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ABSTRACT In non-cooperative contexts, one needs to estimate communication parameters by using
collected data without any prior information. Particularly, when collecting only a limited number of data,
estimation becomes a more challenging task. This paper presents a method for estimation of interleaver
parameter when only a limited number of collected data are available. We first create additional data by
combining a limited number of collected data. We then investigate the rank deficiency of the matrices
composed of the collected and additionally-created data. Finally, we estimate the interleaver parameter by
using the difference of average rank deficiencies. Through computer simulations, we validate the proposed
method in terms of detection probability and the number of false alarms.

INDEX TERMS Blind detection, non-cooperative context, remote sensing, spectrum surveillance.

I. INTRODUCTION
Blind estimation of communication parameters can make
essential contributions to both cooperative and non-
cooperative contexts, such as mobile wireless communica-
tions, surveillance systems, and cognitive radios [1]. For
cooperative contexts, such as in 4G-LTE and 5G new radio
mobile communication systems, some of the communication
parameters should be blindly detected among the candidates.
For example, user equipment performs blind detection for
its corresponding physical downlink control channel in the
search space to decode downlink control information which
contains the physical layer transmission parameters, e.g.,
adaptive modulation and coding, power control, and resource
information [2]–[5]. Meanwhile, blind estimation of commu-
nication parameters has played a more important role in non-
cooperative contexts. For non-cooperative contexts, such as
spectrum surveillance and cognitive radios, exploiting only
the received data, we must blindly estimate the communi-
cation parameters used in a transmission system including
source coding, channel coding, interleaving, scrambling,
modulation and more, because the receiver does not know
any parameters used in the transmitter [6]–[29].

Research on the blind estimation of communication param-
eters has been conducted, including but not limited to:
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modulation [6]–[11], spread spectrum sequence [12], [13],
channel coding [14]–[17], interleaving [18]–[27], and source
coding [28], [29]. One of the key ideas for estimation in the
previous research is using the inherent linearity of the col-
lected data relating to linear operations in the communication
system. Among the various components of a communication
system, the representative components relating to the linear
property are channel coding and interleaving, which make
data more resilient to the noise, fading, and interference
induced in communication channels [30]–[34]. In particular,
we focus on estimation of interleaver parameter for a non-
cooperative context in this paper.

Interleaver parameter estimation has been studied for
many years in many places in the literature [18]–[27]. [18]
and [19] used rank of matrix and Gauss-Jordan elimina-
tion through pivoting for the estimation, respectively. Refer-
ences [20]–[24] estimated the interleaver parameter by eval-
uating the number of ones or zeros in each column (or row)
of the matrix generated from collected data. Reference [20]
proposed a blind reconstruction method of a helical scan
interleaver with block channel coded data. For the case
of convolutional channel coded data, [21] estimated block
and helical scan interleavers, and [22] estimated convolu-
tional and helical interleavers. For the cases of block and
convolutional channel coded data, [23] addressed block inter-
leaver and [24] estimated convolutional interleaver. Further-
more, [25]–[27] estimated the interleaver parameter based on
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the rank deficiency distributions: [25] proposed an estimation
algorithm choosing vectors having fewer errors; [26] used
binomial distribution to compare rank deficiency distribu-
tions for the matrices generated from collected data and from
random binary data; and [27] presented an enhanced estima-
tion method that can be efficiently applied to more severe
channel conditions. The previous methods generally estimate
the interleaver parameters under the condition of a sufficient
number of collected data. However, if the number of collected
data falls below a certain limit, the previous methods become
infeasible. In this case, estimation becomesmore challenging.

In this paper, we present a method for the estimation
of interleaver parameter when only a limited number of
collected data are available. We first create additional data
by combining a limited number of collected data. We then
examine the rank deficiency of the matrices composed of the
collected and additionally-created data. Finally, we estimate
the interleaver parameter by using the difference of average
rank deficiencies. Through computer simulations, we validate
the proposed method in terms of detection probability and the
number of false alarms.

