAINING
BEDN is a fully binarized neural network, and activations
and weights are binarized by applying network quantization
techniques in the training process. Training of BEDN follows
the binarization methodology proposed in Hubara et al. [28].
The binarization method used for the deconvolution layer is
the same as the convolution layer. Consequently, training of
BEDN is performed by forward propagation with binarized
weights to obtain errors and updating FPweights in backward
propagation while propagating gradients derived from the
errors.BEDN utilizes the sign function as an binary activation
function for forward propagation, and uses the derivative of
the hyperbolic tangent function modified by the STE method
for backward propagation.

The activation functions and its derivatives used for train-
ing BNN are shown in Fig. 4. Sign function and its derivative
are shown in the Fig. 4a, which is zero in all range except
at zero (x = 0), and gradients are not transmitted in this
range. Fig. 4b is the method proposed in Hubara et al. [28],
so that gradients can be transmitted in the range of [+1, −1]
using the derivative of hard hyperbolic tangent (tanh ). The
proposed method shown in Fig. 4c prevents disconnection
that appears at the boundary of +1 and −1 in Fig. 4b and
helps gradients to be transmitted continuously in backward

FIGURE 4. Forward and backward approximations of sign activation
function. (a) actual forward and backward functions of sign activation.
(b) STE approximation [28]. (c) our modified approximation.

propagation, which boosts the training speed and improves
the accuracy [29]. The derivative that we employed can be
expressed as (7), where x is an input and the scale α is the
hyper-parameter with a default value of 1. The scale α affects
the training convergence speed and final accuracy.

d tanh(x)
dx

= α × sec 2(x), α > 0 (7)

When network training is completed, trained batch normal-
ization parameters are embedded into the thresholds to apply
the BNEBA which is described above in II-C. The embed-
ding of the batch normalization parameters is performed by
calculating the threshold of (4). In the case of networks
using multi-bit weights, batch normalization parameters can
be folded to the weights of the convolution layer, as in
Jacob et al. [44]. Meanwhile, in BEDN, since the weights are
binary, other information cannot be folded into the weights,
so BNEBA is used.

IV. BINARIZED DECONVOLUTION ENGINE
We design BiDE in order to accelerate BEDN. BiDE per-
forms deconvolution and BNEBA considering padded zeros
for binarized deconvolution. This chapter describes the
baseline architecture of BiDE, the binarized deconvolution
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engine architecture, and the hardware architecture for other
operations in detail.

A. BASELINE ARCHITECTURE
BiDE is designed based on FINN [15] architecture. FINN is a
heterogeneous streaming architecture as illustrated in Fig. 5a.
Each layer has a dedicated compute array, and each array is
shaped by considering the number of operations and latency
of the layer. Therefore, the hardware structure is specific
to the network architecture, but since it is an FPGA imple-
mentation, it is possible to cope with network architecture
changes. As depicted in Fig. 5b, compute arrays do not wait
until the previous layer’s operations are completely finished,
and as soon as the previous layer’s outputs are produced,
it starts the operations immediately by using it as inputs. Data
transfers between compute arrays are streamed through first
in first outs (FIFOs). In this structure, since the feature maps,
which are the layer outputs, are immediately consumed in the
next layers, memories for storing the feature maps other than
shallow depth FIFOs and small buffers are not required.

FIGURE 5. Overall architecture and scheduling. (a) heterogeneous
streaming architecture, (b) pipelined layer scheduling.

On the other hand, as explained in II-D, conventional
accelerators execute one layer completely and then execute
the next layer. Therefore, it is necessary to store the entire
feature maps transferred between layers, and because the
size of the feature maps is large, a lot of off-chip memory
accesses are required. In order to reduce such off-chip mem-
ory accesses and reuse feature maps in on-chip memory as
much as possible, there has been a study that first processes
operations in pyramid units composed of multi-layer tiles as
depicted in Fig. 6a [45]. If the pyramid is constructed so that
the outputs (features) of each tile can be sufficiently stored
in the on-chip memory, the features created in each layer can
be immediately consumed by the next layer and be discarded.
Venkataramani et al. [46] also attempted to eliminate off-chip
memory accesses by scheduling the layer executions to the

FIGURE 6. Multi-layer execution. (a) computation pyramid across
multi-layer, (b) temporally sequenced layer execution on a systolic array,
(b) spatially pipelined layer execution on a systolic array.

systolic array to reuse the feature maps as much as possible
in the next layers. If the layer tiles of Fig. 6a are sequentially
scheduled in the systolic array, it is the same as Fig. 6b. After
computing the layer 1 tile, the layer 2 tile is computed by
using the outputs of layer 1 tile as the inputs, and the outputs
of the layer 1 tile are discarded. In this method, the features
can be reused in the processing element (PE) array registers
by allocating the next layer tile to the PEs in which the outputs
of the previous layer tile are stored, having no need to store
the features in scratchpad memory. However, as in Fig. 6a,
the workloads of layer tiles are different, so the utilization
may not be good because the workloads are not fit to the PE
array. To avoid this, multi-layer workloads can be allocated
spatially to fit the PE array, and features can be reused in
on-chip scratchpad memory by simultaneously processing
them in a pipeline manner as depicted in Fig. 6c. This method
stores all the computation results of each layer tile in the
scratchpad memory. Although it is much smaller than the
off-chip memory access, the latency of accessing the scratch-
padmemory is nontrivial. Assuming the size of layer 1, 2, and
3 tiles to be 6×6×16, 4×4×24, 2×2×32, respectively, and
the scratchpad memory to be a single port memory, 960 input
reads and 512 output writes occur during layer 1 and 2 tile
execution, and a total of 1472 cycles are required. (read:
6 × 6 × 16 + 4 × 4 × 24, write: 2 × 2 × 32 + 4 × 4 × 24)
This assumes that all weights are reused in PE, so scratchpad
memory accesses occur only when reading inputs/outputs of
each layer tile. Thus, the number of cycles is calculated by
considering only the reads andwrites of activations (features).
Also, since thismethod operates in units of layer tiles, the next
layer tile operation can be started only after the previous layer
tile operation is completed. Besides, the time for reading the
inputs and filling the PE array before starting the execution
of the PE array and the time for writing the outputs after
the execution is completed are required other than the execu-
tion time. Therefore, assuming that multiply takes 3 cycles,
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addition takes 1 cycle, 3 × 3 kernel is used, and 32 and
16 PEs with 8 single instruction multiple data (SIMD) lanes
are allocated to layer 1 and 2 tiles respectively, computation
takes 1728 cycles (= 3×3×16×24×4×4× (3+1)/(32×
8) + 3 × 3 × 24 × 32 × 2 × 2 × (3 + 1)/(16 × 8)), and a
total of 3200 cycles (compute: 1728, read: 512, write: 960)
are required to process layer 1 and 2 tiles.

