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Abstract: A super-resolution direction-of-arrival (DoA) estimation algorithm that employs a co-prime
array and positive atomic norm minimization (ANM) is proposed. To exploit larger array cardinality,
the co-prime array vector is constructed by arranging elements of a correlation matrix. The positive
ANM is a technique that can enhance resolution when the coefficients of the atoms are the positive
real numbers. A novel optimization problem is proposed to ensure the coefficients of the atoms are
the positive real numbers, and the positive ANM is employed after solving the optimization problem.
The simulation results show that the proposed algorithm achieves high resolution and has lower
complexity than the other ANM-based super-resolution DoA estimation algorithm.

Keywords: super-resolution; positive atomic norm minimization; co-prime array; direction-of-arrival
(DoA) estimation; continuous compressive sensing

1. Introduction

A direction-of-arrival (DoA) estimation is one of the representative research topics in the field
of array signal processing and has been adopted in a various applications, such as localization and
radar [1]. DoA estimation algorithms exploit the signals collected from an array of antennas and
estimate the directions of the signal sources by signal processing techniques [2]. There are many factors
that can evaluate the performance of the DoA estimation algorithm, and one of the key factors is
resolution. The super-resolution in DoA estimation refers to a successful estimation of multiple DoAs
that are closely separated [3]. For intuitive understanding, a DoA estimation performance according to
the resolution is presented in Figure 1.

Traditional DoA estimation algorithms such as [4,5] have high resolution. However, they require
high signal-to-noise ratios (SNRs) and large numbers of snapshots. To overcome these disadvantages,
compressive sensing (CS)-based DoA estimation algorithms have been proposed [3,6,7]. Regardless
of types of CS, such as basis pursuit (BP) [8] and sparse Bayesian learning (SBL) [9], CS-based DoA
estimation algorithms are robust against low SNR and fewer snapshots [7]. The CS-based DoA
estimation algorithms commonly form a discretized grid, which is composed of all candidates of DoA
estimates. The DoAs are estimated by finding the grid components that have the highest correlations
with the received signal. In practice, however, a real DoA does not match perfectly with the component
of the grid. This problem is widely known as grid-mismatch, and the estimation error induced by the
grid-mismatch is proportional to the step size of the grid [10].

On the other hand, the atomic norm minimization (ANM)-based DoA estimation works directly
on continuous DoA and completely resolves the grid-mismatch. The ANM-based DoA estimation was
first proposed in [11], and the theoretical basis of the atomic norm was established in [12]. After the
proposal of the ANM, the robustness of the ANM-based algorithm against noise [13] and the gain-phase

Energies 2020, 13, 3609; doi:10.3390/en13143609 www.mdpi.com/journal/energies

http://www.mdpi.com/journal/energies
http://www.mdpi.com
https://orcid.org/0000-0001-6681-6334
https://orcid.org/0000-0002-7055-6587
http://www.mdpi.com/1996-1073/13/14/3609?type=check_update&version=1
http://dx.doi.org/10.3390/en13143609
http://www.mdpi.com/journal/energies


Energies 2020, 13, 3609 2 of 11

error [14] has been discussed. The ANM-based algorithm also extended to various applications,
including multiple-input-multiple-output (MIMO) radar [15] and MIMO channel estimation [16,17].
The study in [18], however, has proven that the DoAs of the signals must be separated more than
at least the minimum separation distance when using ANM. The minimum separation distance can
be translated as the resolution limit of ANM, where the minimum separation distance is inversely
proportional to the array cardinality (i.e., the effective number of antenna elements in an array).

To increase the resolution of the ANM-based DoA estimation, the following approaches can
be taken into consideration. One approach to increase the resolution is to employ the sparse array
metrics such as the co-prime array [19] and the nested array [20], wherein the sparse array metrics are
introduced to estimate the DoAs of more signal sources than the number of antennas. The sparse array
creates a virtual array whose cardinality is much larger than that of the physical array. Since the
resolution is proportional to the array cardinality [18], the usage of the sparse array results in
resolution improvement. The sparse array has been exploited in the seminal works of CS-based
DOA estimation [21–23] and ANM-based DOA estimation [24,25]. The other approaches to increase
the resolution were introduced in [26–28]. In [26], reweighted atomic norm minimization (RAM) has
been proposed; RAM can achieve the resolution beyond the limit noted in [18]. However, RAM suffers
from high complexity due to the iterative execution of ANM. The algorithm proposed in [27,28],
which is referred to as the positive ANM, shows that the resolution can be further enhanced when the
coefficients of atoms are the positive real numbers. However, the coefficients of atoms are arbitrary
complex numbers in the DoA estimation scenario, wherein the atoms are array manifold vectors,
and their coefficients have unknown phases. Thus, to our knowledge, there has been no case in which
the positive ANM was employed for DoA estimation.