This paper is organized as follows. Section II introduces
the basic idea for the estimation of interleaver parameter.
Section III proposes amethod for the estimation of interleaver
parameter when only a limited number of collected data are
available. Section IV validates through computer simulations
the proposed method in terms of detection probability and the
number of false alarms. Section V offers conclusions.

II. SYSTEM SETUP
Let us assume that transmitter uses an (nc, kc) linear block
code and an interleaver with period P which is a multiple
of the codeword length nc, where a codeword consists of kc
message bits and nc-kc parity bits that are made by linear
combinations of the message bits, and the interleaver changes
the order of codeword bits in every period P. In a non-
cooperative context, theM -bit collected data sequence C can
be expressed as

C = {a1, a2, . . . , aM } (1)

where aq is the q-th bit of the data sequenceC and aq ∈ {0, 1}
for 1 ≤ q ≤ M . If we sequentially divide the collected data
sequence C with a length of predicted interleaving period P̃
and make w row vectors by using the divided data, then the
vector multiset SO which consists of w row vectors can be
expressed as

SO = {s1, s2, . . . , sw} (2)

where w =
⌊
M
P̃

⌋
, b·c is the floor function, and the i-th vector

si with the length of P̃ is

si = [a(i−1)P̃+1 a(i−1)P̃+2 . . . aiP̃ ] (1 ≤ i ≤ w). (3)

Let RO be a P̃ × P̃ square matrix generated by arbitrarily
selecting P̃ different vectors from w vectors in SO and arrang-
ing the selected P̃ different vectors row by row. In this case,

the number of square matrices RO we can generate is wCP̃,
where xCy is the binomial coefficient.

If the predicted interleaving period P̃ is different from
the original interleaving period P, the linear dependence in
a codeword is lost in si, and message and parity bits are
not aligned on columns of RO [25]–[27]. In this case, rank
deficiency of RO is similar to that of a matrix generated from
random binary data, and consequently, the rank deficiency
distribution of RO becomes similar to that of random binary
matrices. It is well known that the probabilities that rank
deficiencies of a random binary matrix become 0, 1, 2, 3,
and 4 are about 0.288788, 0.577576, 0.128350, 0.005239, and
0.000047, respectively [35]. On the other hand, if P̃ is equal
to P, the linear dependence in a codeword is maintained in
si, and message and parity bits are aligned on columns of
RO [25]–[27]. In this case, rank deficiency occurs inRO as the
number of parity bits in the interleaving period P, therefore,
the rank deficiency distribution ofRO becomes different from
that of random binary matrices.

The methods in [25]–[27] use the above properties to
estimate interleaving period through comparison between
rank deficiency distribution of RO and that of random binary
matrices, under the condition of a sufficient number of matri-
ces for calculation of rank deficiency distribution. However,
if the number of collected data is so limited that not even a
single P×PmatrixRO can be generated, we cannot calculate
the rank deficiency distribution of RO, unlike the methods
in [25]–[27]. To solve that problem, we present in this paper
a method for estimation of interleaving period by creating
additional vectors through combining si’s, and by using the
difference of average rank deficiencies.

III. PROPOSED METHOD
Nowwe propose a method to estimate the interleaving period
under the condition of a limited number of collected data.
First, we make the vector multiset SO of (2) from a limited
number of collected data. Then, we create additional vectors
by linear combinations of n different vectors in SO to obtain
a sufficient number of vectors for calculation of the rank
deficiency distribution of P̃ × P̃ square matrices, where n ≥
2. Finally, we estimate the interleaving period by using the
difference of average rank deficiencies under the condition
of a limited number of collected data.