The heterogeneous streaming architecture has compute
arrays dedicated to each layer, so the array is fully utilized.
Layer outputs between compute arrays are not stored in mem-
ory, and features asmany as SIMD lanes are directly streamed
in bulk through wide FIFOs. Also, as soon as the number
of features equal to the number of SIMD lanes is created,
the computations of the next layer can be started. Therefore,
in the case of a heterogeneous streaming architecture that has
the same number as the number of SIMD lanes and PEs used
in the assumption of the Fig. 6c architecture in the above
paragraph, the number of computation cycles is the same,
but the number of cycles to read/write features proportionally
decreases as much as they are transferred in bulk. In other
words, if the assumption applied to the cycle calculation of
the Fig. 6c architecture in the previous paragraph is applied
to the heterogeneous streaming architecture as it is, it takes
184 cycles (= 1472/8) to read/write and a total of 1912 cycles
(compute: 1728, read: 64, write: 120) to process layer 1 and
2 tiles. Therefore, for the purpose of this paper, which is low
power and real-time segmentation inference, a heterogeneous
streaming architecture with low latency and low memory
overhead due to the feature maps and high utilization of
computing resources is adopted as the baseline architecture.

The compute array of baseline architecture illustrated
in Fig. 5a is mainly composed ofMatrix-Vector Thresholding
Unit (MVTU) and Sliding Window Unit (SWU). MVTU is a
unit in charge of binarized convolution and is a computational
core.MVTU performs the XNOR-popcount operations of the
weight matrices and the input activation vector, accumulates
the generated partial sums, and performs thresholding on
accumulations. The XNOR-popcount operation corresponds
to the MAC operation, and the thresholding corresponds
to the batch normalization and activation function of the
conventional convolutional neural network (CNN). MVTU
employs unsigned popcount, so scaling and shifting of (5) are
applied to the thresholds. The structure ofMVTU is depicted
in Fig. 7. It consists of FIFOs for input/output activation
stream, input/output buffer, and P processing elements (PE).
PEs create different output channels in parallel using different
weight filters for the same input feature map. The input acti-
vation stream is broadcasted to all PEs. Each PE has S SIMD
lanes, and performs XNOR-popcounts on S input channels
in parallel to obtain partial sums, and then, accumulates the
partial sums. When the XNOR-popcount operations for one
sliding window are completed, the accumulated partial sum,
that is, the convolution output, is normalized and activated
through thresholding and stored in the output buffer. Weight
memories and threshold memories are distributed to each
PE. The weight memories and threshold memories of each

FIGURE 7. Matrix-vector thresholding unit.

MVTU store all the weights and thresholds required for the
operations of the corresponding layer. Since every layer has
a dedicated MVTU, all network parameters (weights and
thresholds) are stored in on-chip memory. Therefore, off-chip
memory accesses occur only when reading input images,
writing inference results, and bringingweights and thresholds
once to the on-chip memory initially. In the case of the BEDN
model shown in III-A, the size of weights and thresholds of
the entire layer is only 213 kB. All other reads/writes are
resolved in on-chip memory.

For parallel execution in the SIMD lanes ofMVTU, feature
maps and weight filters are streamed and stored in a channel
interleaving manner as depicted in Fig. 8a. The left side of
Fig. 8a is an example of channel interleaving of the feature
map when the 3 × 3 × 4 feature map is simultaneously
processed by two SIMD lanes. Each element indicated by Ni
represents the N-th element of the i channel. In this example,
since the number S of SIMD lanes is two, two input channels,
that is, 2-bit, are processed as one word and interleaved in
units of two channels. The right side of Fig. 8a shows an
example of channel interleaving of the weight filter when four
2 × 2 × 4 weight filters are processed in parallel with two
SIMD lanes (S = 2) on two PEs. Since the number of PEs P
is two, four filters are stored in twoweight memories, and like
the input feature map, they are interleaved and stored in units
of two channels.
SWU creates an input activation stream used in MVTU

from the output activation stream of the previous layer.MVTU
consumes all partial sums and generates output by calculating
in units of the sliding window like Eyeriss [47]’s output
stationary method. Therefore, SWU creates an input stream
in units of the sliding window in the order of accesses from
MVTU. In this process, the overlapping parts of the win-
dows are redundantly streamed. Due to this, it seems that
bandwidth is consumed redundantly, but even when input
activation is reused in on-chip memory or register, one read
cycle is required to utilize the redundant activation, so the
latency is the same in both cases. The difference between the
two cases is that in case of reuse, the activation is written once
to the memory or register and then read several times, that is,
reused, and in the case of streaming, the activation is written
several times and also read several times. However, since
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FIGURE 8. Streaming method. (a) channel interleaving, (b) SWU
operation. (Best viewed in color).

FIFO has separate read/write ports, it is possible to read/write
at the same time, and writes caused by stream generation
operate in a pipelined manner withMVTU, so that the latency
can be hidden.

Fig. 8b illustrates the operation of SWU. In the input feature
map (IFM) memory, channel interleaved output feature maps
streamed from the previous layer are stored in a raster scan
order. The address generator creates IFM memory addresses
while sliding the window. SWU reads input activations from
IFM memory with the created addresses and streams the
reordered input activation vector to MVTU. IFM memory
needs to hold the input feature map rows as much as the
sliding window height for reordering the input feature map,
so it requires (kernel height+1)× input feature map width×
the number of input channels bits including one IFM row for
prefetching.

B. ZERO-AWARE BINARIZED DECONVOLUTION
As described above in II-A, deconvolution can be classified
into padding free deconvolution and zero padding deconvolu-
tion. In padding free deconvolution, the overlapping portions

of the windows must be added, so the multiplication results
of multiple windows must be held for a long time. Since
this requires a lot of buffers in the streaming architecture,
we adopted zero padding deconvolution. zero padding decon-
volution is performed through upsampling the input feature
maps by padding zeros, and then convolve the expanded
input feature maps and flipped weight filters. Since this is
a convolution operation, it seems that it can be calculated
with MVTU and SWU of the baseline architecture, but this
is impossible. This is because BNN is represented by only
two numbers +1 and −1, so zero cannot be expressed. Since
the zero used inMVTU and SWU refers to−1,MVTU cannot
perform deconvolution including the actual zero. Therefore,
in order to enable deconvolution operation in BNN, we pro-
pose zero-aware binarized deconvolution that skips opera-
tions and storage of zero activations and design streaming
hardware that can perform this.