Figure 1. A graphical representation of high resolution and low resolution direction-of-arrival
(DoA) estimation.

In this paper, we propose a super-resolution DoA estimation algorithm using the co-prime array
and the positive ANM. Increased cardinality is exploited by using the co-prime array. To ensure
that the coefficients of the atoms are positive real numbers, a novel optimization problem is derived,
wherein the optimization problem also removes the noise on the co-prime array. After solving the
optimization problem, the positive ANM is employed by solving semidefinite programming (SDP)
derived in [27].
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2. Signal Model

We assume that P uncorrelated narrowband signals impinge on the antenna array with M
elements. The carrier frequency of the signal is f , and their DoAs are Θ = [θ1, . . . , θP]

T . An array
manifold vector whose DoA is θ, a(θ) can be given as

a(θ) =
[
ej2π(d1/λ) cos θ , . . . , ej2π(dM/λ) cos θ

]T
∈ CM×1, (1)

where dm denotes a distance between the m-th antenna and the reference antenna, and λ = c/ f .
Note that c is the speed of light. CM×1 denotes a complex vector with the size of M× 1, and note that
this notation can also represent the complex matrix. The first antenna is the reference antenna if not
noted, and hence d1 = 0. An array manifold matrix for P signal sources, A(Θ) is

A(Θ) = [a(θ1), . . . , a(θP)] ∈ CM×P. (2)

The received signal X can be written as

X = A(Θ)S + N ∈ CM×D, (3)

where D is the number of snapshots. S = [s1, . . . , sP]
T where sp ∈ CD×1 denotes the p-th signal vector.

N is an additive white Gaussian noise matrix whose columns follow CN (0M, σ2IM), where 0M is a M×
1 zero vector, IM is a M×M identity matrix, and σ2 denotes the power of the noise. RX, the correlation
matrix of X, can be defined as

RX = E
[
XXH

]
= A(Θ)RSA(Θ)H + σ2IM, (4)

where RS = E
[
SSH]. Since all signal sources are uncorrelated with each other, RS is a diagonal matrix

where its p-th diagonal element equals to the power of the p-th signal source.
We define z = diag(RS) ∈ RP×1

+ , where diag(·) denotes a vector whose entries are diagonal
elements of a given matrix, and RP×1

+ denotes a vector composed of positive real numbers with the
size of P× 1. The (i, j)-th element of RX, RX(i, j) is given as

RX(i, j) =
P

∑
p=1

z(p)ej2π{(di−dj)/λ} cos θp for i 6= j,

P

∑
p=1

z(p)ej2π{(di−dj)/λ} cos θp + σ2 for i = j,

(5)

where z(p) is the p-th element of z, which denotes the power of the p-th signal source and satisfies
that z(p) = E

[
sH

p sp

]
.

3. Super-resolution DoA Estimation on Co-Prime Array via Positive Atomic Norm Minimization

3.1. Construction of Co-Prime Array Vector

To increase the number of detectable signal sources by using the co-prime array, the placement of
the antennas should follow the rule in [19], and the co-prime array vector needs to be constructed by
rearranging the elements of the correlation matrix. The co-prime array is a combination of two sparse
subarrays, where one subarray consists of 2M1 antennas spaced M2∆ apart and the other consists of
M2 antennas spaced M1∆ apart. ∆ is set to a half-wavelength such that ∆ = λ/2. The structures of
co-prime array and its virtual array V are given in Figure 2, where M = 2M1 + M2 − 1. The virtual
array is the notion that is used in the seminal works of co-prime array [24,29], where it does not exist
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physically, yet we can obtain the effect of using larger array cardinality. The set V that indicates the
placement of antennas in the virtual array can be defined as [19]:

V =
{

di − dj | i, j = 1, 2, . . . , M
}

. (6)

Figure 2. An example of the co-prime array and V for M1 = 2 and M2 = 3. The black antenna is a
reference antenna which has an overlapped position in two subarrays. Sets of blue antennas and red
antennas in V respectively denote VU and the remaining placement.

Note that some elements repeat and additional repeating elements are removed. Figure 2 shows
two subarrays, the co-prime array, and the virtual array when M1 = 2 and M2 = 3. V can be split into
two subsets, as in Figure 2: the placements of antenna elements which constitute a large ULA at the
center, VU, and the remaining placements. V denotes the cardinality of VU.

