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Abstract: Tsunamis are distinguished from ordinary waves and currents owing to their characteristic
longer wavelengths. Although the occurrence frequency of tsunamis is low, it can contribute to
the loss of a large number of human lives as well as property damage. To date, tsunami research
has concentrated on developing numerical models to predict tsunami heights and run-up heights
with improved accuracy because hydraulic experiments are associated with high costs for laboratory
installation and maintenance. Recently, artificial intelligence has been developed and has revealed
outstanding performance in science and engineering fields. In this study, we estimated the maximum
tsunami heights for virtual tsunamis. Tsunami numerical simulation was performed to obtain tsunami
height profiles for historical tsunamis and virtual tsunamis. Subsequently, Bayesian neural networks
were employed to predict maximum tsunami heights for virtual tsunamis.

Keywords: tsunami; machine learning; bayesian neural networks; numerical simulation; maximum
tsunami heights

1. Introduction

Tsunamis triggered by undersea earthquakes around the Pacific Ocean have frequently caused
loss of human life and property damage in coastal areas. To date, two huge tsunamis in history
occurred in 2004 and 2011. The Sumatra tsunami event in 2004 caused approximately 220,000 human
deaths and 10 billion dollars in property damage. More recently, the East Japan tsunami event in 2011
caused over 20,000 casualties and 300 billion dollars in property damage [1] and incited nuclear power
plant meltdowns at Fukushima in Japan. In the field of tsunami research, data analysis and hydraulic
experiments for tsunami events are challenging because major tsunamis are rare and laboratory
installations for hydraulic experiments are exceedingly expensive. For these reasons, many researchers
have focused on developing numerical models to predict accurately tsunami heights defined as
vertical height from the troughs to crests of tsunamis and run-up heights defined as vertical heights
from the datum levels to the highest inundated areas for several decades [2–6]. Recently, artificial
intelligence (AI), using big data, has been developed and applied in many science and engineering
fields with significant performances. In machine learning, there are two main methods: deterministic
and probabilistic methods. The representatives of the deterministic method are Multi-layer perceptron
(MLP), convolution neural networks (CNNs), and recurrent neural networks (RNNs) [7]. Meanwhile,
probabilistic random forest and Bayesian neural networks (BNNs) can be classified as probabilistic
methods [8,9]. In this study, BNNs, which consist of neural networks (NNs) and a Bayesian inference,
are proposed. One advantage of a BNN is that it enables prediction under insufficient data. Moreover,
it not only considers the relationships between data but rarely causes overfitting problems, which are
a major issue in NNs [10]. BNNs include three processes: training, testing, and prediction. Training is
performed to search for optimized parameters with given input variables on BNNs. In the testing,
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so-called model validation, the performance of the trained weights and bias are estimated by applying
it to new data that were not part of the training dataset. Finally, predictions are made based on the
provided input variables. This study explores the estimation of maximum tsunami heights with BNNs.
Jumunjin Port, located on the eastern coast of the Korean Peninsula, was offered to target location.
Inundation damage was caused by a tsunami in 1983 [11]. A numerical simulation was performed
for two historical tsunamis and virtual tsunamis, which could be triggered by probable undersea
earthquake in the future [12,13], to obtain tsunami height profiles and evaluate the maximum tsunami
heights. BNNs were employed, and the pairs of tsunami height profiles at the site of the tsunami
epicenter and Jumunjin port (37.89 N, 128.83 E) considering two historical tsunami events: tsunami
events in 1983 (40.54 N, 139.02 E) and 1993 (42.34 N, 139.25 E), were used as the input variables
for training and testing. Finally, BNNs were used to predict the maximum tsunami heights for the
virtual tsunamis.

2. Numerical Simulation

A tsunami that is triggered along the western coast of Japan can travel to the Korean Peninsula.
The propagation model for a tsunami traveling across deep water should account for frequency
dispersion and the Coriolis force. Thus, the nonlinear convective terms of the momentum equations
can be ignored in the numerical simulation because the free surface displacement of a tsunami is
relatively lower than the water depth. However, the frequency dispersion effects are influential in
distance propagation and should be considered in the model’s governing equations because the wave
length of a tsunami is relatively short compared to that of the tide and tsunamis are propagated over
long distances. Therefore, the governing equations that address the dispersion effect, namely, the linear
Boussinesq equations, should be used in the numerical simulation of tsunami propagation. However,
the dispersion terms of the linear Boussinesq equations include higher-order derivatives that may
cause practical numerical difficulty. To resolve this difficulty, linear shallow-water equations in a set of
lower-order derivatives are used for dispersion effects [6,14].