To skip deconvolution’s operations and storage of zero
activations, we need to know the positions of padded zero
activations in the input feature maps. The zero padding of
deconvolution uniformly inserts zeros between pixels of the
input feature map according to the downsampling rate (stride)
of the layer corresponding to the deconvolution layer in the
encoder. That is, the locations of padded zeros are determined
according to the network architecture, and the locations of
zero activations can be known in advance without perform-
ing zero detection. Since BiDE is dedicated to the network
architecture, each compute array performing deconvolution
can be designed to separately skip zero activations.

The compute array that performs the operations of
zero-aware binarized deconvolution is composed of
Zero-Aware Sliding Window Unit (ZASWU) and Zero-Aware
Matrix-Vector Thresholding Unit (ZAMVTU). ZASWU skips
zero activations in the zero padded feature maps and creates
a nonzero activation input stream to be used in ZAMVTU.
Zero padding in deconvolution is performed to restore the
dimension as much as it is reduced in the downsampling
layer. Fig. 9 shows downsampling due to strided convolution,
and Fig. 10 shows sliding windows of the deconvolution
layer corresponding to Fig. 9. The input feature map is the

FIGURE 9. Downsampling using strided convolution with 2 strides,
3× 3 kernel, and bottom, right zero edge padding.
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FIGURE 10. Sliding window patterns of deconvolution. (Best viewed in color).

output feature map of the previous layer, and the input feature
map is upsampled by padding zeros for deconvolution. The
convolution is carried out by sliding the window on the
zero padded input feature map. In the example network
architecture, the sliding window is repeated in four patterns.
These four patterns can be associated with the spatial coor-
dinates of each sliding window output in the output feature
map. When the spatial coordinates of the sliding window
output are expressed as (row, column), the sliding window
is pattern 1 for (odd, odd), pattern 2 for (odd, even), pattern 3
for (even, odd), and pattern 4 for (even, even). In the case of
a sliding window including edge padding, the padded edges
are separately skipped (black pixel and black box).

Fig. 11 shows the input stream generation of ZASWU.
The output feature map of the previous layer is streamed to
ZASWU through the input FIFO. The output feature map of
the previous layer, that is, the input feature map of the current
layer interleaved by S channels in raster scan order, is popped
out from the input FIFO and stored sequentially in the IFM
memory. IFM memory is a line buffer with S-bit width, and
addresses are assigned using S-bit as words. ZASWU reads
the nonzero activations of each sliding window pattern from
the IFMmemory while sliding the window, creates a nonzero
activation stream, and stores it in the output FIFO. To this
end, ZASWU creates IFM memory addresses of nonzero
activations based on the output spatial coordinates and the
patterns of the sliding windows. In the example of Fig. 10
and Fig. 11, when the output spatial coordinates are (1,1)
(red pixel), the sliding window pattern is 1, so the IFM
memory addresses are created in the order of 0, 1. When
the window slides, the output spatial coordinates are (1,2)

FIGURE 11. Nonzero input stream generation of ZASWU.

(blue pixel), and the sliding window pattern is 2, so the
IFM memory addresses are generated in the order of 0, 1,
2, 3. If the output spatial coordinates are (0,0) (black pixel),
the pattern is 4, but since zero edge padding is included,
IFM memory addresses 0, 1, 2, 3, 6, 7 are skipped and
only 8 and 9 are generated. SWU creates IFM memory
addresses while sliding the window in raster scan order from
output spatial coordinates (0,0), reads nonzero activations
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from IFM memory using the created addresses, and streams
them to ZAMVTU. Since ZASWU creates an input stream
from feature maps where zeros are not padded, IFM memory
only needs spaces as much as (filter height − stride + 2) ×
input feature map width × the number of input channels bits
for input reordering. It includes IFM rows of filter height −
stride + 1 for the sliding window, and one IFM row for
prefetching. Therefore, ZASWU has the effect of reducing
the size of the IFM memory by skipping the storage of zero
activations.
ZAMVTU performs zero-skipped convolution by using the

input activation stream generated in ZASWU. Since ZASWU
only streams nonzero activations in the sliding window,
ZAMVTU reads only the weights corresponding to the spa-
tial coordinates of each nonzero activation and performs the
XNOR-popcount operations. As described in the previous
paragraph, the coordinates of nonzero activations are deter-
mined by the sliding window pattern, and the sliding win-
dow pattern is determined according to the output spatial
coordinates of the window. Therefore, ZAMVTU checks the
slidingwindow pattern by using the output spatial coordinates
and generates the weight memory addresses of the weights
corresponding to the coordinates of nonzero activations of
the pattern. Then, using these addresses, the weights are
read from the weight memory, and XNOR operations are
performed on the weights and input activations. In the net-
work architecture of Fig. 10, there are only four patterns
of the sliding window, and the weight memory addresses
corresponding to each pattern are illustrated in Fig. 12a. The
weight memory is a buffer with a S-bit width and has all the
weight filters allocated to PE, and only one filter is shown
in the figure. In the case of weight filter pattern 1, it corre-
sponds to the sliding window pattern 1 (red box) in Fig. 10,
and XNOR-popcount operations are performed on this slid-
ing window and weight filter. For this, the weight memory
address generator generates addresses in the order of 8 and 9.
ZAMVTU reads the weights using the created addresses and
performs XNOR operations in synchronization with the input
activation stream. Deconvolution utilizes flipped weight fil-
ters to perform convolution operations, and weight flip can
be carried out off-line in advance. Alternatively, the weight
filter flip can be processed on the fly without performing
off-line in advance by creating the addresses in reverse order
for each filter when generating the weight memory addresses.
The partial sums resulting from the XNOR-popcounts are
accumulated in the sliding window unit to obtain a convo-
lution output, and batch normalization and sign activation
are carried out by comparing the convolution output with
the threshold calculated in consideration of zero activations.
Thresholding considering zero activations is described in
detail in IV-C.

