
 

Holographic Abelian Higgs model and the linear confinement
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We consider the holographic Abelian Higgs model and show that, in the absence of the scale symmetry
breaking effect, chiral symmetry breaking gives linear confinement where the slope is given by the value of
the chiral condensation. The model can be considered either as the theory of superconductivity or as the
axial sector of QCD depending on the interpretation of the charge. We also provided a few models with
linear confinement.
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I. INTRODUCTION

One of most spectacular phenomena provided by the
strong interaction is the stringy structure out of systems of
particles, and the leading guidance in strong interaction has
been the chiral symmetry. The string theory was born by the
observation [1,2] that a linear relation between the mass
squared and spin in the data of hadrons, the Regge
trajectory, can be realized by the spectrum of a vibrating
string. Naturally, in the era of the AdS/CFT [3–5], two of
the leading questions in its application were how to utilize
the chiral symmetry [6,7] in the new context and whether
holography can produce the linear trajectory for QCD.
When the vacuum expectation value of q̄q is nonzero,

chiral symmetry is broken, and QCD is in the confining
phase. Therefore, these two are likely related, and therefore
linear Regge trajectory and the chiral symmetry breaking
should be so also. However, this has not been so clear even
in the anti-de Sitter (AdS)/QCD era, although the linear
spectrum for the vector meson sector was given in Ref. [7]
using a dilaton configuration.
In this paper, we will point out that the holographic

Abelian Higgs model has a linear confining spectrum. That
is, the chiral symmetry breaking is enough to establish the
Regge trajectory in the axial sector of the QCD. We
consider the one flavor case for simplicity so that the
theory becomes an Abelian gauge theory. Notice that even
for the multiflavor case, the nonlinearity due to the non-
Abelian structure is irrelevant in leading order discussion

on the spectrum and transports, which ensures that the
linearity of the spectrum remains for the multiflavor case.
The left- and right-handed quarks, qL, qR, have axial

charge −1 and þ1 respectively under the axial Uð1Þ global
symmetry. Invoking the holographic principle, we have
axial gauge field Aμ and a complex scalar field Φ which is
the dual to the q̄LqR of charge 2. Because the presence of
the pion indicates that the chiral symmetry is broken
spontaneously, so is the promoted chiral Uð1Þ gauge
symmetry. Thus, we are naturally lead to the Abelian
Higgs model whereΦ plays the role of Higgs field. We will
show below that this model has the linearly confining
spectrum.
On the other hand, we will see that when there is a

dilatonic effect like in the soft-wall model [7], spontaneous
chiral symmetry breaking will not give any significant
contribution to the Regge slope; instead, it can contribute
to the Regge intercept. Namely, the Regge slope is
predominantly determined by the gluon condensation only,
and this explains why all the Regge slopes are the same.
This can be traced back to the fact that the complex scalar
field is dominated by the dilaton configuration in the
infrared regime. Therefore, in this paper, we do not use
overall dilaton factor e−φ, and will give a phenomenologi-
cal QCD model where spontaneous chiral symmetry is not
disturbed by dilaton and linear confinement is respected in
all sectors.
We will also give a various models with linear confine-

ment properties which may and may not be related to the
real QCD, because our observation on the stringy spectrum
is very universal, not necessarily attached to the phenomena
of QCD.

II. STRINGS IN HOLOGRAPHIC
ABELIAN HIGGS MODEL

We start from the canonical action of the gauge field Aμ

and the complex boson Φ in a fixed metric background.
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S ¼
Z

ddþ1x
ffiffiffiffiffiffi
−g

p �
−
1

4
F2
μν − jDμΦj2 −m2

ΦjΦj2
�
; ð1Þ

where Dμ ¼ ∇μ − iqAμ is the covariant derivative in the
AdSdþ1 of radius L ¼ 1 whose metric is

ds2 ¼ ðdz2 þ ημνdxudxνÞ=z2; with η00 ¼ −1: ð2Þ

Bulk massm2
Φ is given in terms of the conformal dimension

of the dual operator: m2
Φ ¼ ΔðΔ − dÞ. We will fix it such

that Δ ¼ 2, which is natural in d ¼ 2þ 1 dimensions. For
d ¼ 3þ 1, we need to choose m2

Φ ¼ −4 for Δq̄q ¼ 2,
which is realized at the left boundary value of conformal
window of Nf=Nc [8]. Since we are applying the AdS/CFT
in the confined phase at the low energy where the
conformality is lost, the boundary value 2 is better than
the free fermion value 3. The field equation then gives

