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ABSTRACT Recent improvements in imaging sensors and computing units have led to the development of a
range of image-based human–machine interfaces (HMIs). An important approach in this direction is the use
of dynamic hand gestures for a gesture-based interface, and some methods have been developed to provide
real-time hand skeleton generation from depth images for dynamic hand gesture recognition. Towards this
end, we propose a skeleton-based dynamic hand gesture recognition method that divides geometric features
into multiple parts and uses a gated recurrent unit-recurrent neural network (GRU-RNN) for each feature
part. Because each divided feature part has fewer dimensions than an entire feature, the number of hidden
units required for optimization is reduced. As a result, we achieved similar recognition performance as the
latest methods with fewer parameters.

INDEX TERMS Artificial neural networks, gesture recognition, multi-layer neural network, recurrent neural
networks.

I. INTRODUCTION
Gestures are the basic elements used by humans to express
meaningful movements [1], and many studies have been con-
ducted on the development of gesture-based human–machine
interfaces (HMIs) [2]. Hand gestures are natural and fre-
quently used in face-to-face interactions; therefore, they
can be used to make intuitive HMIs [3]. Although some
researchers have used ‘‘data gloves’’ to acquire hand move-
ment information [4], this method cannot be widely imple-
mented because it requires expensive hardware. Thus,
recent studies have proposed hand gesture recognition using
image-based methods incorporating relatively cheap imaging
sensors.

Hand gestures can be either static or dynamic [5]. Static
hand gestures are represented by the hand’s shape, and,
therefore, complex hand poses may be required to represent
many types of static hand gestures. In contrast, dynamic
hand gestures involve both hand shape and movement, and,
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therefore, the limitation imposed by hand poses is less
restrictive than with static hand gestures. Owing to develop-
ments and improvements in three-dimensional (3D) sensors,
hand gesture recognition can be conducted using not only
hand shapes and movements but also a hand skeleton. A hand
skeleton for gesture representation comprises a connection
between all joints connecting neighboring phalanges. If a
hand pose changes for a dynamic hand gesture, we can predict
which gesture is being performed from the hand skeleton.
To exploit this property, many researchers have extracted
features from hand skeletons [6]–[8] through detailed exam-
inations. Various methods for hand feature classification
have also been proposed [6], [7], [9], [10], and recent
improvements in parallel computing have enabled the adop-
tion of neural-network-based feature classification meth-
ods [7], [8], [11]–[14]. Most neural networks demonstrated
better performance than non-neural-network classifiers; how-
ever, they required considerable number of parameters
and high-performance hardware. Thus, constructing gesture-
based HMI systems based on neural networks is hardly
feasible.
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In this study, we propose a neural-network-based recog-
nition method for dynamic hand gestures that is suitable for
constructing HMI systems. The main contributions of our
proposed method are as follows:

1) We divided features into multiple parts and provided
each part as the input of a gated recurrent unit-recurrent
neural network (GRU-RNN). By dividing the features,
the number of dimensions of the input features as well
as the number of parameters of the GRU-RNNs are
reduced. Thus, relatively faster training and data recog-
nition than existing methods are possible.

2) The output of each GRU-RNN is concatenated with
other feature parts; therefore, the relation between the
hand parts is conserved with fewer GRU-RNN param-
eters. Because of this conservation, we achieved simi-
lar recognition performance as other existing methods
while using fewer parameters, and our method can be
implemented even with low-performance hardware.

The proposed method recognizes dynamic hand gestures
by removing noise, spatially normalizing skeleton coordi-
nates, extracting geometric features from a hand skeleton,
dividing the features into multiple parts, and classifying these
features using a part-based GRU-RNN (PB-GRU-RNN).
In the PB-GRU-RNN, each feature part has its own GRU-
RNN, and the output is fed to the next part’s GRU-RNN.
Therefore, our neural network requires less memory than
other neural-network-based methods that offer similar recog-
nition performance.