Like MVTU, ZAMVTU processes input channels and
weight filters in parallel to improve performance, but skip-
ping zero activations does not destroy this parallelism. This is
because since zero padding is performed based on the spatial
direction, the input channels can still be processed in parallel

FIGURE 12. Zero-skipped convolution of ZAMVTU. (a) weight filter
patterns, (b) ZAMVTU weight read and XNOR operation scheduling.

in the SIMD lanes because the padding is the same in the
channel direction—for zero padded activations, all channels
have a zero value. Also, since all PEs operate on the same
input feature map, zero-skipped feature map can be processed
in parallel in all PEs, and workloads of PEs are balanced.

There have been studies that skip the zero activation oper-
ations of zero padding deconvolution, as described above
in II-D [21], [22], [38], [39]. GANAX [39] changed the
dataflows on the 2-D systolic array to skip the operation of
zero activations. In the baseline architecture they adopted,
each PE of the systolic array performs vector processing
on one filter row, and the dataflows are controlled so that
different rows of the filter are processed in the x-axis direction
and different output rows are generated in the y-axis direction
of the array. Therefore, in this architecture, the PE rows
handle different sliding windows. Since the zero patterns are
different for each sliding window, the PE rows that process
sliding windows of the same pattern are grouped into a PE
group to apply SIMD, and the sliding windows of different
patterns are processed by applying the multiple instruction
multiple data (MIMD) method in different PE groups. Since
the number of nonzero activations of sliding windows differs
according to the pattern, when implemented only with SIMD,
PEs handling sliding windows with more nonzero activations
had to wait in idle state. By applying the SIMD-MIMD
method, sliding windows of different patterns are handled
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separately in each PE group, so the idle cycles are eliminated
and the utilization of PEs is improved. However, workload
imbalance occurs between PE groups that handle different
patterns, and this was not considered. In Song et al. [38],
zero-skip was implemented by changing the dataflows and
allocating nonzero activations and corresponding weights on
the systolic array. This study proposed zero free and output
stationary (ZFOST), and each PE skips zeros to generate the
output of specific spatial coordinates. Therefore, each PE
handles one sliding window. As described above, since the
number of nonzero activations between sliding windows is
different due to zero padding, workload imbalance occurs
between PEs, but this is not considered. On the other hand,
in the proposed ZAMVTU, as described above, all PEs operate
on the same nonzero input stream, so the workloads of all PEs
are balanced.

In PAI-FCNN [22], sliding windows of various patterns
due to zero padding are each processed by sub-convolution.
Later, outputs of each sub-convolution were concatenated to
create an output feature map through concatenation opera-
tions. Since this method processes sub-convolutions as a unit,
its workloads are balanced, but it is a method of reconstruct-
ing dataflowswith software in existing convolution hardware,
different from our study in that ours changes dataflows with
hardware. DT-CNN [21] implemented zero free deconvolu-
tion by adding delay cells to the systolic array. Convolution
is carried out by partial sum aggregations while propagating
the input feature maps that are not zero padded to the PE
rows where the weights are stored. In the case of deconvo-
lution, due to zero padding, it is necessary to accumulate the
partial sums of different PE rows of different clock cycles,
unlike conventional convolution. They solved this problem
and implemented zero free deconvolution by adding delay
cells between PE rows and latching partial sums into the
delay cells. This study implemented deconvolution by recon-
structing partial sum accumulations. Unlike this, our study
implemented deconvolution by reconstructing the dataflows
of input activations and weights.

C. ZERO-AWARE BATCH NORMALIZATION EMBEDDED
BINARY ACTIVATION
FINN adopted as baseline architecture utilizes BNEBA men-
tioned in II-C, and processes batch normalization and sign
activation as thresholding. Since the partial sums of XNOR
results in convolution are obtained through unsigned pop-
counts, ranges of the convolution outputs of the sliding win-
dows are changed from [−fan-in, + fan-in] to [0, +fan-in].
Therefore, in FINN, in order to match the ranges of the
convolution outputs and the thresholds, shifting and scaling of
thresholds are carried out as in (5). However, in zero padding
deconvolution, the ranges of convolution outputs differ from
the conventional convolution due to padded zeros. Since zero
activations did not participate in accumulations, the ranges
of convolution outputs are the number of nonzero activa-
tions excluding the number of zero activations. Therefore,
in zero padding deconvolution, the shifting and scaling of

the thresholds should also consider the ranges of the changed
convolution outputs.

Fig. 13a shows the nonzero activations of each sliding
window pattern in the network architecture of Fig. 10. If the
number of input feature map channels is expressed as ICH ,
the nonzero activations of pattern 1, pattern 2 and 3, and pat-
tern 4 are ICH , 2ICH , and 4ICH , respectively. Fig. 13b shows
the ranges of convolution outputs and the ranges of thresholds
calculated during training for each pattern of Fig. 13a. If the
threshold calculated during training is thold and the number
of nonzero activations for each pattern is fan-inpat , the range
of thold is [−fan-inpat , + fan-inpat ]. In other words, thold of
patterns 1, 2 and 3, and 4 have ranges of [−ICH, + ICH ],
[−2ICH, + 2ICH ], [−4ICH, + 4ICH ], respectively.

FIGURE 13. Range of convolution output and threshold in deconvolution.
(a) nonzero activation (marked in blue) by sliding window pattern,
(b) threshold and convolution output range by sliding window pattern,
where Th, Co, Pat are threshold, convolution output, and pattern,
respectively.

In order to fit the range of thold to the convolution output
ranges of each sliding window pattern, shifting and scaling
must be performed using fan-inpat for each pattern. If the
thresholds whose ranges are matched to the convolution out-
puts by sliding window pattern are called thnew, they are the
same as (8).

thnew = (thold + fan-inpat )/2 (8)

The difference from (5) is that only fan-in has been changed
to fan-inpat , which is a fan-in for each pattern. Therefore,
in order to calculate thnew, fan-inpat must be figured out. In the
existing convolution, since the fan-in value is fixed for each
network architecture, calculation of thnew, that is, threshold
shifting and scaling can be carried out off-line in advance.
Meanwhile, in zero padding deconvolution, fan-inpat is dif-
ferent in each sliding window pattern, so thnew cannot be
precalculated off-line and it should be calculated during run-
time. Therefore, to find thnew, fan-in count unit is added to
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ZAMVTU to find out fan-inpat for each sliding window as
illustrated in Fig. 14.

FIGURE 14. PE architecture of ZAMVTU.

