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ABSTRACT In this paper, we propose a method of efficient software implementation for the cryptographic
hash function LSH with single instruction multiple data (SIMD). The method is based on word-wise
permutations of LSH. Using the modified functions Step′j = P ◦ Stepj ◦ P−1 and MsgExp′ instead of the
original step function Stepj and message expansion function MsgExp, where P is a permutation and P−1 is
the inverse permutation of P, we show that the number of the SIMD instructions for implementing LSH is
reduced. For efficient implementation of LSH in other environments (e.g., MIMD), various types of word
permutations are listed.

INDEX TERMS Software implementation, word-wise permutation, SIMD, hash function, LSH, ARX.

I. INTRODUCTION
Cryptographic hash functions are necessary for constructing
a system of information security. Generally, they are used
for authentication, providing both data integrity and entity
integrity [1]–[4]. A cryptographic hash function is a function
that maps an input to a fixed output satisfying the following
cryptographic resistance properties [5].

1. Preimage resistance: for essentially all pre-specified
outputs, it is computationally infeasible to find an input that
hashes to that output.

2. 2nd preimage resistance: it is computationally infeasible
to find another input that hashes the same output as a specified
input.

3. Collision resistance: it is computationally infeasible to
find any two distinct inputs that hash to the same output.

From the output of a cryptographic hash function, it should
be computationally difficult to find the corresponding input.
Additionally, for a given input, it should be difficult to find
another input that hashes to the same output. Because of
these aspects, a cryptographic hash function is used in various
fields, such as a message authentication code (MAC), key
derivation function (KDF), and a pseudo-random number
generator. LSH [6] is a cryptographic hash function that
was designed by NSRI [7] (National Security Research
Institute). SIMD [8] is a class of parallel computing. SIMD
is an instruction set that performs the same operations on
multiple data simultaneously. A core element of SIMD is a
register. SIMD has registers in with various lengths such as
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128, 256, and 512 bits. For a 128-bit resister, each resister
has four 32-bit or two 64-bit sections of data. Thus, one
operation for an 128-bit resister is equivalent to four 32-bit
operations or two 64-bit operations. When implementing
cryptographic algorithms, SIMD is used for various pur-
poses such as resistance to side-channel attacks [9], [10]
and efficient implementations [11]–[16]. There has not been
any research on overcoming weakness using SIMD with a
cipher For these reasons, BLAKE2 [17] and LSH are crypto-
graphic algorithms having advantage of implementation with
SIMD. BLAKE2, SIMON/SPECK [18], and LEA [19] were
implemented using SIMD in [11]–[13]. However, to the best
out knowledge, our research is the first to have an efficient
implementation via SIMD by changing the representation
of a cryptographic algorithm. In this paper, we show how
to implement a cryptographic hash function LSH efficiently
with SIMD by representing the LSH using P and P−1, where
P is a permutation and P−1 is the inverse of P. Note that com-
plexity is considered as the number of SIMD instructions and
their latency, not the number of XOR and modular additions.
This metric is necessary for finding conditions that reduce
the number of SIMD instructions and use SIMD instructions
with low latency when an algorithm is implemented.

For example, a case in which a permutation in a reg-
ister composed of four 32-bit words is implemented. If a
word-wise permutation is operated in a register, then only a
single SIMD instruction is needed, ‘‘_mm_shuffle_epi32’’.
However, if the word-wise permutation is the identity,
then there is no need for an SIMD instruction. In
another example, assuming that two 64-bit words com-
pose a register, if a word-wise permutation is operated
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FIGURE 1. Wide-pipe merkle-damgard construction.

in two mixed registers, then three SIMD instructions are
needed as follows: ‘‘_mm_unpacklo_epi64’’, ‘‘_mm_unpac-
khi_epi64’’, and ‘‘_mm_shuffle_epi32’’. The instruction
‘‘_mm_uppacklo_epi64’’ extracts the left 64-bit word in the
two registers, and ‘‘_mm_unpackhi_epi64’’ extracts the right
64-bit word in the two registers. Additionally, the instruction
‘‘_mm_shuffle_epi32’’ is used to permute in 32-bit units.

