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Abstract: This paper introduces a low complexity wideband direction-of-arrival (DOA) estimation
algorithm on the co-prime array. To increase the number of the detectable signal sources and to
prevent an unnecessary increase in complexity, the low dimensional co-prime array vector is
constructed by arranging elements of the correlation matrix at every frequency bin. The atomic
norm minimization (ANM)-based approach resolves the grid-mismatch, which causes an inevitable
error in the compressive sensing (CS)-based DOA estimation. However, the complexity surges
when the ANM is exploited to the wideband DOA estimation on the co-prime array. The surging
complexity of the ANM-based wideband DOA estimation on the co-prime array is handled by solving
the time-saving semidefinite programming (SDP) motivated by the ANM for multiple measurement
vector (MMV) case. Simulation results show that the proposed algorithm has high accuracy and low
complexity compared to compressive sensing (CS)-based wideband DOA estimation algorithms that
exploit the co-prime array.

Keywords: atomic norm minimization (ANM); wideband sources; direction-of-arrival (DOA) estimation;
co-prime array

1. Introduction

A direction-of-arrival (DOA) estimation has been studied for decades in array signal processing
and has been adopted in a various applications such as localization and radar [1]. In addition,
the DOA estimation can take an essential role in cooperative localization for vehicular networks,
where the cooperative localization between vehicles requires the relative distances and DOAs of
neighboring vehicles [2,3]. Direction-of-arrival (DOA) estimation algorithms can be distinguished
according to the bandwidth of the signal: a narrowband DOA estimation and a wideband DOA
estimation. When the bandwidth is narrow compared to the carrier frequency of the signal, the phase
difference between antennas is only dependent on the DOA as in [4]. On the other hand, when
the signal has a wide bandwidth, the narrowband DOA estimation algorithms cannot be used since
the phase difference between antennas also varies with the temporal frequency [5]. For this reason,
the wideband systems such as automotive radar [6] and other ultra-wideband (UWB) applications [7]
require the wideband DOA estimation. The standard approach for the wideband DOA estimation
is to decompose the wideband signal into multiple narrowband signals using discrete Fourier
transform (DFT) and make narrowband DOA estimation applicable [8–10]. However, the complexity
of the algorithm may surge as the number of narrowband signals increases [11]. Thus, one of
the challenges in wideband DOA estimation is to prevent complexity from getting high.

In the past few years, compressive sensing (CS)-based wideband DOA estimation algorithms
have been proposed [11–13]. Although different types of CS such as basis pursuit (BP) [14] and sparse
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Bayesian learning (SBL) [15] are exploited, CS-based DOA estimation algorithms are commonly
robust against fewer snapshots and correlation between signal sources [16]. However, in a practical
situation, a real DOA does not match perfectly with the basis of the finite search grid, which is used in
CS-based DOA estimation. This problem is widely known as grid-mismatch and causes inevitable
estimation error [17]. Among [11–13], the algorithm in [11] suffers from the grid-mismatch and has
high complexity that surges as the number of decomposed narrowband signals increases. On the other
hand, the algorithms in [12,13] alleviate the grid-mismatch by using the approximation method in [18]
that models the distance from the true DOA to the nearest grid basis. However, [12] experiences high
complexity while [13] reduces the complexity by eliminating the useless grid basis at every iteration.

The atomic norm minimization (ANM)-based narrowband DOA estimation is first proposed
in [19], where the theoretical base of the atomic norm is established in [20]. The ANM-based DOA
narrowband estimation works directly on continuous DOA and completely resolves the grid-mismatch.
After the proposal of the ANM, the ANM for multiple measurement vector (MMV) case has been
studied in [21], and the robustness of the ANM-based algorithm against noise [22] and the gain-phase
error [23] have been discussed. The ANM-based algorithm also extended to 2D-DOA estimation,
including azimuth and elevation estimation [24] and multiple-input-multiple-output (MIMO)
radar [25]. The ANM-based wideband DOA estimation has been studied in [26]. However, the idea
of reducing complexity has not been discussed. In addition, [26] targets linear frequency modulated
(LFM) signals and thus is difficult to be used in the general scenario.