Fig. 14 depicts the PE architecture of ZAMVTU. S input
activations streamed from ZASWU and S weights read
from the weight memory are computed in parallel in the
XNOR array and transferred to the popcount unit. At this
time, the addresses of the weight memory are generated by
the address generator according to the spatial coordinates
of the nonzero input activations. The popcount unit calculates
the partial sums from the S XNOR results, and the calculated
partial sums are accumulated in the sliding window unit in the
accumulator to calculate the convolution outputs. The calcu-
lated convolution outputs are passed on to a comparator, and
the comparator performs BNEBA and creates output activa-
tions by comparing the convolution outputs and thnew whose
range is matched to the convolution outputs. As described
above, thnew can be obtained by scaling and shifting thold
using fan-inpat , a fan-in for each sliding window. fan-inpat is
counted in fan-in count unit, and thold calculated for BNEBA
during training is stored in threshold memory. fan-in count
unit increases fan-in by the number of computed activations
each time XNOR operation of nonzero activations is per-
formed. In other words, since S nonzero activations are oper-
ated in parallel in each PE, the fan-in is increased by S each
time XNOR operation is carried out. The fan-in is counted for
each sliding window and is initialized when the computations
of the sliding window are completed. The counted fan-in
value is added to thold stored in the threshold memory, and
then the added value is divided by 2 through the 1-bit right
shift. Through this, shifting and scaling of (8) are carried out
to obtain thnew. If the λ scale of (2) is negative, it is activated
when the convolution output is smaller than the threshold
(Y ≤ thnew). We change the direction of the inequality sign
by inverting the sign of thold and weights in order to utilize
the greater-than threshold operation in this case as well.
BNEBA is not applied to the last convolution layer. This is

because the outputs of the last convolution layer are scores so
that the sign activation function should be skipped. In FINN,
by skipping the thresholding of the last convolution layer,

sign activation and batch normalization are not performed.
However, batch normalization greatly affects the accuracy
of the network, so not performing batch normalization leads
to loss of accuracy. In GUINNESS [14], BNEBA is exe-
cuted by adding the thresholds to the convolution outputs
as a biases (= −thresholds) and comparing them with zero
(Y + bias ≥ 0). In this study, sign activation is skipped
by performing only bias additions and not comparisons in
the last convolution layer. However, biases do not include
the λ scales of batch normalization, also leading to loss of
inference accuracy. In the layers performing sign activation,
the λ scales of batch normalization can be ignored because
only the signs of the inputs are meaningful and the scales
are not. Meanwhile, since the last convolution layer does not
perform sign activation, it must be calculated including the λ
scales to obtain the correct batch normalization results.
ZAMVTU of the last convolution layer performs batch

normalization by subtracting thresholds from convolution
outputs and multiplying the λ scales of batch normalization.
Since the last convolution layer also uses unsigned popcount
and zero edge padding, threshold shifting and scaling are
performed considering fan-inpat . The score calculation of the
last convolution layer is as shown in (9).

score =
λ

2
(Y − thnew)

=
λ

2
{Y −

(thold + fan-inpat )
2

} (9)

The λ scales use a 24-bit fixed point, and the λ scales have to
be divided by 2 tomatch the range of thnew. However, dividing
the λ scales by 2 does not affect the inference results, so we
skip this in our design. This is because the inference is to find
the class with the highest score in each spatial location, and all
class scores are compared to each other in order to generate
an inference result. Therefore, the operation of dividing by 2,
which is applied equally to all class scores, is meaningless,
and rather, there is a concern that loss of accuracy may occur
due to lack of precision when dividing by 2. The λ scales
of batch normalization can also be precalculated off-line
like the thresholds. If the signs of the λ scales are negative,
we have already considered this by inverting the signs of the
thresholds and weights, so that the λ scales are calculated as
absolute values.

Fig. 15 illustrates the PE structure of ZAMVTU for the last
convolution layer. A 24-bit width scale memory is added for
storing scales, and a subtractor for calculating the difference
between the convolution outputs and thnew is added instead
of a comparator for the activation function. And a 24-bit
multiplier is added to multiply the scales and subtractions of
the convolution outputs and the thresholds. Since ZAMVTU
processes weight filters on multiple PEs in parallel, PEs can
be configured up to the number of weight filters, and the num-
ber of λ scales to be stored is the same as the number of weight
filters. The number of weight filters (i.e. the number of output
channels) of the last convolution layer is the same as the num-
ber of classes, and generally, segmentation applications only
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FIGURE 15. PE architecture of the last convolution layer’s ZAMVTU.

require a classification for dozens of classes. Therefore, there
are not many PEs and λ scales to be saved, so the hardware
overhead for batch normalization of the last convolution layer
is not large. For example, since the CamVid11 dataset has
eleven classes, a maximum of eleven PEs can be configured
to minimize the latency of the last convolution layer in the
BiDE architecture. The only hardware overhead at this time
is eleven 24-bit multipliers, eleven 16-bit subtractors, and
eleven scale memories (registers in this case) that store each
λ scale.
The first convolution layer performs partially binarized

convolution where only the weights are binary. Since par-
tially binarized convolution performs MACs, not XNOR-
popcounts, the ranges of convolution outputs are the same
as the ranges of thresholds. Therefore, the first convolution
layer does not perform threshold shifting and scaling. BNEBA
is executed by simply comparing the thold calculated by (2)
with the convolution outputs.

D. CONVOLUTION
BiDE adopts the convolution engine of the baseline architec-
ture for convolution, and convolution is not the focus of this
paper, so only the difference from the baseline will be briefly
explained. Since semantic segmentation must classify all pix-
els of the input image, it does not transform the input image
such as the crop. Also, since segmentation input images
are generally rectangular, convolution for rectangular input
images must be supported. Since the baseline architecture is
a classification network accelerator, convolution for square
input images is only supported. Therefore, in BiDE, it is
modified to be able to perform convolution for rectangular
inputs. In addition, the baseline architecture employs the
max-pool. Since strided convolution is used to reduce the
memory footprint in BiDE and BEDN as described above,
the design is changed to support strided convolution using
a stride of two. Finally, the baseline architecture employs a
network structure in which the dimension of the feature maps
gradually decreases due to the convolution that does not use

zero padding on the edge. We change the design to support
zero padding on the edge to maintain the spatial dimension
of the feature maps. Since zero cannot be expressed in BNN,
zero-skip is also applied to edge padding. There is a study that
attempted +1 edge padding [48] to process edge padding in
BNN. However,+1 edge padding adds unnecessary quantity,
resulting in loss of accuracy. Since we employ zero edge
padding, there is no loss in accuracy.