If each of the two 64-bit words still remain in
their same registers, then ‘‘_mm_unpacklo_epi64’’ and
‘‘_mm_unpackhi_epi64’’ are not needed for a word-wise
permutation. In this paper, conditions to reduce the number
of SIMD instructions and implement SIMD instructions with
lower latency are found.

This paper is organized as follows. Section II shows
the specifications of LSH. Section III provides an efficient
implementation method via SIMD for LSH. We demonstrate
the method and permutation conditions needed for efficient
implementation. All permutations are categorized consider-
ing those conditions. In Section IV, we show an optimal
permutation for the best performance with LSH. Concluding
remarks on the implementation performance with an optimal
permutation are given in Section V.

II. SPECIFICATION OF LSH
In 2014, a hash function LSH was published by D. Kim et al.
at International Conference on Information Security and
Cryptology, designed specifically to enhance software effi-
ciency [6]. LSH was designed using wide-pipe Merkle
Damgard construction (wide-pipe MD construction) [20].
The design of the compression function for LSH is based
on ARX (Addition (�), Rotation (≪), and XOR (⊕)) [21].
The following describes the wide-pipe MD construction and
compression function of LSH.

As shown in Fig. 1, the length of an internal state in a wide-
pipe MD construction is 2n bits, which is twice the length of
an output with n bits. Let w be the number of bits in a word.
LSH-8w-n can represents any of the following LSHs: LSH-
256-224, LSH-256-256, LSH-512-224, LSH-512-256, LSH-
512-384, and LSH-512-512. Each has a different initializing
value IV . The generating method of IV is given in [6].

The structure of the compression function f in an LSH is
ARX-based. The number of bits for the input of f is 48w,
and that of the output is 16w. The compression function
f transforms 16-word and 32-word messages into 16-word
messages. Each f contains the MsgExp function, Stepj(for
j = 1, · · · ,Ns), as well as theMsgAdd function. The number
of steps Ns is selected as follows:
Ns = 26 if the number of bits in w is 32,
Ns = 28 if the number of bits in w is 64.

A. NOTATIONS
W t : Set of t-word arrays
X ⊕ Y : Bit-wise exclusive-or of X and Y .
X � Y : X + Y mod 2w.
X≪r : r bits left rotation of word X .
M (i)

:= (M (i)[0], · · · ,M (i)[31]): The i-th 32-word array
message block.
M (i)
j := (M (i)

j [0], · · · ,M (i)
j [15]): The j-th 16-word array sub-

message generated from the i-th message M (i).

SCj := (SCj[0], · · · , SCj[7]): The j-th 8-word array step
constant.
T := (T [0], · · · ,T [15]): The 16-word array temporary vari-
able used in a step function.
P: A word-wise permutation on 16 words

P(T ) : =P(T [0], · · · ,P[15]) := (T [P(0)], · · · ,T [P(15)])

P(T [i]) : = T [P(i)]

Pi: A word-wise permutation on 4 words.
Notice that we define a permutation P that has the same

format for the input and output. If the input is an index i, then
P(i) is also an index. Similarly, if the input is a word T [i],
then the output is a word P(T [i]) = T [P(i)].

B. MsgExp FUNCTION
The first two sub-messages M (i)

0 and M (i)
1 are defined as the

first 16 words and the next 16 words of M (i), respectively.
Then the next sub-messages

{
M (i)
j

}Ns
j=2 are calculated by the

following:

For j = 2, 3, · · · ,Ns,

M (i)
j [l] ← M (i)

j−1[l]�M
(i)
j−2[τ (l)], 0 ≤ l < 16 (1)

Here, the permutation τ is defined by Table 1.

TABLE 1. The permutation τ in MsgExp.

C. Stepj FUNCTION
Stepj is used Ns times repeatedly in the compression function
f . Stepj is composed of three functions MsgAdd , Mixj, and
σ as

Stepj = σ ◦Mixj ◦MsgAdd . (2)

MsgAdd:

MsgAdd : W 16
×W 16

→ W 16

MsgAdd(T ,M (i)
j ) = (T [0]�M (i)

j [0],

· · · ,T [15]�M (i)
j [15]) (3)

Mixj:

Mixj : W 16
→ W 16

Mixj(T ) = (T ′[0], · · · ,T ′[15]),

where (T ′[l],T ′[l + 8]) ← Mixj,l(T [l],T [l + 8]),

l = 0, · · · , 7 (4)
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TABLE 2. The number of bits in rotation: αj , βj , γi .