Along with the study on the DOA estimation algorithms, the sparse array metrics such as
the nested array [27] and the co-prime array [28] have been introduced for an underdetermined case,
where the underdetermined case denotes a scenario in which the number of signal sources exceeds
the number of antennas. The sparse array creates the virtual array whose cardinality is much larger
than that of the physical array and enables detecting more signal sources. The sparse array has been
exploited in the seminal works of the CS-based narrowband and wideband DOA estimation [11,12,29]
and the ANM-based narrowband and wideband DOA estimation [26,30].

In this paper, we propose a low complexity wideband DOA estimation via ANM which is free from
grid-mismatch. The wideband signal is decomposed into multiple narrowband signals, and the low
dimensional co-prime array vector is constructed by arranging elements of a correlation matrix at each
frequency bin. A problem that encompasses the decomposed narrowband signals of all frequency
bins is derived. However, the computational complexity of the derived problem is exceptionally
high. Thus, the complexity is reduced by exploiting the semidefinite programming (SDP) in [21],
assuming that the co-prime array vectors from all frequency bins are MMVs. The main contributions
of the proposed algorithm can be summarized as follows:

• An approach based on ANM resolves the grid-mismatch and enables achieving higher accuracy
when the signal sources have a wide bandwidth.

• To reduce the complexity of the ANM-based wideband DOA estimation, the time-saving SDP is
derived, which is motivated by the ANM for MMV case.

2. Signal Model

We assume that P uncorrelated wideband signals impinging on the antenna array with M elements.
The DOAs of the signal sources are noted as Θ = [θ1, . . . , θP]

T . The bandwidth of the signals span over
the frequency range [ fl , fu], where fl and fu denote the lower and upper frequency bound respectively.
For a wideband analysis, the wideband signal is decomposed into K narrowband signals by DFT.
The frequency range [ fl , fu] is sectorized into K bins, and the center frequency of the k-th bin is defined
as fk. An array manifold vector of the k-th frequency bin whose DOA is θ, ak(θ) can be given as

ak(θ) =
[
ej2π(d1/λk) cos θ , . . . , ej2π(dM/λk) cos θ

]T
, (1)
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where dm denotes a distance between the m-th antenna and the reference antenna. Note that the first
antenna is the reference antenna, and hence d1 = 0. λk = c/ fk, where c is the speed of light. An array
manifold matrix of the k-th frequency bin, Ak(Θ) is

Ak(Θ) = [ak(θ1), . . . , ak(θP)] ∈ CM×P. (2)

The received signal of the k-th frequency bin, Xk can be written as

Xk = Ak(Θ)Sk + Nk ∈ CM×T , (3)

where T is the number of snapshots. Sk =
[
s1

k , . . . , sP
k
]T , where sp

k ∈ CT×1 denotes the p-th signal
vector of the k-th frequency bin. Nk is a noise matrix whose columns follow CN (0, σ2IM), where
σ2 denotes the power of the noise which is assumed to be known and is equivalent for all k. IM is
a M×M identity matrix. RX

k , the correlation matrix of Xk, can be defined as

RX
k = E

[
XkXH

k

]
= Ak(Θ)RS

k Ak(Θ)H + σ2IM ≈
XkXH

k
T

,
(4)

where RS
k = E

[
SkSH

k
]
≈ SkSH

k /T. Since every signal source is uncorrelated with each other, RS
k

is a diagonal matrix where its p-th diagonal element equals to the power of the p-th signal source.
We define zk such that zk = diag(RS

k ), where diag(·) denotes a vector whose entries are diagonal
elements of a given matrix. The (i, j)-th element of RX

k , RX
k (i, j) can be given as

RX
k (i, j) =

P

∑
p=1

zk(p)ej2π{(di−dj)/λk} cos θp for i 6= j,

P

∑
p=1

zk(p)ej2π{(di−dj)/λk} cos θp + σ2 for i = j,

(5)

where zk(p) is the p-th element of zk.