When only a limited number of collected data are available
in a non-cooperative context, to obtain a sufficient number
of vectors for calculation of the rank deficiency distribution,
we propose creating additional vectors. If we select n different
vectors from the w vectors in SO of (2) generated from a lim-
ited number of collected data, and take modulo-2 additions to
the selected vectors in every combination, then we have wCn
additional vectors that compose the created vectormultiset SC

SC =
{
cJ = ⊕

j∈J
sj | |J | = n , J ⊂ I

}
(4)

where I is an index set of I = {1, 2, . . . ,w}, |J | is the cardi-
nality of J , and ⊕ denotes the modulo-2 addition. By using
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two vector multisets, SO of (2) and SC of (4), we can compose
a new vector multiset, SN

SN = SO + SC . (5)

Note that the total number of vectors we can acquire becomes
w + wCn in (5) and this may be a sufficient number of
vectors to generate matrices and calculate rank deficiency
distribution.

Let RN be a P̃ × P̃ square matrix generated by arbitrarily
selecting P̃ different vectors from w + wCn vectors in SN
of (5) and arranging the selected vectors row by row. For
example, if P̃ is 49 and w is 40, we can only obtain 40 vectors
from (2). For this case, we cannot generate even a single
49 × 49 square matrix RO, and thus cannot calculate a rank
deficiency distribution. On the other hand, if we select two
(i.e., n = 2) different vectors from 40 vectors in SO of (2) in
every combination, then we can create 40C2 = 780 additional
vectors from (4), acquire a total of 820 vectors from (5), and
generate 820C49 different 49 × 49 square matrices RN . Note
that even when n = 2, we can obtain 820C49 matrices, enough
to calculate rank deficiency distribution.

After creating additional vectors, we have to examine the
linear dependence among the vectors in the new vector mul-
tiset, SN of (5). To simplify explanation, we take an example
when n = 2. In this case, J = {i, j} and cJ becomes
cJ = c{i,j} = si ⊕ sj in (4). If P̃ is equal to P, since c{i,j}
in SN of (5) is the modulo-2 addition of si and sj, the linear
dependence in a codeword is also maintained in c{i,j} as in si
and sj. Therefore, if we generate a P̃ × P̃ square matrix RN
by arbitrarily selecting P̃ different vectors in SN , the message
and parity bits are aligned on columns of RN as in the matrix
RO, and the rank deficiency is the number of parity bits in the
interleaving period P.
On the other hand, if P̃ is different fromP, though the linear

dependence in a codeword is lost, there is additional linear
dependence among vectors in SN , unlike SO. This is due to
the following two cases: one is the linear dependence among
vectors si, sj, and c{i,j}, because c{i,j} = si⊕sj for i 6= j, and the
other is the linear dependence among vectors c{i,j}, c{i,k}, and
c{j,k}, because c{i,j}⊕ c{i,k} = (si⊕ sj)⊕ (si⊕ sk ) = sj⊕ sk =
c{j,k} for i 6= j 6= k . Here we have investigated the linear
dependence among the vectors in the new vector multiset, SN
for the case n = 2, but it can be straightforwardly extended
to the general cases for n ≥ 2.
Consequently, if we compose RN by arbitrarily selecting

P̃ different vectors in SN , the linearly dependent vectors can
be included in RN , so that even if P̃ is different from P,
unlike the rank deficiency of RO, the rank deficiency may
additionally occur in RN . In other words, unlike the rank
deficiency distribution ofRO, even if P̃ is different fromP, the
rank deficiency distribution of RN is different from that of
the random binary matrices. Accordingly, when we estimate
the interleaving period usingRN , we cannot use conventional
methods such as [26] and [27], which compare the rank
deficiency distribution of P̃ × P̃ square matrices generated
by collected data with that of the random binary matrices.

Therefore, if we use RN for estimation of the interleaving
period under the condition of a limited number of collected
data, we have to use a new method. We will now examine it
in detail.

When P̃ is different from P, as P̃ decreases, the number
of the vectors in SN increases, and the number of the linearly
dependent vectors that are included inRN , composed of P̃ dif-
ferent vectors selected from SN , will tend to decrease. On the
other hand, as P̃ increases, the number of the vectors in SN
decreases, and the number of the linearly dependent vectors
included in RN will tend to increase. Therefore, the rank
deficiency of RN will vary with P̃: there will be a tendency
for the rank deficiency of RN to increase, as P̃ increases.