TABLE 3. Permutation σ .

Mixj,l : W 2
→ W 2 for inputs X and Y is defined by (5).

Here, the bit rotational amounts αj, βj, γj used in Mixj,l are
shown in Table 2.

X ← X � Y ,

X ← X≪αj ,

X ← X ⊕ SCj[l],

Y ← X � Y ,

Y ← Y≪βj ,

X ← X � Y ,

Y ← Y≪γl (5)

σ : The word permutation function σ permutes 16 words.
The permutation σ is defined in Table 3, and the permutation
of internal states are as follows:

(T [0], · · · ,T [15])← (T [σ (0)], · · · ,T [σ (15)]). (6)

III. A FAST IMPLEMENTATION METHOD
In this section, we demonstrate the method in [22] of how to
implement LSH efficiently using a word permutation and its
inverse with repeated step functions.

A. OVERVIEW OF WORD-WISE PERMUTATION
In this subsection, we investigate the relation between a
permutation P and the compression function LSH of LSH.
We also show how to construct LSH ′, which is a modified
representation of LSH using the permutation P. To represent
LSH ′, we investigate the relation between the permutation P
and operations in the step function of LSH .
For a permutation P and its inverse P−1, we consider the

function LSH ′ as in Fig. 2. Note that LSH ′ takes a message
permuted by P as an input and outputs the permuted hash
value of LSH by P. Thus, the output of LSH is equal to the
permuted output of LSH ′ by P−1.

We define LSH ′ as the following:

LSH = P−1 ◦ LSH ′ ◦ P. (7)

Our goal is to implement LSH efficiently using fewer
SIMD instructions with low latency. The followings are basic
criteria for P for LSH .
Criterion 1: P is a word-wise permutation.
If P is not a word-wise permutation, then it is necessary

to consider implementing modular addition, which increases

FIGURE 2. LSH and LSH ′ .

the number of SIMD instructions. Thus, we do not need to
consider permutations other than word-wise permutations.
Criterion 2: |P(i+ 8)− P(i)| = 8 for i = 0, · · · , 7.

Let the i-word array M be a message represented by
M = M [0]‖M [1]‖ · · · ‖M [i − 1]. Then P(M ) =

M [P(0)]‖M [P(1)]‖ · · · ‖M [P(i − 1)]. In (5), two words T [i]
and T [i + 8] are input to the Mixj,l function as X and Y .
For a register with SIMD, addition and XOR between two
registers are operated in parallel between the corresponding
words in order. Thus, if Criterion 2 is not satisfied, then
we cannot apply addition or XOR between the two registers
before reordering the words in the registers. Thus, we limit
the range of permutation P byCriterion 2 since it needs many
SIMD instructions for loading and storing. With the above
two criteria, we have the following Theorem 1.
Theorem 1: If Criterion 1 and 2 hold, then there are rela-

tions between the internal state consisting of the 16 words
T [0], · · · ,T [15] in LSH and a word-wise permutation P as
follows:
1) Modular addition(�), XOR(⊕), and the permutation P

are commutative with respect to each other.

T [P(i)]� T [P(i+ 8)] = P(T [i]� T [i+ 8]),

T [P(i)]⊕ T [P(i+ 8)] = P(T [i]⊕ T [i+ 8]) (8)

2) Left rotation by αj, βj and a permutation P are commu-
tative with respect to each other.

T [P(i)]≪αj = P(T [i]≪αj ),

T [P(i)]≪βj = P(T [i]≪βj ) (9)

3) The following relation holds for the left rotation by γj
and permutation P.

T [P(i)]γl = P(T [i]≪γP−1(l) ) (10)
Proof 1):

In LSH , there are steps: T [i]← T [i]�T [i+8] and T [i+8]←
T [i]� T [i+ 8]. By Criterion 2, since |P(i+ 8)− P(i)| = 8,
we replace the above two steps with T [P(i)] ← T [P(i)] �
T [P(i+ 8)] and T [P(i+ 8)]← T [P(i)]� T [P(i+ 8)].
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Then, for T [P(i)] � T [P(i + 8)], the following equality
holds:

T [P(i)]� T [P(i+ 8)]

= P(T [P(P−1(i))])� P(T [P(P−1(i+ 8))])

= P(T [i])� P(T [i+ 8])

= P(T [i]� T [i+ 8]) (11)

For ⊕, the equation can be proved similarly.