The rest of this paper is organized as follows: Section II
introduces existing hand gesture recognition methods and
their limitations. Section III introduces and describes the pro-
posed method. Section IV presents our experimental settings
and results. Section V presents a comparison of our method
with other methods and analyzes the experimental results.
Finally, Section VI describes our contributions and outlines
future work.

II. RELATED WORK
Because image-based hand gesture recognition can be used
in areas other than HMI, it has attracted much research
attention in the last 30 years [15]. Before the development
of image-based 3D sensors, many hand gesture recognition
methods used color information to segment a hand from the
background of an image [16]–[20]. However, 3D sensors,
such as Kinect, RealSense, and Leap Motion, have made
hand segmentation easier by using a combination of color and
depth. Therefore, methods for recognizing static and dynamic
hand gestures by using 3D sensors have become popular.

Static hand gestures are represented by hand shapes, and
they can be recognized by describing hand shapes and then
measuring the similarity between shapes; however, the num-
ber of available gesture types is limited because complex
hand shapes may be required to represent more static hand
gesture types. Dynamic hand gestures suffer less from this
limitation than static gestures. However, temporal behaviors,

which can be represented as hand movements and transitions
between static hand poses, must be dealt with.

Wu and Lin [6] recognized dynamic hand gestures by
measuring transitions between static hand gestures by the
region of feature and support vector machines (SVMs) in a
predetermined duration. Although their method was simple
to implement, only a few dynamic gestures could be recog-
nized because the number of transitions is limited. Instead of
using hand transitions, a method for describing hand move-
ments as features and classifying them with hidden Markov
models (HMMs) has been proposed. Beh et al. [9] used a
left-to-right HMM to recognize dynamic hand gestures as
represented by two-dimensional trajectories. For the HMM
input, trajectories were segmented based on abrupt angle
changes, and points on the trajectories were resampled to
ensure that the data from each class had the same number
of segments. The resampled data were classified by left-to-
right HMMs that were initialized by a mixture of von Mises
distribution-basedHMMs (MvM-HMMs). Each segment was
modeled by theMvM to describe its state. HMM-basedmeth-
ods could recognize dynamic gestures with decent perfor-
mance; however, this was achieved using strict conditions
such as the number of states, initialization methods, and
feature types.

To overcome the condition limitations of HMM-based
methods, Cheng et al. [10] adopted image-to-class dynamic
time warping (I2C-DTW) to recognize dynamic hand ges-
tures by comparing hand movement trajectories. Features
were extracted from 3D hand trajectories and were classified
through I2C-DTW, and they showed a better performance
than HMMs. De Smedt et al. [7] extracted features called
the shape of connected joints (SoCJ), histogram of hand
directions (HoHD), and histogram of wrist rotations (HoWR)
from a hand skeleton. The SoCJ was encoded by Fisher
vectors, and an SVM was used to classify the combination
of encoded SoCJ, HoHD, and HoWR. Their method used
a hand skeleton and its joints instead of a single trajec-
tory to represent dynamic hand gestures. Therefore, recog-
nizing more complex hand gestures, such as pinching or
grabbing, was possible. Other than typical machine-learning-
based methods, some scholars have proposed the use of
neural networks owing to improvements in parallel com-
puting hardware. Molchanov et al. [11] used a convolu-
tional neural network (CNN) with grayscale and depth image
sequences to recognize dynamic hand gestures. The image
sequences were temporally normalized to a fixed size for
CNN inputs. In their study, two CNNs were used: one for the
original image sequence and another for a spatially resized
image sequence. De Smedt et al. [21] extracted neighboring
keyframes, which are regularly picked from a depth image
sequence, and used a CNN to classify these keyframes to
recognize dynamic hand gestures. Devineau et al. [12] used
a CNN called multichannel deep CNN (MC-DCNN), with a
combination of fixed-length 1D sequences as input to rec-
ognize skeleton-based dynamic hand gestures. The multidi-
mensional sequence of each frame was split into multiple
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1D sequences, and each 1D sequence was processed by
the MC-DCNN. For the fixed-length input of their CNN,
the input sequence was temporally normalized. Each chan-
nel was propagated through three branches: two for feature
extraction at different resolutions and one for pooling to
prevent over-fitting. Chen et al. [8] used long short-term
memory RNNs (LSTM-RNNs) and motion features to recog-
nize skeleton-based dynamic hand gestures. They proposed
two types of features: global and finger motion features.
Each type of feature was processed by LSTM-RNN layers
followed by fully connected layers. Zhu et al. [13] proposed
a combination of 3D CNN and LSTM to segment continuous
dynamic gestures and recognize the segmented dynamic ges-
tures. They used two types of neural networks: segmentation
and recognition network. A segmentation network determines
the start and end frames by using RGB modality, depth
modality, and ConvNet networks. In the recognition network,
rank-pooled depth sequences, RGB sequences, and saliency
sequences are fed to neural networks to recognize the gesture
between the start and the end frames [22]. Maghoumi and
LaViola, Jr. [14] used a deep GRU-RNN with an attention
module to recognize dynamic hand gestures. They augmented
the data with random scaling, random translation, and syn-
thetic sequence generation with stochastic resampling and
used only hand joints. Avola et al. exploited the angles
between adjacent fingers and adjacent phalanges to extract
better features for their LSTM-RNN network. The data were
then preprocessed using the Savitzky–Golay filter to remove
noise, and the timesteps with the peaks of the feature val-
ues were selected to create an input with fixed-length for
their LSTM-RNN.