2.1. Propagation

For a tsunami propagating far across a deep ocean, a linear shallow-water equation in a set of
lower-order derivatives is used. The linear shallow-water equations can be expressed in the form
as below,

∂η

∂t
+

∂P
∂x

+
∂Q
∂y

= 0 (1)

∂P
∂t

+ gh
∂η

∂x
= 0 (2)

∂Q
∂t

+ gh
∂η

∂y
= 0 (3)

where η is the free-surface displacement, h is the mean water depth, g is the acceleration of gravity,
and P and Q are the volume fluxes in the x and y directions, respectively, with depth-averaged flow
velocities at the still-water level.

2.2. Initial Free Surface Displacement

Two historical tsunami events—the Central East Sea tsunami of 1983 and the Hokkaido tsunami in
1993—as well as the virtual tsunamis were employed for the tsunami numerical simulation (Figure 1).
The two selected historical tsunamis are representative of tsunamis that have affected Korea in the last
100 years. The virtual tsunamis were selected based on the seismic gap where potential earthquakes
could strike in the vertically developed fault zone along the western coast of Japan. Table 1 presents
the fault parameters of the historical tsunamis and virtual tsunamis: H is the height at the top of the
fault plane, θ is the strike angle, δ is the dip angle, λ is the slip angle, L is the length, W is the width,
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and D is the dislocation where the plane is displaced (Figure 2). The source locations, strike angles,
heights, dip angles, and slip angles were obtained from the Korean Peninsula Energy Development
Organization [12]. The length, width, and dislocation considering the magnitude (M) were calculated
according to the equations presented below,

logL = 0.5M− 1.9 (4)

W = 0.5L (5)

logD = 0.5M− 1.2 (6)

Figure 1. Location of historical tsunamis and virtual tsunamis.

Figure 2. Definition of fault parameters.
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Table 1. Fault parameters of historical tsunamis and virtual tsunamis.

Classification Longitude Latitude H θ δ λ L W D M
(◦E) (◦N) (km) (◦) (◦) (◦) (km) (km) (km)

Tsunami in 1983 139.02 40.54 3 355 25 80 60 30 3.05 7.7139.30 42.10 5 163 60 105 24.5 25 12.0

Tsunami in 1993 139.25 42.34 5 175 60 105 30 25 2.50 7.8139.40 43.13 10 188 35 80 90 25 5.71

Virtual tsunami 1 138.70 40.20 1 10.0 40 90 125.9 62.9 6.31 8.0

Virtual tsunami 2 138.90 40.90 1 5 40 90 125.9 62.9 6.31 8.0

3. Bayesian Neural Networks

Neural networks are characterized by two main trends: deterministic and probabilistic methods.
BNNs, based on the Bayes’ theorem [15], utilize a probabilistic method that combines NNs and
Bayesian inference. A robust advantage of a BNN is that it offers more information with probability
distribution than deterministic method such as MLP or CNNs or RNNs.

3.1. Neural Networks

The MLP, which is a fundamental NN, is explained in this section. Given a dataset X, which is
an input vector composed of several causal variables, and Y, which is an output vector composed
of several resulting variables, the NNs are conducted. Most NNs consist of nodes, links, and layers
with input, hidden, and output layers. The input layer receives input variables for the problem to be
dealt with. In the output layer, the prediction of values is evaluated through a loss function, and the
final output is represented. In the hidden layers, a trial-and-error procedure is performed. Every layer
has nodes, and these nodes are connected by links, with synaptic weight assigned to each link to
represent the relative connection strength [16]. In mathematics, NNs are based on the parameterized
basis function as follows,

f (x) = φ(wx + b) (7)

where φ is the activation function that leads to a nonlinear effect, x represents the input variables, w is
the weight, and b is the bias. Tangent hyperbolic functions or sigmoid functions, expressed below,
were frequently used in the beginning of research as activation functions; however, ReLU or Selu
functions have been developed and widely used more recently (Figure 3).