Proof 2):

T [P(i)]≪αj = P(T [P(P−1(i))]≪αj )

= P(T [i]≪αj ) (12)

Proof 3):
For γl , l = i − 8, thus when i is permuted to P(i), l is also
permuted to P(l). Then the following holds:

T [P(i)]≪γl = P(T [P(P−1(i))]≪γP−1(l) )

= P(T [i]≪γP−1(l) ) (13)

�
By Theorem 1, a word-wise permutation P commutes with

the operations of LSH . That is, considering the rotation by
γ and letting γ ′ := (γP−1(0), . . . , γP−1(7)), permutation by P
after a left rotation by γ ′ is equal to left rotation by γ after
a permutation by P. Let the compression function f ′ used in
LSH ′ be defined as follows:

f ′ = P ◦ f ◦ P−1 (14)

Then by substituting (14) into (7), we have

LSH ′ = f ′ ◦ · · · ◦ f ′ (15)

The compression function f consists of the message expan-
sion MsgExp and step function Stepj. Similarly to (14),
MsgExp′ and Step′ are represented as follows:

MsgExp′ = P ◦MsgExp ◦ P−1 (16)

Step′j = P ◦ Stepj ◦ P−1

= P ◦ σ ◦Mixj ◦MsgAdd ◦ P−1 (17)

Similarly to (15),

MsgExp ◦ · · · ◦MsgExp

= (P−1 ◦MsgExp′ ◦ P) ◦ · · · ◦ (P−1 ◦MsgExp′ ◦ P)

= P−1 ◦MsgExp′ ◦ · · · ◦MsgExp′ ◦ P (18)

Step0 ◦ · · · ◦ StepNs−1
= (P−1 ◦ Step′0 ◦ P) ◦ · · · ◦ (P

−1
◦ Step′Ns−1 ◦ P)

= P−1 ◦ Step′0 ◦ · · · ◦ Step
′

Ns−1 ◦ P. (19)

As in (15), (18), and (19), all permutations P and P−1

are canceled out to the identity permutation except for the
first P−1 and the last P. The following provides the details
of constructing MsgExp′ and Step′j. Using (1), the function

MsgExp′ in the i-th compression function with inputs M (i)
0

and M (i)
1 in (16) is represented as follows:

MsgExp′(M (i)
j−1,M

(i)
j−2)

= P ◦MsgExp ◦ P−1(M (i)
j−1,M

(i)
j−2)

= P(M (i)
j−1[P

−1(0)�M (i)
j−2[τ (P

−1(0))],

· · · ,M (i)
j−1[P

−1(15)]�M (i)
j−2[τ (P

−1(15))]])

= (M (i)
j−1[P ◦ P

−1(0)]�M (i)
j−2[P ◦ τ (P

−1(0))],

· · · ,M (i)
j−1[P ◦ P

−1(15)]�M (i)
j−2[P ◦ τ (P

−1(15))])

= (M (i)
j−1[0]�M

(i)
j−2[P ◦ τ (P

−1(0))],

· · · ,M (i)
j−1[15]�M

(i)
j−2[P ◦ τ (P

−1(15))])

for j = 2, . . . ,Ns. (20)

Let τ ′ be

τ ′ = P ◦ τ ◦ P−1 (21)

The function MsgExp′ is represented with τ ′ as follows:

MsgExp′(M (i)
j−1,M

(i)
j−2)

= (M (i)
j−1[0]�M

(i)
j−2[τ

′(0)], . . . ,M (i)
j−1[15]�M

(i)
j−2[τ

′(15)])

for j = 2, . . . ,Ns. (22)

By using (2), the function Step′j in (17) is represented as
follows:

Step′j = P ◦ σ ◦Mixj ◦MsgAdd ◦ P−1

= P ◦ σ ◦ (P−1 ◦ P) ◦Mixj ◦ (P−1 ◦ P)

◦MsgAdd ◦ P−1

= σ ′ ◦Mix ′j ◦MsgAdd
′ (23)

where σ ′ = P ◦ σ ◦ P−1,Mix ′j = P ◦ Mixj ◦ P−1, and
MsgAdd ′ = P ◦MsgAdd ◦ P−1.