III. DYNAMIC HAND GESTURE RECOGNITION WITH A
PART-BASED GRU-RNN
To recognize dynamic hand gestures from the 3D skeletal
joint sequences of a hand, our proposed method comprises
four stages: noise removal, data normalization, feature extrac-
tion, and gesture recognition. Noise removal is performed
using the Savitzky–Golay filter. Data normalization spatially
normalizes skeletal joint sequences, after which features
are extracted from parts of the normalized sequences. The
extracted features are then classified by the PB-GRU-RNN
for dynamic hand gesture recognition.

In this study, we separated the hand into two parts: the
fingers and the palm. We defined the finger as the combi-
nation of adjacent phalanges, and defined the palm as the
combination of carpals and metacarpals except for the thumb
metacarpal. The thumb is a combination of the metacarpal
and phalanges and is an exception because it does not have
an intermediate phalanx. Thus, each finger has three bones.
Figure 1 shows the anatomy of the hand skeleton along with
our definition of the palm, fingers, and hand joints. The palm
contains seven joints, and each finger comprises three joints.
Hereafter, the explanation for the palm and fingers is based
on Figure 1.

FIGURE 1. Anatomy of hand skeleton and definition of the palm, fingers
(red dashed lines), and hand joints (black dots) in this study.

A. NOISE REMOVAL
Depending on the sensor and environment, the acquired
joints may oscillate, and these oscillating noises may hinder
the performance of hand gesture recognition. Thus, noise
removal is required for better recognition performance. The
Savitzky–Golay filter [23] is a polynomial-based filter that is
used to smooth digital signals (e.g., the coordinates of hand
skeleton joints) without distorting the signal tendency, such
as the positions of the extrema of the signal.

B. DATA NORMALIZATION
Hand gesture data may have the same gesture label, but
the gestures’ scale and speed may vary because of fac-
tors such as user behavior and physical characteristics, sen-
sor resolution, and the distance between a sensor and the
hand. In this study, we normalized our data spatially only
because the time-dependent factors could be handled by
an RNN.

Because the starting position of a gesture should not inter-
fere with gesture recognition, all joints in all frames were
translated with respect to the coordinates of a reference point.
In this study, the wrist joint in the first frame was selected as
the reference point. After translation, the initial size of hand
in the sequence can be estimated because the gestures can be
distinguished by the change in hand size. The initial size of
the hand can be estimated by the distance between the palm
center and the farthest joint in the first frame, D. All hand
joint coordinates are divided by D for data normalization.