Φ ¼ M0zþMz2; in AdS4; ð3Þ

Φ ¼ M0z2 ln z−1 þMz2; in AdS5; ð4Þ

which are exact solutions of the scalar field equations in the
probe limit. Since we look for the dynamically generated
gap, we set the source M0 ¼ 0 so that Φ ¼ Mz2.
Now, the Maxwell equation is given by

∇μFμν ¼ Jν; ð5Þ

and for the real solution ofΦ, the current is simplified to the
London equation similarly to the superconductivity,

Jμ ¼ q2Φ2Aμ: ð6Þ

For the transverse components with k⃗ · A⃗ ¼ 0, it can be
rewritten as Schrödinger equation [7] via Ψ ¼ Ax

zðd−3Þ=2,

−Ψ00
n þ VΨn ¼ EnΨn; ð7Þ

V ¼ p2 − 1
4

z2
þ q2M2z2 ð8Þ

En ¼ qMð4nþ 2pþ 2Þ; ð9Þ

with p ¼ ðd − 2Þ=2, and En ¼ ω2 − k2 ≡m2
n. The corre-

sponding wave functions are given by

ΨnðzÞ ¼ Ne−
1
2
qMz2zpþ1

2Lp
nðqMz2Þ; ð10Þ

where N ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n!ðqMÞpþ1

ðnþpÞ!
q

. The mass spectrum is

m2
n ¼ 4qMðnþ d=4Þ: ð11Þ

For tensor with rank s, there are a few possible models
according to the permutation symmetry of the index and
gauge symmetry of the theory. As we have shown in the
Appendix, some of them have spectrum

m2
n;s ¼ 4qM

�
nþ s − 1þ d

4

�
: ð12Þ

For d ¼ 4, these results coincide with those of Ref. [7],
where vector meson spectrum was discussed using the
dilaton. Notice that here we did not use the dilaton. The
reason for such a coincidence is just because the equations
of motion of the two models turns out to be the same when
they are expressed in Schrödinger form in spite of the
difference in the degree of freedom. However, this is
because we use the scalar solution in the probe limit at
zero temperature. When we consider the effect of the finite
temperature or backreaction or chemical potential, the
difference will be manifest. For d ¼ 3, the 1=z2-potential
is accidentally canceled, but the spectrum is still given by
the above formula because we need to impose the boundary
condition Aμ ¼ 0 at the boundary of AdS.
For general spin s, we need to choose the mass term of

the higher spin fields properly to get Eq. (12). That spin
dependent mass is necessary for the spectral formula has
been known from the original paper [7] but has not been so
clear. Notice that in string theory, the action encodes all the
spin simultaneously, while in field theory, the action for
each spin should be considered one by one. Now, how does
one add up such spin dependent field theories to describe
the holographic image of the bulk fundamental string?
While the kinetic terms are canonical, the mass term and
interaction term of spin s excitation are ambiguous. We
suggest that reproducing the linear spectrum can be used as
a guiding principle to determine them especially if our
purpose is to describe a theory whose spectrum follows
Regge trajectory. Then, the statement is that, for any spin of
given symmetry, there exist a choice of mass term such that
the resulting spectrum is given by Eq. (12).
Notice that the spectrum is linear in both spin s and

vibrational quantum number n, and therefore the model has
a spectrum of the open string whose string tension is

T ¼ 1=ð2πα0Þ; with α0 ¼ 1=ð4qMÞ: ð13Þ

In the M → 0 limit, that is, in the tensionless limit, the
whole tower of the string spectrum is reduced to that of a
massless particle.
Although we considered the only Abelian theory, the

same spectrum will be obtained for non-Abelian theories.
This is because holographic spectrum analysis depends
only on the quadratic part of the field variation’s action.
Therefore, when we consider SU(N) and we perturb around
0 background gauge field, the nonlinear terms induced by
the non-Abelian-ness do not affect the spectrum. Therefore,
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nonlinear chiral dynamics in holography will also give the
linear spectrum. That is, our spectrum is the same as that of
the 2þ 1-dimensional version of the model studied in
Ref. [6] if the boundary condition is the same. In fact, the
important difference is soft-wall boundary condition (BC)
installed by scalar condensation. The authors of Ref. [6] did
not get the linear spectrum because they assumed the hard
wall BC. In Ref. [7], the authors introduced the soft wall by
hand using the dilaton dressing which is not supported by
an equation of motion. Then, in terms of the QCD, what we
did was use the action of the hard-wall model but install the
soft-wall BC by scalar condensation.
So far, we have seen that the Abelian Higgs model

considered as the axial part of the QCD has a linear
spectrum. In our field theory description, we have seen that
for each spin s excitation of the string in AdS, which we
called “spin s particle in AdS,” creates a tower of the linear
spectrum in the boundary.