In (23), MsgAdd = MsgAdd ′. In MsgAdd ′, the words are
permuted by P−1, and the added message is also permuted
by P−1 inMsgExp′. Thus,MsgAdd ′ is a function of modular
addition between words in the same ordering as in the func-
tionMsgAdd . InMix ′j , the modular additions of step constants
and left rotation by γl are affected by the permutation P.
Therefore step constants word-wise permuted by P−1 and
left rotation by γP−1(l) should be in Mix ′j . Further, σ

′ is a
word-wise permutation since P, P−1 and σ are all word-
wise permutations. Consequently, MsgAdd ′ is the same as
MsgAdd , and Mix ′j is the same as Mixj except for the values
for left rotation and step constants. This implies that they do
not affect to the performancewhen they are implementedwith
SIMD. However, the word-wise permutation τ ′ in MsgExp′

and σ ′ in Step′j affect the performance when implemented by
SIMD instructions.

B. TYPES OF PERMUTATIONS FOR LSH
In this subsection, we investigate the conditions of P that
improve performance via SIMD related to τ ′ and σ ′.
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FIGURE 3. Permutation τ of MsgExp.

FIGURE 4. Permutation σ of Stepj .

Both the permutations τ and σ simultaneously permute
four words with the some order as follows. The permuta-
tions τ and σ are represented by the compositions of two
permutations, including internal permutations of four words
and external permutations of a four-word arrays. Note that,
in Fig. 3 and 4, four-word arrays permute to four-word arrays,
regardless of the ordering of the four words in the four-word
arrays.

To simply represent a permutation P = (p0p1 · · · p15) that
takes a word array of (w0w1 · · ·w15) to (wp0wp1 · · ·wp15 ),
we define external/internal permutations as follows. For a
four-word array Wi := (w4iw4i+1w4i+2w4i+3), an exter-
nal permutation denoted as (a0, a1, a2, a3) ∈ {0, 1, 2, 3}4

is a permutation that permutes (W0,W1,W2,W3) to
(Wa0 ,Wa1 ,Wa2 ,Wa3 ). An internal permutation Pj denoted
as (b0b1b2b3), bi ∈ {0, 1, 2, 3} is a permutation that
permutes 4 words (w4j,w4j+1,w4j+2,w4j+3) into 4 words
(w4j+b0 ,w4j+b1 ,w4j+b2 ,w4j+b3 ). Using an external permu-
tation and four internal permutations, a permutation P is
represented as (Pa0 ,Pa1 ,Pa2 ,Pa3 ). For an example of the
notation, the permutation σ of Stepj is shown below.
In Fig. 5, the above four internal permutations are repre-

sented by σ0 = σ1 = (2013) and σ2 = σ3 = (0321). The
external permutation is represented by (1, 3, 0, 2). Therefore
σ is represented by σ = (σ1, σ3, σ0, σ2). Similarly, τ =
(τ0, τ1, τ2, τ3) where τ0 = τ2 = (3201) and τ1 = τ3 =

(3012).

FIGURE 5. Representation of the permutation σ of Stepj with internal
permutations (top) and an external permutation (bottom).

Recall that SIMD instructions are operated in a register or
among registers instead of via words. Thus, words in a reg-
ister should be operated according to the same instructions.
If some words in a register need to be partially operated,
then the SIMD instructions for the register cannot be used,
and the register should be divided. Composing and reliev-
ing of registers are done through SIMD instructions such
as ‘‘load’’ and ‘‘store’’. Therefore, to reduce the number of
SIMD instructions, words in a register need to be permuted

simultaneously. Note that consecutive groups of four words
are permuted by τ and σ simultaneously, and the same oper-
ations are applied to those consecutive groups of four words.
It is enough to consider permutations of the form consisting of
external and internal permutations. An external permutation
inP provides no advantages for reducing the number of SIMD
instructions, thus we fix the external permutation of P as the
identity permutation. By Criterion 2, the permutation of the
last eight words is determined by the permutation of the first
eight words. Therefore, the total number of permutations we
should consider is (4!)2 = 576 for two internal permutations.
To find the optimal permutation P among the 576 internal

permutation candidates, we define five types of permutations
with respect to the following forms. Four are defined for
internal permutations, and the other is defined for two internal
permutations.
Definition 1:We define TYPEi for i = 1, . . . , 5 as a form

of permutation in Si as follows. Note that ∗ is an integer in
{0, 1, 2, 3}.

