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Abstract: Human hand gestures are a widely accepted form of real-time input for devices providing a
human-machine interface. However, hand gestures have limitations in terms of effectively conveying
the complexity and diversity of human intentions. This study attempted to address these limitations
by proposing a multi-modal input device, based on the observation that each application program
requires different user intentions (and demanding functions) and the machine already acknowledges
the running application. When the running application changes, the same gesture now offers a new
function required in the new application, and thus, we can greatly reduce the number and complexity
of required hand gestures. As a simple wearable sensor, we employ one miniature wireless three-axis
gyroscope, the data of which are processed by correlation analysis with normalized covariance for
continuous gesture recognition. Recognition accuracy is improved by considering both gesture
patterns and signal strength and by incorporating a learning mode. In our system, six unit hand
gestures successfully provide most functions offered by multiple input devices. The characteristics of
our approach are automatically adjusted by acknowledging the application programs or learning user
preferences. In three application programs, the approach shows good accuracy (90–96%), which is
very promising in terms of designing a unified solution. Furthermore, the accuracy reaches 100% as
the users become more familiar with the system.

Keywords: hand gesture; continuous gesture recognition; gyroscope; multi-modal input devices;
unified wearable input devices

1. Introduction

Recent innovations in electronics and wearable technologies facilitate interactive communication
between human beings and machines, including computers. This human–machine interface (HMI)
system will become more important for the Internet of Things (IoT) and ubiquitous computing [1].
Typically, communication starts when an object (i.e., a machine) receives and interprets a human’s (i.e.,
the user’s) intention. Thus, for the HMI, an input device that can capture the user’s intention is crucial.

Human gestures enable an ergonomic approach to input for the HMI. Human body language is an
important communication tool that is intuitively used to convey, exchange, interpret, and understand
people’s thoughts, intentions, or even emotions. Thus, body language not only supports or conveys
emphasis in spoken language but also is a complete language in itself; it is natural to consider human
gestures, such as hand gestures, for HMI input [2]. However, so that they can be widely accepted as a
HMI input, recognition of human gestures still has several hurdles to overcome.

One critical challenge is that human hand gestures are significantly less diverse than the functions
needed by the HMI. HMI functions are more diversified and complicated. This trend of diversification
is observable in the smartphone example. Only a decade ago, several handheld electronic devices
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co-existed to cover diverse human needs, including cell phones, personal digital assistants (PDAs), mp3
players or CD players, digital cameras or digital camcorders, gaming devices, and calculators, whereas,
now, almost all the functions of these devices converge into a single mobile device: A smartphone. In
contrast, in a smartphone, all human intentions are expressed only by swiping or tapping fingers on
the touch screen.

Hand gesture-based interaction is one common approach being considered as HMI inputs [3].
Hand gestures are recognized by two major methods: Vision image processing [4] or wearable
electronics [5]. Vision sensors are popularly used, especially in specific applications, such as smart
televisions [6] or multimedia applications [7]. Though, in the last decade, dramatic advances have
been made in semiconductor sensors (e.g., micro electro mechanical systems sensors). These advances
provide precise, small-sized, light-weighted, and low-priced sensor solutions that are “wearable” by
human beings.

Wearable sensors include electromyography (EMG), touch sensors, strain gauges, flex sensors,
inertial sensors, and ultrasonic sensors [8]. Among wearable sensors, wearable inertial sensors may be
the most widely employed for human-motion recognition [9,10]. In general, inertial sensors refer to
sensor systems consisting of accelerometers and gyroscopes, and magnetometers.

It is common to co-use multiple wearable sensors by sensor-fusion algorithms. For example,
a glove with multiple wearable sensors is reported to monitor hand gestures [11]. A 3D printer is
used to manufacture the glove housing, which contains flex sensors (on fingers), pressure sensors (at
fingertips), and an inertial sensor (on the back of one’s hand).

In many sensor-fusion algorithms, inertial sensors are typically used to track hand motions,
while other sensors (e.g., EMG sensors) detect additional hand information, such as finger snapping,
hand gripping, or fingerspelling [12,13]. One prominent combination may be inertial and EMG
sensors [12–17]. The hand position is determined by the inertial sensor and the EMG sensors provide
supportive information to fully understand complicated finger or hand gestures. It is also possible to
adopt strain gauges, tilt sensors, or even vision sensors, instead of the EMG sensors.