III. TWO COMPETING ORDERS IN QCD: SCALE
AND CHIRAL SYMMETRY BREAKINGS

So far, we have not considered scale symmetry breaking.
We now consider how including it can change the behavior
of the theory. In fact, one of the important mechanisms of
mass generation in the QCD is the scale symmetry break-
ing. The dilaton field has been usually considered as the
dual of the gluon operator. In Ref. [7] of the soft-wall
model, the dilaton factor e−φ was used without specifying
the origin. In this paper, we identify φ as the square root of
the gluon operator: φ2 ∼ TrFμνFμν. Since we do not want to
modify the AdS metric in the Einstein frame, we determine
the dilaton in the AdS background. Then, φ is of dimension
2, and we can write down the bulk action of it using the
bulk mass m2

φ ¼ −4. Setting the source part of φ to be zero
as before, we get

φ ¼ Gz2; with G2 ¼ hTrFμνFμνi: ð14Þ

Now, the action of the soft-wall model is

S ¼ −
1

4

Z ffiffiffi
g

p
e−φðF2

A þ F2
V þ 4jDAΦj2Þ: ð15Þ

The Schrödinger form of the equation of the transverse
component of Vi, Ai is −ψ 00 þ Vψ ¼ m2

nψ with

V ¼ G2z2 þ 3=4
z2

for vector Vi; ð16Þ

¼ G2z2 þ 1þ jΦj2 − 1=4
z2

; for axial vector Ai; ð17Þ

where ψ ¼A⊥=ð
ffiffiffi
z

p
eGz

2=2ÞwithA¼Vi, Ai. If the behavior
of Φ ¼ Mz2 were maintained, the Regge slope would be

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2 þ q2M2

p
. However, it cannot be so; the equation for

the chiral scalar Φ in the presence of φ is

−Φ00ðzÞ þ
�
φ0ðzÞ þ 3

z

�
Φ0 − 4

Φ
z2

¼ 0: ð18Þ

Notice that the behavior of Φ in large z is dominated by
φ ¼ Gz2, because φ0 ≫ 3=z there. Therefore, asymptotic
behavior ofΦ is eitherΦ≃expðGz2Þ orΦ≃M1expð−1=Gz2Þ
with dimensionless parameter M1. Since we should take the
finite solution, we have

Φ ≃M1 for z → ∞: ð19Þ

For large quantum number n,

m2
n ¼ G

�
4nþ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þM2

1

q
þ 2

�
: ð20Þ

For small n, configuration of Φ can make a small nonlinear
component to the trajectory.
Notice that the chiral symmetry breaking, although its

breaking is spontaneous, does not contribute to the Regge
slope, so that the Regge slope is determined only by the
scale symmetry breaking scale. Indeed, the Regge slopes of
all the meson family are the same, and we point out that this
makes the soft-wall model explain why this is so. The chiral
symmetry breaking contributes to the Regge intercept by
the parameter M1, which is expected to be zero in the limit
of chiral symmetry restoration. This explains why the
vector and axial vector mesons will be the same, which
is another phenomenological fact.
In summary, both the chiral symmetry breaking and

nontrivial dilaton configuration discussed in this section are
natural ways to introduce a physical scale. The issue here
was whether two mechanism can coexist or compete. For
the former case, we would have two independent scales in
QCD. What we found here is that interestingly they
compete and only one mechanism survives, and as a
consequence, we have only one scale.