S1 = {(01 ∗ ∗), (∗ ∗ 01), (23 ∗ ∗), (∗ ∗ 23)},

S2 = {(10 ∗ ∗), (∗ ∗ 10), (32 ∗ ∗), (∗ ∗ 32)},

S3 = {(02 ∗ ∗), (∗ ∗ 02), (20 ∗ ∗), (∗ ∗ 20),

(13 ∗ ∗), (∗ ∗ 13), (31 ∗ ∗), (∗ ∗ 31)},

S4 = {(03 ∗ ∗), (∗ ∗ 03), (30 ∗ ∗), (∗ ∗ 30),

(12 ∗ ∗), (∗ ∗ 12), (21 ∗ ∗), (∗ ∗ 21)},

S5 = {(Pi,Pi)}

The following examples will be helpful for understand-
ing the above TYPEs. For example, Pi = (0132) has one
TYPE1 as (01∗∗) in S1 and one TYPE2 as (∗∗32) in S2. Addi-
tionally,Pi = (3102) has two TYPE3 as (∗∗02) and (31∗∗) in
S3 and none as TYPE1,2,4. For (P1,P2) = ((1032), (1032)),
P1 andP2 are the same as an internal permutation (1032), thus
it is TYPE5.

We find a good permutation by counting the number
of TYPEs in τ ′ and σ ′. Note that the total numbers for
TYPE1 to TYPE4 for an internal permutation are always
two. TYPE1 is represented as an internal permutation of
two consecutive words permuted with the same ordering.
In LSH-512, since the word size is 64 and the register
size is 128, the register has two 64 bits words. If τ ′ or
σ ′ has the form of TYPE1, then an SIMD instruction for
permutation of the register positions ‘01’ or ‘23’ is not
needed. For the other case of TYPE2, an SIMD instruction
‘‘_mm_shuffle_epi32’’ for changing word positions in a reg-
ister is needed, then an SIMD instruction for this permuta-
tion is needed. For TYPE3, ‘02’, ‘20’, ‘13’, and ‘31’ are
composed of words in different registers. Thus, those group-
ings require the SIMD instruction ‘‘_mm_unpacklo_epi64’’
or ‘‘_mm_unpackhi_epi64’’. For TYPE4, ‘03’, ‘30’, ‘12’,
and ‘21’ are composed of words in different registers
and different word positions(of left or right). Thus, two
SIMD instructions are needed: ‘‘_mm_shuffle_epi32’’ to
change word positions, one of ‘‘_mm_unpacklo_epi64’’ and
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FIGURE 6. P and P−1 for LSH with SSE2, SSSE3, XOP, and LSH-512 with
AVX2.

FIGURE 7. τ ′ for LSH with SSE2, SSSE3, XOP, and LSH-512 with AVX2.

FIGURE 8. σ ′ for LSH with SSE2, SSSE3, XOP, and LSH-512 with AVX2.

FIGURE 9. The permutation P and P−1 used for LSH-256 with AVX2.

‘‘_mm_unpackhi_epi64’’. Note that TYPE1 and TYPE2 do
not share an internal permutation. By comparing the numbers
of SIMD instructions for internal permutations, TYPE1 and
TYPE2 are better than TYPE3 and TYPE4, and TYPE1 is
the best.

TYPE5 is used for a 256-bit registers such as AVX2.
For LSH-256, a register has eight words. If two inter-
nal permutations in a register are equal, the permutation
can be operated using ‘‘_mm256_shuffle_epi32’’ instead of
‘‘_mm256_permutevar8x32_ps’’. The latter SIMD instruc-
tion has triple latency compared to that of the former. Thus,
using the former is better than the latter for better latency
performance.

TYPE1-5 are defined by considering an SIMD instruc-
tion set. Because there are many SIMD circumstances,
if someone wants to use LSH with some specific SIMD,
then the above TYPEs can be used to choose a permuta-
tion. All types of permutation considering TYPE1-5 are in
Appendix A.