These recognition methods of complex gestures consequently increase the amount of sensor
data. To handle the increased data, machine learning is drawing attention. Various machine learning
techniques are introduced for wearable sensors. Data from a wristband device having EMG sensors
are processed by either a linear discriminant analysis (LDA) classifier [13] or a support vector machine
classifier [18]. In another study, signals generated from a MEMS accelerometer are digitized, coded,
and analyzed using a feedforward neural network (FNN) [19].

Meanwhile, there have been approaches using only wearable inertial sensors. This
inertial-sensor-only approach potentially increases portability and mobility with a reduced computation
load, compared to the cases using multiple wearable sensors or heavy algorithms. A research team
asked users to write words using a smartphone as a pen [20] and reconstruct the handwritings using a
gyroscope and accelerometer embedded in the phone. The handwriting included English and Chinese
characters and emoticons. Other studies utilized kinematics based on inertial sensor signals to monitor
hands or arms [21–23]. Recognizing the motions of a head or feet are also reported [24,25] but they are
not adapted in hand gesture recognition.

As input devices for a HMI, it cannot be doubted that wearable inertial sensors should be accurate
and rapid. However, these dual goals are contradictory, because improved accuracy frequently
increases the computation load, resulting in slow speed. In addition, user hand gestures should be
simple and straightforward. Moreover, inertial-sensor-based gesture-recognition systems additionally
have fundamental limitations. One limitation is the inertial sensor noise, which continues to be
accumulated, resulting in bias or drift in the system output [26]. The second limitation is that signals
from MEMS gyroscopes may be confused with accelerometer signals [27].

To resolve these problems, the signal processing of inertial sensor outputs has actively been
investigated, from simple outputs (such as moving average filters) to the recently developed outputs
(such as machine learning). Recent approaches include digitizing the sensor signals to generate codes
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and calculating statistical measures of the signals to represent their patterns. One system distinguished
seven hand gestures using a three-axis MEMS accelerometer [28]. Accelerometer signals are digitized
by labelling positive and negative signals and are restored by a Hopfield network.

These accelerometer-only approaches effectively capture linear gestures (e.g., up/down or left/right
patterns), but are not easily applicable for detecting circular motions (e.g., clockwise rotation or hand
waving). To recognize both linear and rotational gestures, methods that rely on both accelerometers and
gyroscopes were proposed. A research applied the Markov chain algorithm to monitor the movement
of the arms using accelerometer and gyroscope sensors worn on the forearms [29]. In another recent
work paper, a real-time gesture recognition technique, named Continuous Hand Gestures (CHG),
was reported [30]. The technique first defines six basic gestures, then finds their statistical measures,
including means and standard deviations (STDs), and finally produces a database for the measures of
each gesture.

These accelerometer-gyroscope combinations exhibit an excellent accuracy, but still require
solutions providing multiple functions with a limited number of hand gestures. To address these
challenges, the objective of this study was to develop a unified multi-modal HMI input device
conveying the user’s intention rapidly and precisely. A comparison with published works with other
using sensors is summarized in Table 1.

Table 1. Summary of related works regarding wearable sensor-based gesture recognition.

Reference Used
Sensor(s)

Trajectory
Tracking 1

Gesture
State

Number of
Gestures

Recognition Methods
(Specific Methods,

if any) 2

Demonstrated
Applications

Xu et al.,
2012 [28] Accelerometer No Steady 7 HMM,

Hopfield network 1

Arsenault et al.,
2015 [29]

Accelerometer,
gyroscope No Steady 6 HMM, Markov chain 1

Xie et al.,
2016 [19] Accelerometer No Steady 8 Machine learning

(FNN, SM) 1

Zhou et al.,
2016 [25]

Accelerometer,
gyroscope No Steady 5 Machine learning

(DT, KNN, SVM) 1

Gupta et al.,
2016 [30]