E. PIXEL-WISE CLASSIFICATION LAYER
The result of the last convolution layer is a score map that
has the same spatial dimension as the input image and has as
many channels as the number of classes, which is a segmen-
tation result and is transferred to off-chip memory. The score
map has scores of all classes for each spatial location, and
each score is a real value, non-binary. To stream the scoremap
to off-chipmemory, bandwidth asmuch as score map width×
score map height×the number of classes×score bit width×
FPS is required. When the scores are expressed in 24-bit and
the CamVid11 dataset is inferred at 30 FPS, a bandwidth
of 480 × 360 × 11 × 24 × 30 = 1, 368.576 Mbits/s,
that is, 171.072MBytes/s, is required. Such off-chip mem-
ory accesses adversely affect power consumption and per-
formance. Therefore, we designed hardware that performs
a pixel-wise classification layer to reduce the bandwidth
required for transferring segmentation results to off-chip
memory.

The pixel-wise classification layer is located after the last
convolution layer and compares the scores of all classes by
spatial locations to find the class index of the largest score.
This layer finds class indices of all spatial locations and
creates a class index map with the same size as the spatial
dimension of the input image. The size of the class index
map is score map width×score map height×index bit width,
and the memory bandwidth requirement can be reduced
by the number of classes × (score bit width/index bit width)
compared to the score map. When the scores are expressed
in 24-bit and inference of the CamVid11 dataset is performed,
11× 24/4 = 66 times the memory bandwidth can be saved.
The hardware performing the pixel-wise classification layer
sequentially compares the scores of all classes at each spatial
location, and spatial locations are processed in a pipelined
manner. And then, the hardware streams only the class indices
of the maximum scores of all spatial locations to the off-chip
memory.

V. EXPERIMENTS
In this chapter, we evaluated the proposed BEDN and BiDE.
First, the neural network model preparation and hardware
accelerator implementation environment are described. After
that, we analyzed the accuracy and memory footprint of
BEDN, and then evaluated the performance, power consump-
tion, and resource utilization of BiDE implemented on the
FPGA.
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A. ENVIRONMENT
We used the CamVid11 dataset, which is widely utilized in
semantic segmentation performance evaluations, as a bench-
mark dataset to evaluate BEDN. Among the 701 images of
the CamVid11 dataset, 421 images randomly extracted were
used as a train set, and 280 others were utilized as a test
set to train the network and measure the accuracy. Training
of the network was carried out until no more increase in
accuracy was observed. The models of BEDN employed in
the experiment are shown in Table. 3. To check the loss of
accuracy due to binarization, the performance of BEDN and
the traditional FP segmentation networks FCN,DeeplabV3+,
and SegNet were compared. To this end, the traditional net-
works also trained on the CamVid11 dataset. Also, to evaluate
the BEDN model, SegNet was binarized in the same way
as BEDN. FCN was initialized from the VGG-16, and we
adopted a structure that upsamples the feature map of the last
layer by 8 times. In DeepLabV3+, ResNet-18 was employed
as the baseline architecture, and the stride for downsampling
was 16. SegNet and Binarized SegNet were also preinitialized
and trained based on the VGG-16. The input image size
used in the experiment was 480× 360. FCN, DeepLabV3+,
SegNet, and BEDN were trained with an initial learning rate
of 0.01, batch size of 12, and stochastic gradient descent with
momentum (SGDM). Binarized SegNet was trained with an
initial learning rate of 0.0001, batch size of 12, and adaptive
moment estimation (ADAM).
BiDE was implemented on a ZCU104 board equipped

with Xilinx XCZU7EV FPGA. The design and register trans-
fer level (RTL) generation of BiDE were performed using
Xilinx Vivado high-level synthesis (HLS), and the design
was synthesized and implemented using Xilinx Vivado. The
power consumption of BiDE was estimated using the Xilinx
Vivado Power Estimator. BiDE is a scalable architecture,
and the shape of the compute array performing each layer
can be adjusted by the number of SIMD lanes S and the
number of PEs P, which is an attribute inherited from
the baseline architecture. In order to evaluate scalability,
BiDE with three S, P configurations as Table. 4 were
used in the experiment. Compared to the base configura-
tion, the double configuration has twice as many SIMD
lanes and the quad configuration has four times as many
SIMD lanes as the base configuration. Each configuration is
determined based on the number of operations in Table. 3
to match the latency of all layers except 1 and 11 layers
equally to maximize the throughput of the pipeline. The
source codes of proposed BEDN and BiDE are opened
on GitHub. (https://github.com/IntelligenceDatum/BEDN,
https://github.com/HyunwooKim2/BiDE.)

B. SEGMENTATION RESULT
We first discuss the performance of BEDN. The accuracy of
the conventional FP segmentation network and BEDN for
the CamVid11 dataset is shown in Table. 5 as intersection
over union (IoU). Sky and road are large objects with a

TABLE 4. BiDE configurations for BEDN inference.

lot of training data, and even in BEDN, they showed high
IoU at 91.2% and 91.2%, respectively. Sky and road showed
only 4.0% and 6.6% of IoU drop compared to the average
of FP networks, respectively. Sign-symbol, pedestrian, and
column-pole showed low IoU at 36.9%, 31.2% and 24.2%,
respectively. These classes have little training data and are
small objects. BEDN training, like other quantization-aware
training techniques, requires more epochs because its conver-
gence is slower than that of the FP network model, and is
sensitive to network architecture. For this reason, BEDN has
a lower performance for objects with less training data. mIoU
loss of BEDN was 8.0–12.5% compared to the FP network.
We also applied the same binarization technique to other
networks and compared their accuracy with BEDN. However,
the binarized FCN and DeepLabV3+ did not get good accu-
racy and were excluded from the comparison. Compared
with Binarized SegNet, BEDN showed 0.6% higher mIoU,
and the accuracy difference between the two networks was
not significant. Although SegNet has max-unpool and more
layers, BEDN has a slightly better accuracy.

Fig. 16 shows samples of CamVid11 test set results. Over-
all, BEDN was able to distinguish each object well, and it
showed better performance in segmenting small units than
large units. Particles of other classes that were erroneously
detected in small units can be seen scattered. Since BEDN
does not use the original image or high-dimensional features
in the decoding process, it can be confirmed that the objects
were not cleanly filled. Section VI covers discussions on
these topics.