FIGURE 1. Average rank deficiency versus predicted interleaving period.

To investigate the tendency of the rank deficiency of RN
according to P̃, we show the rank deficiency ofRN by varying
P̃ from 7 to 64 in Fig. 1, where the original interleaving period
P is 49, the number of collected data is 2401 (49 × 49) bits,
n = 2, and (7, 4) Hamming code is used. For notational
convenience, we denote the average rank deficiency ofRN as
m(P̃) and the difference of average rank deficiencies between
m(P̃) andm(P̃−1) as1m(P̃), i.e.,1m(P̃) = m(P̃)−m(P̃−1).
In Fig. 1, m(P̃) is obtained by averaging the rank deficiencies
of 100 matrices of RN for a given P̃, and we can see that
m(P̃) varies with P̃. In particular, as P̃ increases, since there
is a possibility that the number of linearly dependent vectors
included in RN increases, m(P̃) tends to increase.
Meanwhile, it is also noteworthy that since the rank defi-

ciency of RN is determined by the number of parity bits in
the interleaving period P due to the linear dependence in
a codeword when P̃ is equal to P, 1m(P̃) for P̃ = P is
larger than the other 1m(P̃) for P̃ 6= P. That is, 1m(P̃),
the difference of average rank deficiencies betweenm(P̃) and
m(P̃− 1), becomes the largest when P̃ is equal to P. This can
be a clue for the estimation of the interleaving period. If P̃ is
equal to P, the possibility that 1m(P̃) becomes the largest
is maximized. Therefore, we can decide P̃ as the original
interleaving period P when 1m(P̃) has the largest value

P = argmax
P̃

1m(P̃). (6)
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FIGURE 2. Difference of average rank deficiencies versus predicted
interleaving period.

To verify this, we depict 1m(P̃) in Fig. 2 under the same
conditions as in Fig. 1. From Fig. 2, we can see that, when P̃ is
49,1m(P̃) becomes the largest and the estimated interleaving
period obtained from (6) is equal to the original interleaving
period P.
In a noisy channel, however, 1m(P̃) may not reliably be

largest even when P̃ is equal to P because the linear depen-
dence in a codeword can be lost due to the erroneous bits
caused by the noise. In this case, the estimated interleaving
period obtained by (6) may not be equal to the original
interleaving period P and a false alarm may occur. In this
paper, we control the false alarm occurrence by using the gap
between the largest and the second largest values of 1m(P̃).
For this, we set the threshold γ to γ = α + k , where
α is the second largest value of 1m(P̃) and k is a design
parameter. If the largest value of 1m(P̃) is greater than γ ,
that is, if the gap is larger than k , then we declare that the
estimated interleaving period obtained by (6) is the original
interleaving period. Note that as k increases, the number of
false alarms decreases.

In Algorithm 1, we summarize the method for estimation
of the interleaving period under the condition of a limited
number of collected data, where Pmin and Pmax are minimum
and maximum values of P̃, respectively, and D is the number
of matrices RN .
After estimating the interleaving period which is the most

important interleaver parameter, other interleaver parame-
ters can straightforwardly be estimated by using the pre-
vious results, such as the results of [20], [21], and [23].
For example, when the interleaving period is correctly esti-
mated, the numbers of rows and columns of helical scan
interleaver can be estimated by the methods in [20] and [21],
and those of block interleaver can be estimated by the
methods in [21] and [23].

IV. SIMULATION RESULTS
We validate the proposed method in terms of detection prob-
ability and the number of false alarms through computer sim-
ulations. In the simulations, we assume a random interleaver

Algorithm 1 Estimation of the Interleaving Period by Using
the Difference of Average Rank Deficiencies
Input: Collected data sequence C
1: for P̃ = Pmin : Pmax do

2: Generate vector multiset SO of (2) by sequentially
dividing C to the vectors with length P̃

3: Combine n different vectors in SO by modulo-2 addition
and create vector multiset SC of (4)