IV. OTHER MODELS WITH LINEAR
CONFINEMENT

In the rest of this paper, we provide other models without
the overall dilaton factor e−φ yet having linear Regge
trajectories for the future model building for QCD and
condensed matter. In the confined phase, we should treat
the particle of each spin individually,

S ¼
X
s≥2

SV;s þ SA;s; ð21Þ

where index s is for spin s.
The vector meson cannot couple toΦ becauseΦ does not

have the vector charge. Usually, the dilaton, the Goldstone
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boson of the scale symmetry, is introduced as a real massless
scalar which is dual to the gluon operator TrG2

μν whose
nonzero vacuum expectation value breaks the scale sym-
metry. For our purpose, we identity it as a square root of the
gluon operator. It should couple to the vector meson;
otherwise, the latter will be massless. The action of the
vector meson is SV ¼ R

ddþ1x
ffiffiffiffiffiffi−gp

LV with

LV ¼ −
1

4
F2
V −

1

2
∇μφ∇μφ − g2φ2VμVμ: ð22Þ

Our dilaton has following solution φ ¼ Gz2 as before.
The equation for the transverse vector meson is still given
by the Schrödinger equation (7) with qM replaced by gG.
Therefore, the spectrum of the vector meson is again a linear
tower given by

m2
n;vector ¼ 4gGðnþ d=4Þ: ð23Þ

If we have added the −m2
VV

2
μ1���μs term to the Lagrangian of

the spin s vector meson, the spectrum would change to

m2
s;n ¼ 2gGð2nþ pV þ 1Þ; ð24Þ

with pV ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs − 1þ d−2

4
Þ2 þm2

V

q
. To fit the data for the ρ

mesonwith d ¼ 4, s ¼ 1, we can takep ≃ −1, which can be
done most naturally by setting m2

V ¼ 0. That is, for the
phenomenology, it is better not to introduce the bulkmass of
the vector meson.

A. Gluon condensation and axial mesons

The anomaly of the Uð1ÞA can be considered as a part of
the spontaneous breaking of the axial symmetry, and we
should open the possibility that the promoted bulk gauge
invariance can be broken explicitly at the bulk level,
because the bulk theory should include the quantum
dynamics of the boundary theory at the classical level.
This implies that axial symmetry could have been further
broken by adding the bulk mass term −m2

AA
2
μ1���μs to the

Lagrangian of the spin s axial vector meson.
Then, the spectrum would change to

m2
s;n ¼ 2qMð2nþ pA þ 1Þ; ð25Þ

with pA ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs − 1þ d−2

4
Þ2 þm2

A

q
. Again, when one con-

siders the equation of motion in the Schradinger form, it
becomes similar to that of the model having the dilaton
soft-wall model, and according to Refs. [9,10], 4qM ¼
1.25 ðGeVÞ2 and mA ¼ 0.5 can fit the data well.
It could have been broken even further by dilaton

coupling −φAμAμ. However, then the spectrum is changed
by qM →

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðqMÞ2 þ ðgGÞ2

p
so that the slope of Regge

trajectory of the axial vector is bigger than that of vector
meson, which is not consistent with the data in Ref. [9].

Therefore, we do not add the dilaton coupling of the axial
meson. To make two slopes equal, we need

gG ¼ qM: ð26Þ

However, this is not a good consequence for the QCD,
because it means a fine-tuning is necessary for the
universality of the Regge slope.

B. Glueball spectrum

To understand the color confinement, it is good idea to
look at the behavior of a gauge invariant version of color
fields, say O ¼ TrðGμνÞn, under the gluon condensation.
Let ϕ be the scalar field in the bulk which is dual to the
scalar field O of dimension Δ. Then, the dynamics of ϕ
“inside” the bag can be studied by

Sϕ ¼ 1

2

Z
d5x

ffiffiffiffiffiffi
−g

p ð−∇μϕ∇μϕ −m2ϕ2 − g2Sφϕ
2Þ: ð27Þ

Using the solution φ ¼ G2z4 as before, the Schrödinger
form of the scalar equation is given by Eq. (7) with
p2
S ¼ m2 þ 4, and the scalar meson spectrum is given by

m2
n;scalar ¼ 2gSGð2nþ pS þ 1Þ: ð28Þ

The linear spectrum of the glueball is interesting, but what
is more important for us here is the behavior of the wave
function equation (8), which says that the color flux outside
the bag, z > zm, is exponentially suppressed, proving the
color confinement within the bag under the presence of the
gluon condensation.
Notice that in many of our models, we need to choose the

bulk mass of the theory properly to get the promised
combination nþ s. That spin dependent mass is necessary
for the spectral formula has been known from the original
paper [7] but has not been clear so far. Notice that string
theory encodes all the spin simultaneously, while in field
theory, the action for each spin should be considered one by
one. Now, how do we add up such spin dependent field
theories to describe the holographic image of the bulk
fundamental string? While the kinetic terms are canonical,
it is not surprising to have ambiguities in the mass term of
spin s excitation. We suggest that reproducing the linear
spectrum can be used as a guiding principle to deter-
mine them.