Accelerometer,
gyroscope No Continuous 6 DTW 1

Wu et al.,
2016 [22] Gyroscope No Steady 12 Movement likelihood

matrix updating 1

Yang et al.,
2018 [8] Ultrasonic No Continuous 11

Machine learning
(LDA, support vector

machine)
1

Jiang et al.,
2018 [13]

Accelerometer,
gyroscope,

electromyography
No Continuous 8 Machine learning

(LDA) 1

This study Gyroscope Yes Continuous
12 3,

(3 applications
programs)

Normalized covariance
&

threshold adjustment
3

1 Our study simultaneously considers both trajectory tracking (used to position a presentation pointer on a computer
screen, etc.) and gesture-pattern recognition (used to return to the previous presentation slide, etc.). In this study,
presentation and web-surfing applications require this characteristic. 2 The used classifiers in machine learning.
3 The number of gestures includes the six-unit gestures and six two-time repeating gestures (e.g., double-left gesture).
HMM (Hidden Markov model), FNN (Feedforward Neural Network), SM (Similarity matching), DT (Decision tree),
KNN, (k Nearest neighbors), LDA (linear discriminant analysis).

Table 1 summarizes recent activities reporting the use of various wearable sensors as the HMI
input, using the accelerometer, gyroscope, accelerometer-gyroscope fusion, ultrasonic, and fusion
accelerometer-gyroscope with electromyography approaches. The accelerometer-only approach cannot
detect rotational motions, and some computation loads should be allowed for the sensor fusion
(depending on logics) or machine learning algorithms (during training). Thus, this paper selects a
gyroscope-only system, expecting better rotation-sensing capability (than the accelerometer-only
systems), reduced sensor cost and computation load (than the sensor fusion), and decreased
computational load during model training (than the machine learning). Of course, these comparisons
are only qualitative explanations and should acknowledge that the performance of each method can be
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improved by algorithm/system optimization. Trajectory tracking is also considered because it is the
functionality equipped in laser pointers or computer mice. In addition, most recognition methods hold
the gesture-signal data for a certain time, which is defined as the steady gesture state [23] in the table, to
improve detection accuracy. However, for real-time HMI inputs, a continuous recognition is preferred.
As all references in Table 1 report excellent recognition rates exceeding 90%, it is reasonable to target
a recognition rate larger than 90%. Though, this work tries to enable multifunctional capabilities
with less numbers of hand gestures, which are not seriously considered in all the references. This
uniqueness is crucial for multi-modal HMI input devices, we think, and is expressed by the number of
demonstrated applications in the table.

2. Design of the Wearable System

Our proposed system is configured to implement several important key features. First, our system
relies on selected simple hand gestures (denoted as “unit gestures”), whose functions are redefined
for different application programs. A machine (utilizing our wearable system) already acknowledges
the currently running application. Therefore, the function executed by each gesture can differ by
application, facilitating multifunction capabilities with less gesture complexity to realize a unified
multi-modal input device for HMI.

The second feature is that the sensor used is simplified to use only one three-axis gyroscope which
is, however, providing both gesture recognition and trajectory tracking functions. In addition,
this approach miniaturizes the wearable devices and reduces required cost, compared to the
accelerometer-gyroscope combination.

The third feature is continuous hand-gesture recognition in real time. To minimize the delay
caused by computation load, we reduced the computational complexity by employing a simple
algorithm that calculates the normalized covariance between the pattern signal of the user’s hand
gesture and the reference signal pattern. Signal waveforms (generated during experiments) and their
characteristics were stored in an in-built database with an appropriate window size.

The last feature is the system accuracy. Despite the fact that the complexity is reduced and multiple
input devices converge into a single miniature device, sufficient accuracy should be guaranteed. To
avoid errors caused by a hand tremor or unintentional hand gestures, we co-considered pattern
similarity and signal magnitudes, and, through experiments, deduced the recognition threshold values
that correctly identify the hand. In addition, a learning mode was included for user customization.