C. FEATURE EXTRACTION
The proper recognition of dynamic hand gestures requires
features that describe the hand and finger movements as well
as the pose. We divide these features into three parts: palm,
finger, and pose.

For hand gestures, the palm is the base and other geometric
features are related to the palm joints. For the palm gestures,
the following features are extracted:
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FIGURE 2. Structure of a GRU for an RNN.

• Coordinates of the palm joints.
Various hand gestures are expressed by the movement

and folding of fingers, thus we can extract distinguishable
features for gesture recognition from them. For the finger
part, the following features are extracted, motivated by [24]:
• Relative coordinates of the finger joints and fingertip
from the wrist joint.

• Internal angles between the adjacent bones.
• Vectors between adjacent finger joints for each finger.
• Internal angles between fingers as determined by the
wrist–fingertip vectors.

The hand pose is determined by a combination of the palm
and fingers. For the pose part, the following features are
extracted:
• Palm tilting is represented by the normal of the plane
generated by the wrist joint, thumb metacarpal end, and
little metacarpal end.

• Movement of the palm center and fingertips.
• Wrist–palm center vector and palm center–fingertip
vectors.

• Internal angles between the normal of the palm tilting
plane and the palm center–fingertip vectors.

D. GESTURE RECOGNITION
An RNN is a feed-forward neural network that incorporates
the temporal behavior of the input data sequence [25]. RNN
optimization may be hindered by the expansion or reduction
of gradients during error backpropagation when the sequence
is long. We used GRUs [26], as shown in Figure 2, to over-
come the gradient problem.

A GRU has two ‘‘gates,’’ which are pairs of a vector and
matrix: update gate z and reset gate r . In Figure 2, the output
vectors of these gates at timestep t are denoted as zt and rt ,
respectively, and the output of the hidden layer at timestep t is
denoted as ht . These output vectors are calculated as follows:

zt = σ (Wzxt + Uzht−1 + bz) (1)
rt = σ (Wrxt + Urht−1 + br ) (2)
ht = (1−zt ) ◦ ht−1+zt ◦ tanh(Whxt+Uh(rt ◦ ht−1)+bh),

(3)

where t indicates the index of timestep; ◦ indicates the
Hadamard product operation; tanh is the hyperbolic tangent
function; σ is the sigmoid function; and Wα , Uα and bα are

FIGURE 3. Structure of PB-GRU-RNN for dynamic hand gesture
recognition.

the weight matrix and bias of gate α shared by the hidden
units in the same layer. Thus, there are 3L pairs of weight
matrices and biases for our GRU-RNN with L layers. ht is
the output vector from the hidden unit that is delivered to the
hidden unit at timestep t+1 in the same layer or to the hidden
unit at timestep t in the next layer. As the gates’ names and
(3) imply, an increase in rt decreases the weight of ht−1 to
update ht whereas an increase in zt decreases the weight of ht
to reset ht to ht−1.
Our GRU-RNN network, the PB-GRU-RNN, has three

parts in the following order: the palm, finger, and pose parts.
Each part has its own features, as described in Section III-C,
and its own GRU-RNN. The output of the GRU-RNN of each
part is concatenated with the features from the next part, and
the concatenated data is fed to the GRU-RNN of the next
part; thus, the relationships between the parts are maintained.
The length (i.e., number of frames) of gestures is arbitrary
and, therefore, the significance of each time step may not be
the same. Thus, we calculated the weight for each timestep
by using the attention module proposed by Maghoumi and
LaViola, Jr. [14]. In this attention module, the context vector
is generated by a trainable fully connected (FC) layer. The
context vector is fed to the attentional GRU-RNN, and the
hidden unit of the last timestep of the GRU-RNN of the last
part is given as the initial state of the attentional GRU-RNN.
The output of the attentional GRU-RNN is fed to a FC layer
with an activation function designed to calculate the class
scores for classification. The class with the highest score is
assigned to the datum. Figure 3 shows the structure of the
PB-GRU-RNN for the n-class classification of a sequence of
length T .