V. CONCLUSIONS

We finish the paper with a summary and a few remarks.
First, one may ask the problem of divergence of the scalar
solution in the IR region (z → ∞). This is precisely the
problem of the probe approach where we assume that the
gravity background is fixed as AdS. There is a known
resolution to this: in reality, the backreaction of AdS will
either create a horizon, a natural IR cutoff, or smooth out
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the solutions. Whether the probe solution is useful or not
depends on what we do with it. If we evaluate the
thermodynamic quantity, we would fail. But for the
spectrum, the background will be useful because the true
solution will be similar to the probe solution away from the
singular region (z → ∞), which is forbidden for the wave
function of excitations anyway: we are looking for the
equation of motion of the vector field’s perturbation, which
was shown to be written (after a change of variable) as a
Schrödinger equation whose potential contains the z2 term
with z ¼ 1=r. Such a configuration provides a soft wall,
providing the barrier so that the wave function will not
penetrate to the IR region z → ∞. This is an effective way
to cut out the IR regime and justify the use of the probe
solution for the problem of spectrum. One can show that
when we consider the backreaction, a horizon is developed,
and as the horizon grows, the potential’s z2 regime will
retract. The potential will not grow like z2 indefinitely but
collapse to −∞ at the horizon, so that the higher quantum
number of the linear spectrum will be deformed and
disappear. Details of such an effect are a complicated
correction to the simple phenomena describe here.
Next, in a theory where the dilaton is not involved, chiral

symmetry breaking can contribute to the slope of the axial
vector meson. But when scale symmetry breaking comes
with the coupling of overall e−φ coupling, like the soft-wall
model, the theory changes its face: the chiral symmetry
breaking effect is eaten by that of the scale symmetry
breaking and does not contribute to the Regge slope.
However, the latter can contribute to the intercept of the
Regge trajectory and the mass of the axial vector meson.
We identified the origin of the Regge slopes as the

condensation of the order parameter that controls the
symmetry breaking scales. The linearity of the Regge
trajectory is generated because the potential is the same
form as that of a three-dimensional isotropic harmonic
oscillator where z play the role of the radial coordinate. The
1
z2 term is due to the confining gravity of the AdS space,
while the quadratic potential is by gluon and chiral
condensations. The latter provides an infinite “soft wall,”
and it can be attributed as a property of the vacuum with
such condensation. Our results suggest that the color
confinement and the Regge slope are consequences of
gluon condensation. Therefore, by measuring the Regge
slopes, we can determine gluon condensation, but we
cannot determine the chiral condensation so easily.
We now comment on the points where our work has a

loose end. We studied a solution to the field equations in the
probe limit, and while this solution does not obey the
standard infrared boundary condition in AdS/CFT, perhaps
there is a more complicated version of the model (where one
can speculate on a fewdifferentways to do this) inwhich this
approximate solution is the preferred one up to very close to
the horizon where the probe limit breaks down.
A related point that requires future work is the dynamical

condensation of the scalar. It means that the latter is

determined as a function of other inputs like density and
temperature. Setting up such dynamical generation requires
the coupling of the scalar to other fields that already contain
a scale, and the presence of the horizon. Then, two
boundary conditions can be chosen as a sourceless con-
dition at the boundary and regularity condition at the IR
horizon; then, the condensation is determined from these
two data and the scale involved in the fields that is coupled
to the scalar. Such a process is preferable for many
purposes like in the theory of holographic superconduc-
tivity where the condensation was determined in terms of
the temperature and chemical potential, although it is not
always necessary; we could equally well determine the
chemical potential in terms of the temperature and con-
densation. That is, the condensation can be an equally good
input of the theory as in the original AdS/CFT setup where
we determine other quantities like the spectrum in terms of
the condensation. In the original soft-wall model paper [7],
it was argued that the dilaton configuration would be
induced due to the instability of tachyon condensation,
which corresponds to the gluon condensation from the
boundary point of view. Here, we are considering the
Abelian Higgs model where the scalar is the dual of the
boundary fermion bilinear ψ̄ψ so that the scalar condensa-
tion represents the “chiral” condensation. This is exactly
parallel to the gluon condensation to dilaton based soft-wall
model, and in both cases, condensation should invoke a
new vacuum through the instability of the AdS vacuum.
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APPENDIX: MODELS WITH HIGHER
RANK TENSORS

In the first two subsections of this Appendix, we study
models with diffeomorphism invariance but without gauge
invariance. In the final subsection, we study the theory with
gauge invariance as well as diffeomorphism invariance.