Figure 3. Activation functions: (a) Tangent hyperbolic, (b) Sigmoid, (c) ReLU, and (d) Selu functions.
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The loss function is employed at nodes in the output layer and expressed as follows,

E(X, Y) =
1

2N

N

∑
i=1

(Y− y′)2 (8)

where N is the number of observations, Y is the output vector, and y′ is the value predicted by the
networks. If the result is not sufficient to objective error after the loss function is evaluated, it is
necessary to adjust the weight and bias. The algorithm was introduced as follows [17],

∆wij(n) = −η
∂E

∂wij
(9)

where ∆wij is the adjusted weight and η is the learning rate. One of the most noticeable differences
between NNs and BNNs is the method of computing the weight and bias. The BNNs employ a
probability distribution for the weight and bias (Figure 4).

Figure 4. Architecture of (a) neural networks (NNs) and (b) Bayesian neural network (BNNs).

3.2. Bayesian Inference

Bayesian inference, which has been used in many science and engineering fields, is based on Bayes’
theorem. It offers posterior probability based on evidence, prior probability, and marginal likelihood:

P(w|X, Y) =
P(Y|X, w)P(w)

P(Y|X)
∝ P(Y|X, w)P(w) (10)

where X and Y are the datasets, and w is the weight. P(Y|X) is the evidence, P(w) is the prior
probability, P(Y|X, w) is the marginal likelihood, and P(w|X, Y) is the posterior probability. In the
BNNs, given the data X, Y, and the initial P(w), the evidence, marginal likelihood, and posterior
probability can be evaluated for weight at each link in all layers. Meanwhile, it is well known that
predicting an analytical solution for posterior probability is typically difficult P(w|X, Y). Therefore,
an approximating variational distribution qπ(w) is used in this study [18], and an automatic
differentiation variational inference (ADVI) scheme that uses a spherical Gaussian without the
correlation of parameters was introduced for variational distribution. The goal was to approximate the
posterior distribution P(w|X, Y):

P(w|X, Y) ≈ q∗π (11)
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where X and Y are the datasets, and q∗π is the minimum of this optimization objective.

KL(qπ(w)|P(w|X, Y)) =
∫

qπ(w)log(
qπ(w)

P(w|X, Y)
)dw (12)

L(π) =
∫

qπ(w)P(Y|X, w)dw− KL(qπ(w)|P(w|X, Y)) (13)

Kullback–Leibler divergence (KL) was performed to minimize the distance between the variational
distribution qπ(w) and posterior distribution P(w|X, Y), which implies that the evidence lower bound
(ELBO, L(π)) is at a maximum.

4. Results

In this study, numerical simulations for historical tsunamis and virtual tsunamis were performed
at Jumunjin Port, where a 1983 tsunami caused inundation (Figure 5). Tsunami height profiles used on
BNNs were extracted in the epicenter (G1 or G2) and at the gage point in Jumunjin (G3) for 175 min
(Figure 6).

Figure 5. Location of (a) epicenter for historical tsunamis and virtual tsunamis and (b) gage in
Jumunjin port.

Figure 6. Time series of tsunami heights at epicenter and Jumunjin port by tsunami in (a) 1983 and
(b) 1993.



Atmosphere 2020, 11, 1266 7 of 13

BNNs were constructed with a combination of NNs and Bayesian inference. First, two nodes
for tsunami height and time profiles in the input layer and arbitrary ten nodes in each of the three
hidden layers are introduced. Moreover, a tangent hyperbolic function is adopted at the nodes to
describe nonlinear effects in NNs. The assumption of Gaussian distribution for weights and bias,
expressed in Equation (14), are accepted as prior distribution for links on BNNs [19]. Based on these
conditions, BNNs were established to evaluate the maximum tsunami height for virtual tsunamis
following three steps: training, testing, and prediction. Prior to estimating the maximum tsunami
height, optimization over parameters of Gaussian distribution was carried out owing to effects of
parameters of prior distribution as small dataset [10],

f (x) =
1

σ
√
(2π)

exp
(
− (x− µ)2

2σ2

)
(14)

where µ is mean value and σ2 expresses standard deviation over tsunami height.