The co-prime array vector y ∈ CV×1 is constructed to obtain the cardinality of VU using RX.
The construction of y from RX is depicted in Figure 3. For clearer understanding, we define the term
virtual position of RX(i, j) as di − dj. Given the elements of RX and their virtual position in Figure 3a,
the procedure of constructing y can be broken down into three steps:

• Group the elements of RX with the same virtual position as in Figure 3b. Note that the index in
Figure 3b denotes the common virtual position of the elements within the group.

• Leave only the groups whose indices are equivalent to the elements of VU as in Figure 3b.
• Average the elements in remaining groups, and vectorize the averaged elements to obtain y as in

Figure 3c.

y ∈ CV×1 can also be rewritten as

y = Av(Θ)z + e = ŷ + e. (7)

Av(Θ) = [av(θ1), . . . , av(θP)] ∈ CV×P. av(θ) is the array manifold vector whose antenna placement
follows VU, such that

av(θ) =

[
ejπ (−V+1)

2 cos θ , ejπ (−V+3)
2 cos θ , . . . , ejπ (V−1)

2 cos θ

]T
∈ CV×1, (8)
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Note that V is an odd number since VU is symmetric with respect to the reference antenna at the
center. e = [0, . . . , 0, σ2/M, 0, . . . , 0]T ∈ CV×1, where the element located in the middle of e is σ2/M
and the other elements are 0. ŷ = Av(Θ)z and e can be seen as the additive noise to ŷ, where e affects
the element located in the middle of ŷ.

Figure 3. The construction of y using RX when M1 = 2 and M2 = 3. The green, red, and blue dotted
lines respectively denote the first step, the second step, and the third step of constructing y. In (a),
the variable beneath every element of RX is the virtual position of the corresponding element.

3.2. Super-Resolution DoA Estimation via Positive ANM

The atomic norm of ŷ, ‖ŷ‖A can be given as:

‖ŷ‖A = inf {g > 0 : g conv(A)}

= inf

{
L

∑
l=1
|hl |

∣∣∣∣∣ ŷ =
L

∑
l=1

hlψ(θl)

}
,

(9)

where conv(·) denotes a convex of hull of a set, A is a set of atoms, L is the number of atoms

that constitutes ŷ, and ψ(θl) is the l-th atom. ψ(θ) =
[
1, ejπ cos θ , . . . , ejπ(V−1) cos θ

]T
∈ CV×1, and A =

{ψ(θ) | 0◦ < θ < 180◦}. hl is a coefficient of the l-th atom which satisfies ŷ = ∑L
l=1 hlψ(θl) for arbitrary

{θl}, where {θl} denotes θl for l = 1, . . . , L. The details of convex hull and its relationship with the
atomic norm are well-explained in the seminal works of the atomic norm [11,12,27]. As shown in [27],
‖ŷ‖A can also be obtained via SDP as

‖ŷ‖A =min
u,t

{
1

2V
Trace(Toep(u)) +

1
2

t
}

s.t.

[
Toep(u) ŷ

ŷH t

]
� 0, t ≥ 0,

(10)
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where Trace(·) denotes the trace of a matrix, u is an arbitrary complex vector whose size is V × 1,
and (·) � 0 means that a matrix is positive semidefinite. Toep(u) is a Hermitian–Toeplitz matrix
whose first column is u and can be given as

Toep(u) =


u(1) u∗(2) . . . u∗(V)

u(2) u(1) . . . u∗(V − 1)
...

...
. . .

...
u(V) u(V − 1) . . . u(1)

 ∈ CV×V , (11)

where u∗(v) denotes the conjugate of u(v). According to [27,28], the resolution in the DoA estimation
can be enhanced if {hl} are positive real numbers, and this is called the positive ANM.

To employ the positive ANM for the resolution enhancement, two requirements should be
satisfied. First, recovering ŷ by subtracting e from y is necessary since e can result in inaccurate
DoA estimation. Second, the positive ANM cannot be employed since {hl} are arbitrary complex
numbers. Thus, an algorithm that recovers ŷ and makes the coefficients of the atoms being positive,
real numbers a requirement. Motivated by (10), the optimization problem that removes e from y and
enables employing the positive ANM can be derived as

min
u,t,b

{
1

2V
Trace(Toep(u)) +

1
2

t
}

s.t.

[
Toep(u) (y− bi)
(y− bi)H t

]
� 0, t ≥ 0, b ≥ 0.