Our multi-modal input device is anticipated to be employed in various consumer electronics.
Possible major applications include input devices to (1) computers, such as personal computers,
laptops, or tablet PCs, (2) portable multimedia players like mp3 players or smartphones, (3) wireless
remote controllers for presentation programs, home electronics, or video game consoles, and (4) a head
mounted display (HMD) typically used in virtual reality modules. As an example, a user connects
our multi-modal input device to a laptop and gives a presentation to audiences. After finishing the
meeting, the user wants to read an article that he/she stopped reading for the meeting. While the user
is waiting for a bus, he/she goes back to the previously viewed website and scrolls up to refresh news
feeds. In the bus, the user watches a movie chip using a smartphone or HMD, and, after coming back
home, the user wants to turn on an air conditioner and a robot vacuum cleaner.

Even in this simple scenario, we require many input devices, such as a laser presentation remote,
a computer mouse and keyboard, and several remote controllers. However, all of these can be replaced
by a single multi-modal input device, which is the main target of our approach. To demonstrate the
concept, we selected three example cases (giving a presentation, playing a video, and surfing a website)
and conducted experiments using one input device. Details are described in Section 4.

An overview of the designed system with algorithms is shown in Figure 1. The gyroscope
generates angular velocity data from hand gestures and feeds the data to the machine (e.g., a personal
computer) interfaced with the three-axis gyroscope. The machine processes the raw sensor data using
a custom-moving average filter to reduce sensor noise, produced either by the sensor limitations or
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unwanted gestures, such as hand tremors. In addition, initially, a learning mode is conducted so that
the machine “learns” the preferences and habits of users. The reference signal pattern is updated and
fitted according to the user’s gesture.
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Figure 1. Flowchart of the system data.

We analyzed the characteristics of the data, including their average, standard deviation (STD),
variance, and covariance values. The values were used to calculate a normalized covariance (ρ), which
was the key determinant of gesture recognition in this study. To derive the analyzed values, the filtered
data were windowed to select a set of data samples selected from the most recent data samples.

The normalized covariance was calculated for the unit gestures, respectively, and the gesture
maximizing the ρ value was determined to be that which the user intended. The machine selected
a gesture that maximized ρ. The signals of the six gestures were already learned by the machine
in the learning mode, which is initiated when a user turns on the machine. Then, the sensor signal
was compared with two thresholds (related to the signal vector magnitude (SVM) and ρ) to enhance
recognition accuracy with a low computation load. The machine validated a gesture as an intended
gesture through comparing the threshold values and the magnitude of the input signal. The details are
described in the following sections.

3. Unit Hand Gesture Recognition Algorithm

3.1. Definition of Unit Hand Gestures

As noted, the required functions of an input device for the HMI are diverse, but the number of
available hand gestures (promising user convenience) are relatively limited. Figure 2 depicts six unit
hand gestures that we selected based on the coordinate system. The coordinate system is a Cartesian
coordinate system assuming that a wearable sensor is mounted on the back of the user’s hand or palm.
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Figure 2. Six unit hand gestures selected based on user convenience. (a) The coordinate system
and major directions of a wearable sensor mounted on a hand, (b) downward movement along the
y-axis, (c) upward movement along the y-axis, (d) left directional movement along the z-axis, (e) right
directional movement along the z-axis, (f) clockwise (CW) movement along the x-axis, and (g) counter
clockwise (CCW) movement along the x-axis. Each thick arrow indicates the first motion direction and
the thin arrow shows how the second (sequential) motion occurs to return to the neutral position.

The six unit gestures are selected because there are x, y, and, z-axes and each axis has two rotational
directions. In addition, these six hand gestures are those most commonly investigated in previous
HMI research studies [28,30]. Note that the six unit gestures are used as building blocks (like English
alphabets). Users have the choice to use the unit gestures by themselves or create their own gestures
by sequentially combining them for new functions.

Figure 2a illustrates the three linear and three rotational directions required to capture the hand
gestures. Human body motions are, in general, accomplished by rotating joints, and thus, sensor-wise,
rotational detection is more reasonable and user-friendly than linear movement measurement [31].
Therefore, we decided to use a three-axis gyroscope, instead of both accelerometers and gyroscopes.

For the definition of reference waveform patterns, each unit gesture was repeated 100 times and
data sets were averaged to define the reference waveform pattern for reference. Figure 3 depicts
the reference waveforms of the “Down” gesture, which is one of the six unit gestures. The reason
why the waveforms are bi-directional is that a user first moves his/her hand to the intended direction
and then returns it to the neutral position. In this study, the maximum amplitude is not significantly
meaningful, because the normalized covariance relies mainly on pattern similarity and not strongly on
signal magnitudes.
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different magnitudes.