C. MEMORY FOOTPRINT
This section discusses the memory footprint of BEDN. The
network size and maximum memory usage of existing FP
segmentation networks, Binarized SegNet and BEDN, are
compared as shown in Table. 6. The network size refers to
the size of the trained parameters composed of the weights of
the convolution layers and batch normalization parameters.
The batch normalization parameters of FP networks were
calculated in consideration of folding into the convolution
layer [44]. Besides, the memory usage for each layer was
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TABLE 5. Performance comparison of networks for CamVid11 road class semantic segmentation.

FIGURE 16. Samples of CamVid11 test-set results. (Best viewed in colors).

calculated, and the largest usage is shown in the maximum
memory usage. The memory usage of each layer is the sum
of the size of each layer’s parameters, the size of the feature
map that is the result of convolution, and the size of feature
maps or max-pool indices waiting for calculation due to
bypass connection. The parameter size of FP networks was
calculated as 32-bit, the parameter size of Binarized SegNet
and BEDN were calculated as 1-bit, and the max-pool index
size of SegNet was calculated as 2-bit.

FCN had the largest size of the network and maximum
memory usage due to the layer using 4096 7 × 7 filters.
Since the architecture of SegNet was based on VGGNet,
the size of the network andmaximummemory usagewere rel-
atively large due to the deep channel of the layers. In SegNet

inference, max-pool indices should be kept in memory until
they are consumed by max-unpooling layer of the decoder.
However, since the index was 2-bit, the size of max-pool
indices was negligibly small compared to 32-bit parameters
and feature maps, leading to a small effect on memory usage.
DeepLabV3+ utilized ResNet for the encoder, and this was
also based on VGGNet, so the size of the network was large.
Themaximummemory usagewas the smallest among FP net-
works because downsampling at the front layer of the network
greatly reduced the spatial dimension of the feature map.
Compared to BEDN, the network size of Binarized SegNet
was much larger despite being binary, because SegNet had
many layers with a deep channel (512) and the number of
layers was more than twice of that of BEDN. The maximum
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TABLE 6. Memory footprint comparison of segmentation network
models. (Unit: MB).

memory usage was also larger in Binarized SegNet because
the feature map size was the same, but 691.2 KB was added
due to the index map. In the case of the FP network, the
2-bit index map was negligible, but in the the case of binary
network, the index map was also a large overhead. Since
BEDN stored data in 1-bit and did not use feature map
concatenation ormax-unpool, the network size andmaximum
memory usage were very small compared to the FP networks.
BEDN reduced network size by 397× andmaximummemory
usage by 20.43× compared to DeepLabV3+. Compared with
Binarized SegNet,BEDN was structurally small, reducing the
network size by 17×, and reducing the maximum memory
usage by 1.49× by not using max-unpool.

D. PERFORMANCE AND POWER CONSUMPTION
To measure the performance of BiDE, BEDN was oper-
ated on BiDE, and inferences of 480 × 360 images of the
CamVid11 test set were carried out 500 times. First, infer-
ences were performed on each of the base, double, and quad
configurations to check the scalability of BiDE, and the
results are shown in Table. 7. GOPS was calculated based
on the logical GOPs shown in Table. 3. As the number of
SIMD lanes increased by 2× for double configuration and
4× for quad configuration, it can be seen that FPS and
GOPS also increased at almost the same rate. On the other
hand, the power consumption grew linearly, but to 1.53× and
2.5× less than the rate at which the SIMD lanes increased.
This is due to the fact that resource usage increased less
than the number of SIMD lanes. Resource usage according
to the number of SIMD lanes is covered in the V-E. It is
noteworthy that as the number of SIMD lanes increased,
the performance efficiency (GOPS/W) also improved. Since
the FPGA employed in the experiment cannot accommodate
more SIMD lanes, the experiment requiringmore SIMD lanes

TABLE 7. Performance and power consumption by configuration.

TABLE 8. Performance comparison with other implementation.

could not be conducted, but higher performance efficiency is
expected in a larger FPGA.

We also compared the performance of BiDE with
Liu et al. [20], an existing 8-bit segmentation network accel-
erator, and the results are shown in Table. 8. BiDE carried out
the inferences of 480× 360 images of the CamVid11 dataset
at 25.89 FPS with 2 watt (W) power consumption, and
achieved 1682.85 logical GOPS and 1190.94 physical GOPS.
Liu et al. accelerated the quantized U-Net to an 8-bit fixed
point, inferred 256 × 256 size urban surface images at a
rate of 57 FPS, and achieved 1578 logical GOPS. However,
it consumed a large power of 32 W and exhibited a rela-
tively low performance efficiency of 49.3 GOPS/W. BiDE
showed a performance efficiency of 824 GOPS/W, achieving
16.7× higher performance compared to Liu et al.Moreover,
even considering that Liu et al.was an 8-bit network accelera-
tor, BiDE showed 2.1× higher performance efficiency. BiDE
achieved higher performance than Liu et al. even in GOPS
excluding power consumption.

E. RESOURCE UTILIZATION
We implemented BiDE on the FPGA, so we analyzed the
FPGA resource utilization of BiDE. Fig. 17 shows the FPGA
resource utilization for each BiDE configuration. The blue,

FIGURE 17. Resource utilization for each BiDE configuration.
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orange, and gray bars represent the resource usage in the
base, double, and quad configurations, respectively, and the
usage relative to the total resources available in the FPGA is
shown as a percentage on the vertical axis. The number at
the top of each bar represents the actual number of resources
utilized. As the number of SIMD lanes doubled and quadru-
pled, the resource usage increased. The lookup table (LUT),
flip-flop (FF), and block random access memory (BRAM)
usage increased by 1.52×, 1.34×, and 1.1×, respectively,
in the double configuration, and increased by 2.57×, 1.96×,
and 2.12×, respectively, in the quad configuration compared
to the base configuration. The reason why resource usage did
not increase as much as the number of SIMD lanes increased
is that ZASWU, control logic, and on-chipmemory size hardly
grew even if the number of SIMD lanes increased.