IV. PERMUTATION WITH THE BEST PERFORMANCE
FOR LSH USING SIMD
In previous sections, we have shown how to find optimal
permutations τ ′ and σ ′ with TYPEs. The optimal permutation

TABLE 4. Performance results with an intel CPU (Cycle/Byte).

TABLE 5. Performance results with an AMD CPU (Cycle/Byte).

FIGURE 10. τ ′ for LSH-256 with AVX2.

FIGURE 11. σ ′ for LSH-256 with AVX2.

is selected as TYPE1-4 except for LSH-256 with AVX2.
For the case of LSH-256 with AVX2, since there are two
internal permutations in the register, the optimal permutation
is selected as TYPE5.

A. THE PERMUTATION P FOR LSH WITH SSE2, SSSE3,
XOP, AND LSH-512 WITH AVX2
The permutation P and its inverse P−1 for SSE2, SSSE3,
XOP, and AVX2 in SIMD are described in Fig. 6. For AVX2,
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TABLE 6. Permutation representation with english alphabet.

TABLE 7. Permutations in TYPE1 and TYPE2.

the permutations in Fig. 6 are applied to only LSH-512 by the
above argument.

The permutation P is (0123, 2013, 0123, 2013), which is
represented by the symbol (A,M) in Appendix A. If P is used
for τ ′, then there are four TYPE1 and four TYPE2. If P is
used for σ ′, then there are three TYPE1, one TYPE2, and
four TYPE3. Note that τ has two TPYE1, two TPYE2, and
four TYPE4, and σ has four TYPE3 and four TYPE4.
τ ′ = P ◦ τ ◦P−1 is described in Fig. 7, and σ ′ is described

in Fig. 8.
Four words are assigned in one register, as shown in Fig. 7

and Fig. 8. In this case, the number of SIMD operations of τ ′

is not reduced. However, there is a reduction in σ ′. Because
there is no need for SIMD instructions in the second internal
permutation of σ ′, the identity permutation is considered.

TABLE 8. Permutations in TYPE3 and TYPE4.

B. THE PERMUTATION P FOR LSH-256 WITH AVX2
AVX2 uses a 256-bit register. Thus, the register contains
eight words. Then by σ ′, the left-half and right-half
of the register are divided into two different regis-
ters. Thus, there is no advantage to using σ ′ instead
of σ . However, if τ ′ is of TYPE5, then we can
implement τ ′ with ‘‘_mm256_shuffle_epi32’’ instead of
‘‘_mm256_permutevar8x32_ps’’. This reduces the latency by
one third. The permutations P and P−1 used to implement
LSH-256 using AVX2 are shown in Fig. 9. This permutation
P = (0132, 3120, 0132, 3120) is described as (B,V) in
Appendix A.
τ ′ and σ ′ are described in Fig. 10 and Fig. 11. Fig. 10 shows

that permutations of eight words in a register are of TYPE5.
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TABLE 9. Permutations in TYPE5.

There is source code for a modified LSH implementation
using (A,M) and (B,V) in GIT-HUB [23].

V. CONCLUSION
We have shown how to implement LSH efficiently with
SIMD using permutations. The performance results are sum-
marized in Tables 4 and 5. On average, there is a 5% improved
performance when using our method of permutations. Note
that there is an additional 5% performance improvement after
applying other optimization methods, such as the deployment
of SIMD instructions; this is because the code in [7] has
already been optimized by the creator of LSH. There is no
security vulnerability when applying the proposed method,
since the only changes are in orderings of words, circular rota-
tions, and step constants in registers. Furthermore, we have
defined five permutation types for LSH and SIMD, which
classify all permutations of LSH. This classification can be
used to implement LSH with a new SIMD instruction set for
various register sizes or platforms.

APPENDIX
A. PERMUTATIONS
An internal permutation is represented using the English
alphabet for readability. This representation is as shown
in Table 6.

The different types of permutations are defined in IV. In
Table 7, each pair in the first and second column represents
the number of TYPE1 and TYPE2 permutations. Similarly
in Table 8, each pair in the first and second column represents
the number of TYPE3 and TYPE4 permutations. In Table 9,
the first column represents the number of TYPE5 permuta-
tions in τ ′ and σ ′ respectively.
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