(12)

i = [0, . . . , 0, 1, 0, . . . , 0]T ∈ CV×1, where the element located in the middle of i is 1, and otherwise 0.
In (12), subtracting bi from y stands for the recovery of ŷ. By using Schur complement, the constraint
of (12) can be rewritten as

tToep(u)− (y− bi)(y− bi)H � 0, t ≥ 0, b ≥ 0. (13)

This condition leads to the fact that Toep(u) is also positive semidefinite, as it can be easily
shown that (y− bi)(y− bi)H � 0. When Toep(u) � 0, u can be denoted as follows by Vandermonde
decomposition theorem of the positive semidefinite Toeplitz matrix [30].

u =
R

∑
r=1

crψ(θr), cr > 0, r = 1, . . . , R, (14)

where R is the rank of Toep(u), and cr is the coefficient of the r-th atom of u, which is a positive real
number. Since cr > 0, the positive ANM can be employed by using u. Furthermore, u?, the optimal
solution of u in (12) can be given as u? ≈ ∑P

p=1 z(p)ψ(θp) when (12) is accurately solved [11]. It can
be seen that the formation of u? is equivalent to that of ŷ, except that the coefficients of the atoms are
the positive real numbers. Given that the formation of u?, the DoAs can be accurately estimated by
employing the positive ANM with u?. As shown in [27], the positive ANM using u? can be represented
as SDP as follows.

max
q,H
<
(

qHu?
)

s.t. H � 0,

V−s

∑
i=1

H(i, i + s) +
q(s + 1)

2
=

{
1, s = 0,

0, s = 1, . . . , V − 1,

(15)
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where <(·) denotes a real part of given number. By letting q? denote the optimal solution of q in (15),
the DoAs can be estimated by finding largest peaks from spatial spectrum f (θ) which is

f (θ) = q?ψ(θ)H , for 0◦ < θ < 180◦. (16)

By letting θ̂p denote the p-th estimated DoA, the pseudocode of the proposed algorithm can be
given as Algorithm 1.

Algorithm 1 A super-resolution DoA estimation on a co-prime array via positive ANM.

Input: : X
Output: : θ̂p, p = 1, . . . , P

RX ≈ XXH/T;
Construct y according to the steps in Figure 3;
Calculate u? via (12);
Calculate q? via (15);
f (θ) = q?ψ(θ)H , for 0◦ ≤ θ < 180◦;
Find P largest peaks from f (θ) to estimate θ̂p, p = 1, . . . , P;

4. Simulation Results and Discussion

4.1. Simulation Settings

In this section, the performance comparison between the proposed algorithm, the classic
ANM [11], and RAM [26] is presented. For the implementation of RAM, the number of iterations
L is fixed to 5. Note that the algorithms based on the classic ANM and the RAM also employ the
co-prime array. The co-prime array with M1 = 3, M2 = 5 is used. In this case, the antenna elements are
physically located as [0, 3, 5, 6, 9, 10, 12, 15, 20, 25]∆, where ∆ = λ/2. Under this array configuration,
V = 35. The number of snapshots D = 1000, and RX ≈ XXH/D. The signal-to-noise ratio (SNR) is set
to 10 dB, where it is defined as follows.

SNR =
Trace(RS)

σ2 =
1
σ2

P

∑
p=1

z(p). (17)

The root mean square error (RMSE) is defined as

RMSE =

√√√√ 1
PQ

Q

∑
q=1

{
P

∑
p=1

(
θ̂

q
p − θ

q
p

)2
}

, (18)

where Q is the number of trials for RMSE calculation, and θ
q
p, θ̂

q
p respectively denote the real DoA

and the estimated DoA of the p-th signal source on the q-th trial. To solve (12), (15), the classic ANM
and the RAM CVX [31] are used for the optimization.

4.2. Analysis of Results and Discussion

Figure 4 presents the spectra of the classic ANM, the RAM, and the proposed algorithm.
The spectrum of the proposed algorithm refers to f (θ), while the spectrum of the classic ANM
is derived from the dual problem of (10), and the spectrum of the RAM refers to the weighting function
in [26]. Θ = [89.5◦, 91.5◦, 150◦]T , such that DoAs of two adjacent signal sources are close while the
other DoA is far from those of adjacent signal sources. Figure 4 shows that the proposed algorithm
and the RAM successfully estimate two adjacent DoAs, while the classic ANM cannot. Since the DoA
estimation algorithm with high resolution can estimate adjacent DoAs and the algorithms with low
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resolution cannot, we can tell that the proposed algorithm and RAM have higher resolutions than the
classic ANM.