1. Rank-s totally antisymmetric tensor
without gauge symmetry

We may start with field equation

1ffiffiffiffiffiffi−gp ∂μð
ffiffiffiffiffiffi
−g

p
gμνgα1β1…gαsβs∂νAβ1…βsÞ

¼ ðΦ2 þm2
AÞgα1β1…gαsβsAβ1…βs : ðA1Þ
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With axial gauge choice Azx1…xs ¼ 0, the equation of
motion of Ax1…xs ≔ Beiðk·x−ωtÞ takes the form

−z−α∂zðzα∂zBÞ þ ðΦ2 þm2
AÞz−2B ¼ m2

nB; ðA2Þ

where α ¼ −dþ 2sþ 1 and m2
n ¼ ω2 − k2. Using the

identity

∂zðzα∂zBÞ ¼ zα=2
�
ϕ00 −

ðα−1
2
Þ2 − 1

4

z2
ϕ

�
ðA3Þ

with B ¼ z−α=2ϕ, we get

−ϕ00 þ
�
p2 þm2

A − 1
4

z2
þM2z2

�
ϕ ¼ m2

nϕ ðA4Þ

En;s ¼ M

�
4nþ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

A

q
þ 2

�
; ðA5Þ

with p2 ¼ ðs − d
2
Þ2. Then, the desired spectrum

En;s ¼ Mð4nþ 4s − 4þ dÞ ðA6Þ

can be obtained for m2
A ¼ 3ðs − 1Þðsþ d − 3Þ.

2. Rank-s totally symmetric tensor
without gauge symmetry

For the same gauge choice and the variable, the equation
of motion is

VðzÞ ¼ ðd
2
Þ2 þ s − 1

4
þm2

A

z2
þM2z2: ðA7Þ

The spectrum

En;s ¼ Mð4nþ 4sþ d − 4Þ ðA8Þ

can be obtained if m2
A ¼ ð2s − 3Þð2s − 3þ dÞ − s.

If there were overall dilaton factor eφ with φ ¼ Mz2 in
the action,

VðzÞ ¼ ðd
2
Þ2 þ s − 1

4
þm2

A

z2
þM2z2 þ d − 2; ðA9Þ

then we can have

En;s ¼ Mð4nþ 4s − 4þ dÞ; ðA10Þ

by choosing m2
A ¼ 4s2 − 9sþ 4 − d2=4.

3. Higher spin theory

In Ref. [7], the rank-s totally symmetric tensor with gauge
symmetryAμ1…μs → Aμ1…μs þ∇ðμ1ξμ2…μsÞ was identified as
the spin s theory. The residual gauge transformation which
leaves Azμ2…μs invariant [7] is determined by

∇ðμ1ξμ2…μsÞ ¼ 0: ðA11Þ

Using Γμ
zμ ¼ −1=z, Γz

ii ¼ 1=z, Γz
tt ¼ −1=z, we get

∂zξþ
2s − 2

z
ξ ¼ 0; ðA12Þ

namely, z2s−2ξxðz;xÞ ≔ ξ̃x1;…;xsðxÞ is z independent.
Introducing the scaled variable Ãx1;…;xs ≔ z2s−2Ax1;…;xs ,
the residual gauge transformation in terms of the tilde
variable is nothing but the shifting: Ãx1;…;xs → Ãx1;…;xs þ
ξ̃x1;…;xs . The action can be written as

S ¼
Z

zαeφ½ð∂μÃx1;…;xsÞ2�; ðA13Þ

where with φ¼Mz2 and α¼−ð1þdÞþ2ðsþ1Þ−2ð2s−2Þ¼
4−dþ1−2s. In other words, the action should be
designed such that Eq. (A13) holds using covariant deriv-
atives. Now, using the methods which are by now familiar,
we have

En;s ¼ Mð4nþ 4s − 4þ dÞ; ðA14Þ

as was described in Ref. [7] for d ¼ 4.
One should notice that the mass term is not invariant,

and therefore the invariance under the residual gauge
transformation should determine the mass [7] to be m2

A ¼
s2 − s − 4. For the same reason, the naive scalar coupling
term such as Φ2ðÃx1;…;xsÞ2 is not allowed.
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