3. Wideband DOA Estimation on Co-Prime Array via Atomic Norm Minimization

3.1. Construction of Co-Prime Array Vector

To increase the number of the detectable signal sources by using co-prime array, the placement
of the antennas should follow the rule in [28] and the co-prime array vector needs to be constructed
by rearranging the elements of the correlation matrix. The co-prime array vectors in the previous
works [11,12,29] are the vectorized correlation matrix so that the dimension of the co-prime array
vector becomes excessively large, causing an unnecessary increase in complexity. In this subsection,
the procedure of constructing low dimensional co-prime array vector is introduced.

The co-prime array is a combination of two sparse subarrays, where one subarray consists of
2M1 antennas spaced M2∆ apart, while the other consists of M2 antennas spaced M1∆ apart. ∆ is
set to a half-wavelength of the signal whose frequency equals to the center frequency of the range
[ fl , fh], such that ∆ = c/( fl + fh). The structure of co-prime array and its virtual array V are given in
Figure 1, where M = 2M1 + M2 − 1. The virtual array is the notion that is used in the seminal works
of the co-prime array [12,29,31], where it does not exist physically, yet we can obtain the effect of using
a larger array. The set V indicates the placement of antennas in the virtual array [28], and is defined as

V =
{

di − dj | i, j = 1, 2, . . . , M
}

. (6)
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Note that some elements can repeat, and additional repeating elements are removed in V . V denotes
the cardinality of V and is smaller than M2 as the repeating elements are removed. Figure 1 shows
two subarrays, the co-prime array and the virtual array when M1 = 2 and M2 = 3. V can be split into
two subsets as in Figure 1: the placement of antenna elements which constitutes a large uniform linear
array (ULA) at the center, VU and the remaining placement. V denotes the cardinality of VU.

Figure 1. An example of the co-prime array and V for M1 = 2 and M2 = 3. The black antenna is
a reference antenna which has an overlapped position in two subarrays. Sets of blue antennas and red
antennas in V respectively denote VU and the remaining placement.

The co-prime array vector of the k-th frequency bin, yk ∈ CV×1 is constructed to obtain
the cardinality of VU using RX

k . The construction of yk using RX
k is depicted in Figure 2. For clearer

understanding, we define the term virtual position of RX
k (i, j) as di − dj. Given the elements of RX

k
and their virtual position in Figure 2a, the procedure of constructing yk can be broken down into
three steps:

• Group the elements of RX
k with the same virtual position as in Figure 2b.

Note that the index in Figure 2b denotes the common virtual position of the elements within
the group.

• Leave only the groups whose indices are equivalent to the elements of VU as in Figure 2b.
• Average the elements in remaining groups and vectorize the averaged elements to obtain yk as in

Figure 2c.
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Figure 2. The construction of yk using RX
k when M1 = 2 and M2 = 3. The green, red, and blue

dotted lines respectively denote the first step, the second step, and the third step of constructing yk.
In (a), the variable beneath every element of RX

k is the virtual position of the corresponding element.
(b) Groups and indices. (c) Elements of yk.

Note that the dimension of yk ∈ CV×1 is smaller than that of the co-prime array vector in [12,29,31],
where the dimension of the co-prime array vector in [12,29,31] equals M2. yk can also be rewritten as

yk = Av
k(Θ)zk + e = ŷk + e. (7)

Av
k(Θ) =

[
av

k(θ1), . . . , av
k(θP)

]
∈ CV×P. av

k(θ) is the array manifold vector of the k-th frequency
bin whose antenna placement follows VU, such that

av
k(θ) =

[
e

jπ(−V+1) ∆
λk

cos θ
, e

jπ(−V+3) ∆
λk

cos θ
, . . . , e

jπ(V−1) ∆
λk

cos θ
]T

. (8)

Note that V is an odd number since VU is symmetric for the reference antenna at the center.
e = [0, . . . , 0, σ2, 0, . . . , 0]T ∈ CV×1, where the element located in the middle of e is σ2 and the other
elements are 0. ŷk = Av

k(Θ)zk, where ŷk can be recovered since σ is known.