IV. EXPERIMENTAL RESULTS
A. DATASET
We used the SHREC’17 dataset [21], comprising 2,800 hand
gestures created by 28 participants, for our experiments.
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FIGURE 4. Performance (%) comparison w.r.t. hyperparameters of PB-GRU-RNN.

Each hand gesture comprises a sequence of 7–170 images
captured by an Intel RealSense depth camera, and each
frame of a hand gesture comprises data from 22 joints.
There are 14 gesture types in the SHREC’17 dataset: Grab,
Tap, Expand, Pinch, Rotation Clockwise, Rotation Coun-
terclockwise, Swipe Right, Swipe Left, Swipe Up, Swipe
Down, Swipe X, Swipe +, Swipe V, and Shake. These ges-
ture types are called coarse gestures, each of which can be
further categorized as one of two fine gestures based on
finger-folding patterns. Thus, the SHREC’17 dataset com-
prises 14 and 28 coarse and fine gesture types, respectively.
Of the SHREC’17 data, 70% (1,960 data) was used as the
training dataset and the other 30% (840 data) as the test
dataset.

B. EXPERIMENTAL SETTINGS
For data normalization, the joint movements in the first frame
were set to 0 because they could not be calculated.

For the hidden and FC layers, the dropout ratio was set
to 50%. The epoch for the training data was set to 200.
Each batch consisted of 14 gesture data. We used the Adam
optimization [27] method to optimize our network, where

the learning rate was set to 10−3, and the exponential decay
rates for the first- and second-moment estimates were set
to 0.9 and 0.999 respectively. Furthermore, the value for
the zero-denominator prevention was set to 10−8. The class
scores were calculated using the FC layer with the softmax
activation function, and the inputs of the FC layer were batch-
normalized. All elements of h0, the input hidden vectors for
the hidden units at the first timestep, were set to 0 for all
hidden layers.

As mentioned in Section III-C, we divided the features
into three parts and, therefore, the hidden layers were also
divided into three parts for each feature part. In our experi-
ment, the number of hidden layers for the palm, finger, and
pose parts were set to 1, 2, and 3, respectively. In addition,
the number of hidden units per layer for these parts were set
to 32, 64, and 64, respectively; and the number of hidden units
for the FC layer was set to 256 as the basic setting. The total
number of parameters was approximately 220,000.

For the attention module, we used the GRU-RNN hav-
ing one layer with 256 hidden units. Moreover, for the
FC layer attached to the attention module, 256 hidden units
were used.
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FIGURE 5. Confusion matrix for coarse gestures (top) and fine gestures (bottom) obtained by PB-GRU-RNN.

Table 1 shows the comparison between the accuracies of
the existing approaches and the proposed PB-GRU-RNN.

C. ADJUSTMENT OF HYPERPARAMETERS
We also examined the change in performance when the
hyperparameters of the PB-GRU-RNN were adjusted. First,

we only adjusted the number of hidden units in the FC layer
by multiplying or dividing by a power of 2 while other hyper-
parameters were fixed. We also adjusted the number of layers
of the GRU-RNN of each part while other hyperparameters
were fixed. The adjusted PB-GRU-RNNs were tested on the
SHREC’17 dataset, and Figure 4 shows the result.
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TABLE 1. Test accuracy (%) on the SHREC’17 dataset.

TABLE 2. Test accuracy (%) on the SHREC’17 dataset without noise
removal, batch normalization, spatial normalization, or attention module.

D. OTHER SETTINGS
We applied noise removal, batch normalization, spatial nor-
malization, and an attention module in our experiments and
examined how much the recognition performance dropped
when these methods were not used. Table 2 shows the results
for these settings.

V. DISCUSSION
As shown in Table 1, our method outperformed existing non-
neural-network-based methods as it did with existing neural-
network-based ones.