4: Composing vector multiset SN of (5)
5: for i = 1 : D do

6: Construct matrices RN by choosing P̃ vectors from
SN and arranging them row by row

7: Calculate the rank deficiency of RN
8: end
9: Average the rank deficiencies of matrices RN to

calculate m(P̃)
10: end
11: Calculate1m(P̃), where 1m(P̃) = m(P̃)− m(P̃− 1)
12: Decide P in (6) and record the largest value of 1m(P̃)
and α which is the second largest value of 1m(P̃)
13: Calculate threshold γ , where γ = α + k
14: If the largest value of1m(P̃) > γ , declare P in (6) as the
original interleaving period
Output: Estimated interleaving period P

with the interleaving period P, binary phase shift keying
modulation, and an additive white Gaussian noise (AWGN)
channel. We conduct the simulations when the number of
collected data, M , is equal to or less than P × P bits, and
include the results of [19] for comparisons. Note that other
conventional methods, such as [23] and [25]–[27], cannot
estimate the interleaving period even when M is P × P bits
because they generally need more than P×P bits of collected
data for estimation: method in [23] is based on an L × P
rectangular matrix for L > P; and methods in [25]–[27] use
the rank deficiency distribution for estimation, which requires
a large number of P× P square matrices.

TABLE 1. Average rank deficiencies and their differences for n.

Before examining the detection performance of the pro-
posed method, we first consider 1m(P), the value of 1m(P̃)
when P̃ = P, with regard to n, which is the number of vectors
selected from SO for creating additional vectors of SC . For
this, we tabulate 1m(P), m(P), and m (P − 1) for n = 2, 3,
4, and 5 in Table 1, where P is 28, M is 784 (28 × 28) bits,
and (7, 4) Hamming code is used when the signal-to-noise
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ratio (SNR) is 5 dB. Recall that, for the correct estimation of
interleaving period P, the largest value of 1m(P̃) must occur
when P̃ = P.

From Table 1, we see that as n increases, m (P − 1)
decreases and m(P) does not change significantly, and con-
sequently, 1m(P) increases as n increases. The explanation
of this follows from Section III: if P̃ 6= P, e.g., in case of
m (P − 1) in Table 1, though the linear dependence in a
codeword is lost in the vectors of SN , the rank deficiency
may additionally occur due to the linearly dependent vectors
included in RN , which is composed of P̃ different vectors
selected from SN . Therefore, as n increases, m (P − 1)
decreases, since the number of vectors in SN increases and the
possibility that the linearly dependent vectors can be included
in RN decreases. On the other hand, if P̃ = P, i.e., in case of
m(P) in Table 1, the rank deficiency occurs mainly due to
the parity bits aligned on columns of RN because the linear
dependence in a codeword is maintained in the vectors of
SN . Accordingly, even if n increases, m(P) does not change
significantly.

Consequently, as n increases, the possibility that 1m(P)
becomes the largest value increases and we can expect that
the detection performance can be improved.

FIGURE 3. Detection probability for n = 2, 3, 4, and 5 in an AWGN
channel.

Now, we examine the detection performance of the pro-
posed method according to n. In Fig. 3, we show the detection
probabilities by varying n from 2 to 5, where we use the inter-
leaving period 28 with (7, 4) Hamming code, interleaving
period 60 with (15, 11) BCH code, and interleaving period
124 with (31, 21) BCH code whenM is P×P bits and k is 1.
From Fig. 3, we find that the detection performances improve
as n increases, as we expected. Performances improve signif-
icantly when n varies from 2 to 3, and there are only relatively
small improvements when n increases from 3 to more.
In Table 1, we found that as n increases,m (P−1) decreases

andm(P) does not change significantly. For a given codeword
length, m(P) becomes smaller as the code rate increases
because the number of parity bits in the codeword decreases
as the code rate increases. Therefore, for a high code rate,
to improve detection performance, i.e., to increase1m(P), we

should take lager values of n that can significantly decrease
m (P − 1). We set n to a design parameter, because the per-
formance improvements can be noticeable when n increases
from 3 to more for higher code rates.