3.2. Wideband DOA Estimation via Atomic Norm Minimization

The atomic norm of ŷk, ‖ŷk‖Ak can be given as follows [20].

‖ŷk‖Ak = inf {g > 0 : g conv(Ak)}

= inf

{
∑

l
|hl |

∣∣∣∣∣ ŷk = ∑
l

hla
v
k(θl)

}
,

(9)

where g is an arbitrary positive real number, conv(·) denotes a convex of hull of a set, Ak is a set that
consists of the atoms of the k-th frequency bin, and av

k(θl) is the l-th atom of the k-th frequency bin.
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hl is a complex number which satisfies ŷk = ∑l hlav
k(θl) for arbitrary {θl}, where {θl} denotes θl for

l = 1, . . . , L. ‖ŷk‖Ak can also be represented as SDP in [19]:

‖ŷk‖Ak =min
uk ,tk

{
1

2V
Trace(Toep(uk)) +

1
2

tk

}
s.t.

[
Toep(uk) ŷk

ŷH
k tk

]
≥ 0,

(10)

where uk, tk are optimization variables in (10), Trace(·) denotes a trace of the matrix, and Toep(·)
denotes a Hermitian Toeplitz matrix whose first column equals to the given vector. For k = 1, . . . , K, K
different problems can be originated from (10). By summing the objective functions of K problems
and integrating K constraints, the SDP that encompasses K frequency bins can be given as

min
u1,...,uK
t1,...,tK

K

∑
k=1

{
1

2V
Trace(Toep(uk)) +

1
2

tk

}

s.t.

[
Toep(u1) ŷ1

ŷH
1 t1

]
≥ 0 , . . . ,

[
Toep(uK) ŷK

ŷH
K tK

]
≥ 0.

(11)

The complexity of solving (11) is O
(
K3.5(V + 1)3.5), where the complexity can be calculated

using the analysis in [32]. Letting D be the size of the search grid used in CS, the complexity of other
CS-based wideband algorithms such as [11,12] can be given as O

(
K3D3). Since the sum of exponents

in O
(
K3.5(V + 1)3.5) is larger than that of O

(
K3D3), it can be seen that the complexity of solving (11)

is generally higher than that of [11,12].
To reduce the complexity, we regard that the atoms and the atomic sets of {ŷk} are equivalent.

When {ŷk} share equivalent atoms and atomic sets, {ŷk} are considered as MMV. Since the ANM for
MMV case is well-studied in [21], we exploit the SDP formulation in [21], which has far less complexity
than (11). To use the SDP in [21], Y is defined as Y = [ŷ1, . . . , ŷK] ∈ CV×K, where ŷk is regarded as
the k-th measurement vector. Then, the time-saving SDP for the wideband signal that is divided into K
frequency bins can be given as the dual problem of the SDP in [21]:

max
Q,H

<
(

Trace(QHY)
)

s.t.