4.1. Training

Training plays a key role in BNN prediction. It is well known that normalization can improve
performance and contribute to high-speed training of NNs [20]. Therefore, given tsunami height
profiles, normalization, expressed below, was performed for tsunami height and time profiles at the
epicenter and gage point prior to training:

ζi =
Hi −min(H)

max(H)−min(H)
(15)

where H and ζ are the original and normalized values, respectively. The training and testing datasets
were collected along the arrival of the tsunamis at G3 in Jumunjin Port over historical tsunami events,
which was estimated to approximately 1300 sample size for both tsunami in 1983 and in 1993. Following
the works of Afshin G. et al. (2018) [21] and Amazon (2020) [22], 80% of the collected datasets were
randomly selected for training (Figure 7), and these datasets are used for updating weights and bias
on links. Estimated weights and bias at all links were checked for test and prediction processes.

Figure 7. Training dataset of tsunami in (a) 1983 and (b) 1993.

Moreover, it is necessary to optimize parameters of Gaussian distribution for maximum tsunami
heights. In this study, given training datasets, optimization estimation for parameters over historical
tsunamis is conducted beforehand. Figure 8 shows the mean difference fields, which describe the
absolute difference between numerical simulation and BNNs according to mean (µ) and standard
deviation (σ2) for maximum tsunami height. Figure 8a,b represents tsunamis in 1983. Figure 8a
reveals that the minimum of mean difference field is concentrated in the range of 2.6 to 3.5 standard
deviation. In this study, through the estimation of each standard deviation where mean difference
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demonstrates the minimum, the parameters of Gaussian distribution is estimated to 0.0 mean at
2.9 standard deviation as a prior distribution (Figure 8c). Figure 7b,d shows the 1993 tsunami data.
Unlike the tsunami in 1983, the minimum mean difference was distributed from 2.0 to 2.6 (Figure 8b),
and the parameters are considered for 0.2 and 0.3 mean at 2.5 standard deviations, where the mean
difference becomes small (Figure 8d), as a prior distribution to determine the best performance. Based
on training datasets and prior distribution for both tsunamis in 1983 and 1993, training is examined
with ADVI. Figure 9 shows how ELBO reached a stable state where KL was minimized. In this study,
the ELBO approached stable state after 35,000 of the 50,000 over historical tsunami events.

Figure 8. Mean difference fields of tsunami in (a) 1983 and (b) 1993, and the variation of mean difference
along mean at stationary standard deviation over tsunami in (c) 1983 and (d) 1993.

Figure 9. Evidence lower bound for tsunamis in (a) 1983 and (b) 1993 at a mean of 0.3.

4.2. Testing

Testing was performed to determine how training should be conducted. Figures 10 and 11
demonstrate several of the trained weight and bias distribution at links from the input layer to the
first hidden layer for the tsunamis in 1983 and 1993. It can confirm that both the weights and bias at
each link depict Gaussian-like distributions, and the bias has broader standard deviation bands than
weights as a result of training (Figure 10). Contrary to the tsunami in 1983, it shows that the standard
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deviation of weights at links expanded wider than the bias for the tsunami in 1993 (Figure 11). Given
trained weights and bias, testing is carried out with a rest of 20% of the normalized tsunami height
profiles (Figure 12).

Figure 10. Trained weights and bias at links that connect input layer to the first hidden layer for
tsunami in 1983.

Figure 11. Trained weights and bias at links that connect input layer to first hidden layer at a 0.3 mean
for tsunami in 1993.



Atmosphere 2020, 11, 1266 10 of 13

Table 2 shows that the maximum tsunami heights, evaluated over historical tsunami events in
BNNs, were compared with the numerical model, and inverted normalized tsunami heights to true
tsunami heights before comparison. The tsunami in 1983 was evaluated to be overestimation with +2%
bias. In contrast, tsunami in 1993 exhibits non-bias as a mean of 0.2, and it is overestimated little with
+2% bias as mean of 0.3 at a standard deviation of 2.5. The case of a 0.2 mean is estimated to be less
biased than the 0.3 mean in testing for tsunamis in 1993.

Figure 12. Testing dataset of tsunami in (a) 1983 and (b) 1993.

Table 2. Comparison of numerical model and BNNs for maximum tsunami height at gage in Jumunjin
port over historical tsunamis in testing.