However, the numerical result cannot be drawn by comparing the spectra. Thus, we present the
RMSE and the histogram of the estimation errors when the difference between two adjacent DoAs
varies. We define a distance between two adjacent DoAs τ as τ = |(cos θ1 − cos θ2)/2|, where τ is
used as a criterion of resolution in [11,18,27]. Note that τ is proportional to the difference between
θ1 and θ2 as τ becomes 0 when θ1 = θ2. Figure 5 presents the root mean square error (RMSE) result
versus τ and the Cramer–Rao bound (CRB). Here, z = [1, 1]T , and two DoAs are chosen randomly at
each iteration. The CRB is derived by using the theorem in [32]. Figure 5 shows that the proposed
algorithm has superior accuracy over the classic ANM and the RAM at every τ. When τ = 0.015,
the proposed algorithm and the RAM successfully estimate the DoAs that the classic ANM fails to
estimate. Although the RMSEs of all algorithms commonly drop as τ increases, the RMSE cannot fall
below CRB.

(a) (b) (c)

Figure 4. Spectrums of DoA estimation algorithms when z = [0.3, 0.4, 0.5]T and Θ =

[89.5◦, 91.5◦, 150◦]T . The boxed areas show the magnified spectrum. (a) Classic ANM [11]. (b) RAM [26].
(c) Proposed algorithm.

Figure 5. The RMSEs of the proposed algorithm, the classic ANM, and the RAM versus τ. A total of
500 trials are conducted. When τ = 0.015, the classic ANM fails to estimate DoAs of two adjacent
signal sources.

Since the RMSE does not show the estimation error of each trial, the histograms of the estimation
error of each trial when τ = 0.015 and τ = 0.02 are presented in Figure 6. Note that the estimation
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error of the q-th trial is given as
√

∑P
p=1(θ̂

q
p − θ

q
p)2/P, and the histograms for τ ≥ 0.025 are omitted

since the estimations of all algorithms are accurate such that the histograms do not provide meaningful
statistics. In Figure 6a, the classic ANM totally fails to estimate DoAs properly, while the estimations
of the proposed algorithm and RAM are accurate. In Figure 6b, the estimations of all algorithms are
accurate, but the proposed algorithm shows slight superiority over the others. From Figures 5 and 6,
it can be considered that the proposed algorithm has good resolution since the proposed algorithm is
more accurate than the other algorithms when the DoAs are closely separated.

(a) (b)

Figure 6. The histograms of the estimation error of each trial when τ = 0.015 and τ = 0.02. A total of
500 trials were conducted to draw the histogram. (a) τ = 0.015, (b) τ = 0.02.

The complexities and the average computation times of DoA estimation algorithms are given
in Table 1. For computation, Intel CPU i5-7500 (3.40 GHz) and 16 GB RAM were used. The number
of iterations for RAM, L, was set to five. The complexities of the proposed algorithm, classic ANM,
and RAM can be calculated using the analysis in [33]; the complexity of the SDP is derived in [33].
Note that the complexity of the proposed algorithm is a summation of the complexities of (12) and (15),
where the complexity of (12) is O

(
(V + 1)3.5) and the complexity of (15) is O

(
V(V + 1)3.5). Since the

proposed algorithm requires solving (12) and (15), and RAM requires iterations, the complexities of
the proposed algorithm and RAM are higher than that of the classic ANM. Although the proposed
algorithm is more complex than the classic ANM, the proposed algorithm has advantages in resolution
while having lower complexity than RAM.

Table 1. The complexities and the average computation times of DoA estimation algorithms.

Algorithm Complexity Computation Time

Proposed O
(
(V + 1)3.5)+ O

(
V(V + 1)3.5) 2.55 s

Classic ANM [11] O
(
V(V + 1)3.5) 1.93 s

RAM [26] O
(

LV(V + 1)3.5) 4.14 s

5. Conclusions

In this paper, we propose the super-resolution DoA estimation algorithm using the co-prime array
and the positive ANM. To increase the cardinality of an array, the co-prime array vector is constructed
by arranging elements of correlation matrix. The existing SDP formulation for the ANM-based DoA
estimation is modified such that the positive ANM can be applied by Vandermonde decomposition
theorem, and the estimation accuracy is improved by removing the noise on the co-prime array
vector. Simulation results show that the proposed algorithm has notable merits in both resolution
and complexity compared to other ANM-based DoA estimation algorithms. We expect the proposed
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algorithm to be extended to azimuth and elevation estimation on the planar array or to the practical
applications, including localization on vehicular networks and automotive radar.
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