Regarding the number of hidden units in the FC layer,
the recognition performance for fine gestures peaked when
the number of hidden units was 256. For coarse gestures,
the recognition performance peaked when the number of
hidden units were 512 and 1,024. We assumed that the recog-
nition performance was saturated with 256 hidden units and,
thus, the use of more units would not improve performance.

As shown in Figure 4, some of the adjusted hyperpa-
rameters showed slightly better performance for coarse ges-
tures than for the basic settings; however, none of them
showed the same performance for fine gestures. This could be
because when some of part features were relatively nonuse-
ful (e.g., the use of the finger features for coarse gestures),
the number of layers of that part had smaller impact on the
recognition performance.

Noise removal, batch normalization, spatial normaliza-
tion, and the attention module improved recognition perfor-
mance, as shown in Figure 2. Among these four methods,
the use of the attention module drastically improved the
performance for fine gestures, whereas the use of the other
methods only slightly improved the performance. Compared
to the LSTM-RNN method proposed by Chen et al. [8],
our method showed improved recognition accuracy for both
gesture types. Their method used only motion features; we
assumed that representing gestures with only motion was not
enough.

The MC-DCNN method proposed by Devineau et al.
showed decent performance by using only the coordinates
of the hand joints; however, it seemed that the use of only
1D coordinates was unsuitable for recognizing fine gestures.
While DeepGRU also used only the coordinates of the hand
joints, Devineau et al. applied a convolutional operation to
fixed-length 1D sequences in the time-domain instead of
using a multilayer GRU-RNN. Thus, we assumed that raw
3D data represent complex gestures better than multichannel
1D sequences separately.

Our method slightly outperformed DeepGRU while using
fewer parameters; however, DeepGRU has the advantage
that the raw data can be used as the input. Additionally,
the attention module from DeepGRU improved our method.
If DeepGRUuses properly extracted features, its performance
could be improved.

Compared to Avola et al.’s method, our method showed
better performance only for fine gestures. The sampling
method proposed by Avola et al. only extracted the features
from the frames containing abrupt feature value changes and,
therefore, redundant features were removed from the input.
Although the performance improvement by their sampling
method may vary with respect to the selected feature type
or the length of the sampled data, the exclusion of inconsid-
erable frames can be a powerful preprocessing method for
dynamic gesture recognition.

Considering the number of parameters, our method
requires much less memory than other neural-network-based
methods. Our method used approximately 220,000 param-
eters whereas MC-DCNN used more than 13 million,
Avola et al. used approximately 1 million, and DeepGRU
used more than 3 million.

VI. CONCLUSION AND FUTURE WORK
In this study, we used a PB-GRU-RNN to recognize
skeleton-based dynamic hand gestures following noise
removal, data normalization, feature part division, and feature
extraction. As a result, we obtained better recognition per-
formance than most existing methods. Unlike existing meth-
ods that used the entire feature for their input, our method
divided the features into multiple parts and used them as
inputs for the GRU-RNNs for each hand part. This reduced
the number of parameters required for our neural network
and improved the performance; therefore, less memory is
required to construct HMI systems with neural networks.
Furthermore, by properly dividing the feature parts, our
method can be modified and used for other skeleton-based
dynamic gesture recognition. For other gesture cases, the rela-
tionship between the parts and the complexity of the features
should be considered to determine the hyperparameters of the
GRU-RNNs for each part. Additionally, other than improv-
ing neural-network-based classifiers, more accurate prepro-
cessing methods should also be studied to provide better
input for classifiers. The proposed method improved recog-
nition performance for dynamic hand gestures by using geo-
metric features; however, erroneous hand skeletons, which
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may lead to wrong recognition results, need to be handled.
We expect that data augmentation methods, such as autoen-
coders, can serve to resolve this problem. Thus, in future,
related issues will be studied to modify the PB-GRU-RNN
for joint error suppression and to improve the recognition
performance.
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