Location Historical Tsunamis
Numerical Model BNNs

BIAS (m)
Tsunami Height (m) µ σ2 Tsunami Height (m)

Jumunjin

1983 2.26 0.0 2.9 2.31 +0.05

1993
1.86 0.2 2.5 1.86 0.00

1.86 0.3 2.5 1.90 +0.04

4.3. Prediction

Given trained information on weights and bias for historical tsunamis as described in
Figures 10 and 11, BNNs are introduced to virtual tsunamis, which are similar to historical tsunamis
in terms of magnitude and occurrence locations at the epicenter. Figure 13 shows the tsunami height
profiles of the virtual tsunamis at the epicenter, and it was converted to normalized tsunami heights
and time as performed in the training process. Afterward, prediction was performed to determine how
well the BNNs predicted virtual tsunamis. Table 3 present the results for the maximum tsunami heights
of the numerical model and BNNs. In the case of virtual tsunami 1, although the tsunami height of
BNNs is underestimated as compared to those of numerical model approximately 0.07 m, it shows
a similar tendency to the tsunami height of the numerical model with a 3% difference. Regarding
virtual tsunami 2, on the condition of a stationary standard deviation of 2.5, the BNNs model with a
mean of 0.3 indicates better performance. The BNNs model with a mean of 0.2, which yielded more
accurate results in testing, did not capture the maximum tsunami height, showing a 35% difference.
In contrast, although the BNNs model with a mean of 0.3 has minimal bias, which is considered
acceptable, it exhibits better performance. The reason why BNNs model with a mean of 0.2 showed
worse performance than those with 0.3 mean is the issue of overfitting, which occurs as data fit into
the trained dataset well, not considering other datasets [10]. Although overfitting is not a significant
concern for BNNs, sensitivity to parameters of prior distribution was observed in this study. In the
case of virtual tsunami 2, the 0.3 mean yields the best performance.
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Figure 13. Time series of tsunami heights at epicenter by (a) virtual tsunami 1 and (b) virtual tsunami 2.

Table 3. Comparison of numerical model and BNNs for predicted maximum tsunami heights at gage
in Jumunjin port over virtual tsunamis in prediction.

Location Virtual Tsunamis
Numerical Model BNNs

Difference (m)
Tsunami Height (m) µ σ2 Tsunami Height (m)

Jumunjin

Virtual tsunami 1 2.21 0.0 2.9 2.14 -0.07

Virtual tsunami 2
1.63 0.2 2.5 1.05 -0.57

1.63 0.3 2.5 1.54 -0.08

5. Summary and Conclusions

AI has been applied to many science and engineering fields, exhibiting remarkable performance.
In this study, we attempted to discern maximum tsunami heights for virtual tsunami at the Jumunjin
Port, where the 1983 tsunami caused inundation in some areas. BNNs, combining Bayesian inference
and NNs, have the advantage of enabling prediction with a small dataset and were introduced to
evaluate maximum tsunami height. Two nodes in the input layer and ten nodes in each of the three
hidden layers were constructed with a tangent hyperbolic function to describe nonlinear effects.
In addition, variational inference was proposed in Bayesian inference. Tsunami height profiles at the
epicenter and gage in port were used as fundamental datasets, and normalization for tsunami height
and time was performed in advance. Approximately 80% of the tsunami height profiles were classified
for the training dataset, and the remainder of the dataset was applied to the testing dataset. A Gaussian
distribution was assumed as a prior distribution in BNNs, and parameters for mean (µ) and standard
deviation (σ2) were optimized. Based on this work, the training, testing, and prediction processes were
examined. In training, it was determined that posterior probabilities of weights and bias at links on
BNNs were well trained for historical tsunami events. Then, good agreement between the numerical
model and BNNs for maximum tsunami heights over historical tsunami events were confirmed in
testing. Finally, maximum tsunami height over virtual tsunamis were predicted based on trained
weights and bias of BNNs. In particular, depending on distribution parameters, different results were
obtained such that 0.2 mean meets overfitting, whereas a mean of 0.3 indicated the best performance.
Although there were disparities in maximum tsunami heights between the BNNs and numerical
model, the BNNs could reasonably predict the maximum tsunami heights for virtual tsunamis.
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