[
H −Q
−QH IK

]
≥ 0, H is a Hermitian matrix,

V−s

∑
i=1

Hi,i+s =

{
K, s = 0,

0, s = 1, . . . , V − 1,

(12)

where Q, H are optimization variables in (12), and <(·) denotes the real part of the variable. Letting
the optimal solution of Q in (12) be denoted as Q?, the DOAs can be estimated by finding θ that yields
the large correlation between Q? and B(θ), where B(θ) =

[
av

1(θ), . . . , av
K(θ)

]
∈ CV×K. The correlation

between Q? and B(θ) can be represented as the spectrum f (θ) for 0 ≤ θ < π as follows.

f (θ) = Trace
(

B(θ)HQ?
)

, for 0 ≤ θ < π. (13)

Here, the DOAs can be estimated by finding P largest peaks from f (θ). Let θ̂p denote the p-th
estimated DOA, the pseudocode of the proposed algorithm can be given as Algorithm 1.
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Algorithm 1 A low complexity wideband DOA estimation on co-prime array via ANM

Input: : Xk, k = 1, . . . , K
Output: : θ̂p, p = 1, . . . , P

for all k do

RX
k ≈ XkXH

k /T;
Construct yk according to the steps in Figure 2;
ŷk = yk − e;

end for
Y = [ŷ1, . . . , ŷK];
Calculate Q? via (12);
f (θ) = {vec(Q?)}H b(θ), for 0 ≤ θ < π;
Find P largest peaks from f (θ) to estimate θ̂p, p = 1, . . . , P;

Figure 3. The spectrum of f (θ) on noiseless case. Direction-of-arrival (DOAs) are distributed in [40◦, 140◦]
with 10◦ interval, such that P = 11. z1 = z2 = . . . = zK = [0.6,0.7,0.8,0.5,0.9,0.8,0.7,0.8,0.6,0.5,0.6]T and
T = 500.

The spectrum of f (θ) on noiseless case where σ = 0 is presented in Figure 3. Here, the co-prime
array with M1 = 3, M2 = 5 is used, such that M = 10. The figure confirms that the proposed algorithm
can successfully estimate the DOAs in the underdetermined case.

4. Simulation Result

Two other CS-based wideband DOA estimation algorithms are tested for comparison: wideband
sparse spectrum fitting (W-SpSF) [11] and two step off-grid (TS-OG) approach [12]. Note that W-SpSF
and TS-OG also exploit the co-prime array as the proposed algorithm does. For the simulation
settings, the frequency of wideband signals span over [ fl , fh], where fh = 1.5 fl . The frequency range
is divided into 10 bins, such that K = 10. The number of signal sources P is set to 5. M1 = 3
and M2 = 5, thus the antenna elements are located as [0, 3, 5, 6, 9, 10, 12, 15, 20, 25]∆, where ∆ =

c/( fl + fh). The power of all signal sources are equal, and each signal source is assumed to have a flat
power spectral density (PSD) over [ fl , fh], such that RS

1 = RS
2 = . . . = RS

K. For W-SpSF and TS-OG,
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the grid spacing is set to 1◦, so that the size of the grid D = 181. To solve (12), CVX [33] is used for
the optimization. The signal-to-noise ratio (SNR) of the k-th frequency bin, γk is set as follows.

γk =
Trace(RS

k )

σ2 . (14)

Since RS
1 = RS

2 = . . . = RS
K, γ1 = γ2 = . . . = γK. The root mean square error (RMSE) is defined as

RMSE =

√√√√ 1
PQ

Q

∑
q=1

{
P

∑
p=1

(
θ

q
p − θ̂

q
p

)2
}

, (15)

where Q is the number of Monte Carlo iterations for RMSE calculation, and θ
q
p, θ̂

q
p respectively denote

the real DOA and the estimated DOA of the p-th signal source on the q-th Monte Carlo run. For each
iteration, DOAs are chosen randomly between [30◦, 150◦] with all DOAs separated at least 15◦.