The number of BRAMs increased less in double con-
figuration than in base configuration, because many of the
parameter memories in the double configuration were imple-
mented as logic (LUTs and FFs). Among the 491 parameter
memories, 320 (layers 3–9) were implemented as BRAM and
171 (layers 1–2, 10–11) were implemented as logic. In the
base configuration, only 27 (1, 11 layers) of 251 parameter
memories were implemented as logic. In the double config-
uration, a large part of the parameter memories was imple-
mented as logic because the number of PEs was increased.
As the number of PEs increased, the parameter size to be
stored in the on-chip memory remained the same, but since
more parameter memories were distributed, the size of each
memory decreased. Since the number and size of the BRAM
resources of the FPGA were limited, it was efficient to
implement small memories as logic and only large memories
as BRAM. Layers 1, 2, 10, and 11 had a small size of
input channels and output channels and thus a small size of
parameters, so the parameter memories were implemented
as logic. In the case of quad configuration, the number of
PEs was further increased and the parameter memories were
further divided and distributed. Even though 100% of BRAM
resources were used, the number of BRAMs was insufficient,
and the rest were implemented as logic. Furthermore, in the
case of quad configuration, 70% of the LUTs were utilized,
but it was the maximum configuration that could be imple-
mented on the FPGA employed in the experiments because
more logic could not be used due to routing problems.

In Table. 9, the FPGA resource utilization of the quad
configuration of BiDE and that of Liu et al. [20] are com-
pared. BiDE and Liu et al. utilized similar amounts of FFs
and BRAMs. However, while Liu et al. required off-chip
memory to store feature maps, our design streamed feature
maps, so segmentation inference could be performed with
only on-chip memory. BiDE used 1.87× more LUTs than
Liu et al., and Liu et al. utilized 6.96× more digital signal
processing slices (DSPs) than BiDE. This is because Liu et al.
was an 8-bit network accelerator, using MAC operations for
convolution and thus DSPs were used to implement convo-
lution. On the other hand, since BiDE used XNOR-popcount
operations for convolution, LUTs were utilized to implement

TABLE 9. Comparison of resource utilization with conventional
segmentation accelerator.

convolution. Although BiDE implemented the convolution
operations only with LUTs due to binary operations and
data representations, the level of LUT usage was similar to
that of Liu et al., which did not utilize LUTs to implement
convolution.

VI. DISCUSSION
Like other networks, BEDN can set a trade-off between
accuracy and network size through the proposed unit rep-
etition. BEDN focuses on reducing memory usage through
binary-quantization and simple structure in consideration
of the hardware architecture and constraints, so it can be
seen that the accuracy is lower than that of the existing
FP-based network. In particular, BEDN and BiDE have
cross-dependency with each other. BEDN designed for max-
imum hardware performance has several shortcomings due
to its structural limitations of the network. First, as in some
cases shown in Fig. 16, BEDN does not provide clean filling
when segmenting large objects, and many false positives
occur when segmenting small objects. This problem arises
because the structure of the model is serial, so the origi-
nal image or high-dimensional features cannot be utilized
with bypass connection or concatenation. Secondly, BEDN
cannot have a large and complex network structure. This
means that in the field of image segmentation, more extensive
research on the training method and model structure of BNN
along with hardware constraints is required. Based on the
bad results of simply applying binarization to DeepLabV3+
and FCN, the structure of other well-known segmentation
models cannot be simply applied to overcome the shortcom-
ings of BEDN. Therefore, model structure exploration and
binary-quantization for complex segmentationmodels are our
future work.

Since BiDE is based on a heterogeneous streaming archi-
tecture and has compute arrays for each layer, the hardware
size linearly increases according to the number of layers in
the network. Therefore, there is a limit to the increase in
the number of layers of the network due to the hardware
structure. If there are many layers, hardware size can be
reduced by reducing the number of SIMD lanes in each
compute array, that is, logic size, but latency increases. In
other words, there is a trade-off among the number of layers,
logic size, and latency. And the proposed zero-aware binary
deconvolution skips operation and storage of zero activation
according to the sliding window pattern. When the stride is 2,
the number of patterns is small (4), so the hardware overhead
is not large. However, as the stride increases, the number of
patterns increases, thus increasing the hardware complexity
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and overhead. This means there is a trade-off between the
number of patterns and the hardware overhead. Experiments
have shown that increasing the number of SIMD lanes
in BiDE increases hardware size and power consumption,
and also increases performance at a larger rate. Therefore,
in BiDE architecture, hardware size, power consumption, and
performance can be balanced by adjusting the number of
SIMD lanes.

VII. CONCLUSION
The semantic segmentation network has a large computation
and memory requirement, so it is difficult to operate in an
environment where the power budget is limited and hard-
ware resources are insufficient. In this paper, we propose
and design binarized encoder-decoder network (BEDN) and
binarized deconvolution engine (BiDE) to enable low-power,
real time semantic segmentation.

The designed BEDN considers memory usage, computa-
tional demand, and hardware constraints for a far-edge envi-
ronment. For training of BEDN, a binary-quantization-aware
training method of an encoder-decoder structure was orga-
nized. Through the binary-quantization and a repetitive unit
structure, BEDN reduced network size by 397× and maxi-
mum memory usage by 20.43× compared to DeepLabV3+
and achieved a mIoU of 59.9% for the CamVid11 dataset.
The full-binarization of weights and activations and a sim-
ple structure that does not use feature map concatenation
or max-unpool was achieved for BiDE. BEDN used up to
1.38MB of memory, and the network size was only 0.21MB.
BiDE targeted FPGA and was designed based on a hetero-

geneous streaming architecture, and accelerated the inference
of BEDN, a binarized segmentation network. The stream-
ing architecture and simple segmentation network structure
allowed all feature maps to be processed on-chip, eliminat-
ing all costly off-chip memory accesses of feature maps.
Moreover, in order to enable the deconvolution of a binarized
segmentation network that cannot represent zero, zero-aware
binary deconvolution that skips operations and storage of
padded zero activations, and zero-aware batch normalization
embedded binary activation, performing batch normaliza-
tion and binary activation in consideration of zero activa-
tions, were introduced. BiDE was implemented to operate at
187.5 MHz using 160k LUTs, 125k FFs, and 312 BRAMs
on Xilinx XCZU7EV FPGA. BiDE accelerated BEDN to
perform 480×360 image inferences of the CamVid11 dataset
at 25.89 FPS and achieved a performance of 1.68 TOPS and
824GOPS/W. In addition,BiDE is a scalable architecture that
can configure the number of PEs and the number of SIMD
lanes in the PE. As the total number of SIMD lanes increased,
the performance efficiency, that is, OPS/W, enhanced in line.
In the experiment, when the number of SIMD lanes increased
to 2× and 4×, the performance efficiency improved by
1.3× and 1.57×. In this paper, the saturation point of the
improvement of performance efficiency could not be identi-
fied because the SIMD lanes could not be increased any more
due to the resource limit of the FPGA, but it is expected that

higher performance efficiency can be confirmed in a larger
FPGA.
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