Under the same simulation conditions, to investigate the
detection performance of the proposed method according
to k , we depict the detection probabilities and the number
of false alarms of the proposed method for k = 0, 0.5,
and 1 when n = 3 in Figs. 4 and 5, respectively. From
Figs. 4 and 5, we see that the detection probabilities decrease
but false alarms also decrease as k increases as we expected
in Section III.

FIGURE 4. Detection probability for k = 0, 0.5, and 1 in an AWGN channel.

FIGURE 5. Number of false alarms in 10,000 iterations for k = 0, 0.5,
and 1 in an AWGN channel.

To analyze the detection performance according to M ,
the number of collected data, which is the main concern
of this paper, we show the detection probabilities for inter-
leaving period of 28 with (7, 4) Hamming code, interleav-
ing period of 60 with (15, 11) BCH code, and interleaving
period of 124 with (31, 21) BCH code, in Figs. 6, 7, and 8,
respectively. We also depict the number of false alarms
in 10,000 iterations for the interleaving period of 124 with
(31, 21) BCH code in Fig. 9. In the simulations, we vary M
from P×P to P×P×β bits for 0 < β < 1, and set k to 1 and
n to 3. For comparisons, the performance for the conventional
method of [19] is included.

When M is P × P bits, at a detection probability of 0.9,
the proposed method achieves SNR gains of about 2.0 dB,
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FIGURE 6. Detection probability for M when interleaving period is 28 and
(7, 4) Hamming code is used in an AWGN channel.

FIGURE 7. Detection probability for M when interleaving period is 60 and
(15, 11) BCH code is used in an AWGN channel.

FIGURE 8. Detection probability for M when interleaving period is
124 and (31, 21) BCH code is used in an AWGN channel.

1.8 dB, and 1.0 dB over [19] in Figs. 6, 7, and 8, respectively.
We see that, with smaller values of M , the proposed method
achieves greater SNR gains over [19]: at a detection probabil-
ity of 0.9, about 3.1 dB, 2.3 dB, and 1.6 dB over [19] whenM
are 666 (≈28×28×0.85) bits in Fig. 6, 3,240 (60×60×0.9)
bits in Fig. 7, and 12,301 (≈124 × 124 × 0.8) bits in Fig. 8,
respectively. In more severe cases of M , when M are 627
(≈28×28×0.8) bits in Fig. 6, 3,060 (60×60×0.85) bits in Fig
7, and 11,224 (≈ 124× 124× 0.73) bits in Fig. 8, the detec-
tion probabilities of the proposed method can reach 0.9 at
SNRs of 5.7 dB, 7.2 dB, and 8.4 dB respectively, whereas

FIGURE 9. Number of false alarms in 10,000 iterations for M when
interleaving period is 124 and (31, 21) BCH code is used in an AWGN
channel.

the method in [19] cannot give any meaningful detection
results. From Fig. 9, we also see that the proposed method
has few false alarms even when the number of collected data,
M , is small.

From the results, we can expect that the proposed method
can effectively estimate interleaver parameter evenwhen only
relatively few data are collected.

V. CONCLUSIONS
In this paper, we presented a novel method for blind esti-
mation of interleaver parameter when only a relatively small
number of collected data are available. Under the condition
of collecting a limited number of data that not even a single
P×P square matrix can be generated, the previous estimation
methods became infeasible or had degraded estimation per-
formances. To solve this problem, we first created additional
data by combining the collected data. Then, we investigated
the rank deficiency of the matrices composed of the col-
lected and additionally-created data. Finally, we estimated the
interleaver parameter by using the difference of average rank
deficiencies when only a limited number of data are avail-
able. We validated the proposed method through computer
simulations, showing that the proposed method is applicable
under the condition of collecting a limited number of data.
Our method for the estimation of interleaver parameter with a
limited number of collected data, however, is not restricted to
interleaver parameter estimation. The proposed method can
be applied to the blind estimation of other communication
parameters, such as channel coding parameter, by using the
linearity hidden inside the collected data.
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