Figure 4 shows the accuracy of estimation when SNR and the number of snapshots vary.
Cramer-Rao bound (CRB) is presented along with the RMSE of wideband DOA estimation algorithms,
where the derivation of CRB is given in Appendix A. In Figure 4, the RMSE of W-SpSF does not
fall below

√
1/12, where

√
1/12 is the average estimation error induced by the grid-mismatch when

the step size is 1◦. In Figure 4a, the proposed algorithm has better accuracy than W-SpSF and TS-OG at
all SNR. The RMSE of W-SpSF stops improving even when the SNR is high enough, while the proposed
algorithm and TS-OG can break the accuracy limit induced by the grid-mismatch. In Figure 4b,
the performance of the proposed algorithm remains robust to a fewer number of snapshots, while
W-SpSF and TS-OG shows a large vulnerability compared to the proposed algorithm. Similar to
in Figure 4a, the W-SpSF experiences the accuracy limit induced by the grid-mismatch even when
the snapshots are abundant, while the others can break the limit induced by the grid-mismatch.

(a) (b)

Figure 4. Q = 500 and the signal-to-noise ratio (SNR) of all frequency bins are set to 0 dB. (a) The root
mean square error (RMSE) for different SNR. Q = 500 and T = 500, (b) The RMSE for different number
of snapshots.

The complexity and the average computation time of all wideband DOA algorithms are given
in Table 1. For computation, Intel CPU i5-7500 (3.40 GHz) and 16 GB RAM are used. The complexity
of the proposed algorithm is calculated by using the analysis in [32]. Since the sum of exponents of
O
(
V(V + K)3.5) is lower than that of O(K3D3), we can tell that the proposed algorithm is generally less

complex than [11,12]. Table 1 also shows that the proposed algorithm has the lowest computation time.
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Table 1. The complexity and the average computation time of wideband DOA algorithms.

Algorithm Complexity Computation Time

Proposed O
(
V(V + K)3.5) 1.16 s

W-SpSF [11] O(K3D3) 1.86 s
TS-OG [12] O(K3D3) 2.59 s

5. Conclusions

In this paper, we have proposed the wideband DOA estimation on co-prime array via ANM.
To increase the number of the detectable signal sources, the co-prime array vector is constructed
by arranging elements of the correlation matrix at every frequency bin. The high complexity of
the ANM-based wideband DOA estimation is tackled by using the SDP targeted for MMV, assuming
the co-prime array vectors of different frequency bins share the equivalent atoms. Simulation results
exhibit that the proposed algorithm has notable merits in both accuracy and complexity compared to
other CS-based wideband algorithms that exploit the co-prime array. We expect the proposed algorithm
to be extended to 2D-DOA estimation, such as azimuth and elevation estimation on the planar array
or to the practical applications, including localization and radar.
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Appendix A. Derivation of Cramer–Rao Bound

We define that X =
[
XT

1 , . . . , XT
K
]T ∈ CMK×T , where X is a matrix that is stacked up with

the received signals of all frequency bins. In addition, we define the manifold matrix that corresponds
with X, A(Θ) as A(Θ) =

[
A1(Θ)T , . . . , AK(Θ)T]T

= [a(θ1), . . . , a(θP)] ∈ CMK×P, where a(θp) =[
a1(θp)T , . . . , aK(θp)T]T ∈ CMK×1. Assuming the received signal of each frequency bin is uncorrelated

with the others, a correlation matrix of X, RX can be denoted as

RX =


RX

1 0 . . . 0
0 RX

2 . . . 0
...

...
. . .

...
0 0 . . . RX

K

 ∈ CMK×MK. (A1)

Since RS
1 = RS

2 = . . . = RS
K in the simulation setting, we regard them as one argument RS.

Then, Cramer–Rao bound of Θ can be denoted as follows [34].

CRB(Θ) =
σ

2T

{
<
(

D(Θ)HΠD(Θ)
)
◦(

RSA(Θ)H(RX)−1A(Θ)RS
)T
}−1

∈ CP×P.
(A2)

In (A2), D(Θ) = [d(θ1), . . . , d(θP)], where d(θp) = da(θp)/dθp. Π = IMK − A(Θ)
(
A(Θ)H

A(Θ))−1 A(Θ)H , and ◦ is an element-wise product of matrices. Here, diag (CRB(Θ)) denotes a vector
of lower bounds for θ1, . . . , θP.
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