Each unit gesture is observed to generate distinguishable reference patterns. The “Down” and
“Up” gestures are dominated by the y-axis rotation, while the “Right” and “Left” gestures generate
mainly z-axis rotation signals. The dominant signals of the clockwise (CW) and counter clockwise
(CCW) are rotation around the x-axis.

In addition to the difference in the dominant rotation axis, the signal polarity is also considered.
For example, the CW and CCW gestures are similar, in that they are reciprocating rotation around
the x-axis, but different in the polarity of the first rotation, which is positive in the CW gesture and
negative in the CCW gesture. If a user consecutively rotates his/her wrist several times, this activity is
considered a new combination gesture, different from the unit gestures.

3.2. Calculating Variables for Average, Standard Deviation, and Variance of the Filtered Signal

In this section, we state the assumption and define the variables used in this paper. Their notations
are also summarized in Table 2. As depicted in Figure 1, our system starts with the acquisition of
gyroscope data. Let g[n] = [gx[n], gy[n], gz[n]]T denote the raw gyroscope data at sample number n in
each corresponding axis.

Table 2. Notation in this paper.

Symbol Description

x, y, z Three major axes in a global coordinate
n, m, p Integer variables

g[n] Raw data of gyroscope
xm Moving average data of g[n]
yp Reference stored in the database after a learning mode
N Sample number of window sized
x Average of xm
σx Variance of xm
σx

2 Standard deviation of xm
σxy Covariance of xm and yp
ρxy Normalized covariance of xm and yp
E[x] Expectation of xm
M Average of SVM

As explained, the sensor data may contain unwanted high-frequency data generated by unwanted
hand movements. To avoid this problem, a moving average filter is used. The moving average filter is
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a filter that stores a certain number of data and corrects the output value by averaging them. Using the
raw gyroscope data, g[n], the filter formula is:

xm =
1
m

m∑
n=1

g[n] (1)

As the m value increases, sensor noise is reduced, but a slower response rate is expected. In order
to optimize the m value, this study adjusted the value to be a minimum of two to a maximum of five,
depending on the operating speed of the running application programs.

It was reported that the energy of hand gestures is mostly located at signals having a frequency
lower than 10 Hz [32]. Thus, in this study the sensor sampling frequency was set at 20 Hz. The filtered
sensor data were recorded for 1 s (thus, the window size was 20 data samples. The window size was
denoted by N) and their average, variance, and standard deviation (STD) were calculated, which
are given in Equations (2)–(4). Let xm[n] = [xx[n], xy[n], xz[n]]T denote the moving average filtered
gyroscope data at sample number n.

x =
1
N

N∑
n=1

xm[n] (2)

σx
2 =

1
N

N∑
n=1

(xm[n] − x)2 (3)

σx =

√√√
1
N

N∑
n=1

(xm[n] − x)2 (4)

The standard deviation is a measure of the distribution of the signal from the average of the signal.
The covariance value is a coefficient, indicating the variance and directionality of the combined signal
distribution of the distribution of two signals.

When a user first uses the sensor system, a special algorithm named “a learning mode” operates,
as shown in Figure 1. In the learning mode, a user performs unit gestures, and the waveform patterns
of each average-filtered sensor signal are recorded as reference signals (denoted yp, where p = 1,2,3,4,5,6.
Each integer corresponds to each unit gesture). Thus, using the reference signals, the sensor system
learns the user’s habits, tendency, or preference.

The learned reference (i.e., yp) and the sensor signal updated at a certain time (i.e., xm) were
compared to determine their correlation. If the sensor signal matches with a reference signal of a
specific hand gesture, we conclude that a user performed the specific gesture. For the comparison, we
employed a normalized covariance given by

ρxy =
E[xm − x, yp − y]√

E[xm − x]2 ×
√

E[yp − y]2
=

σxy

σx × σy
(5)

The normalized covariance was also called a correlation coefficient and provided a measure of
similarity between the two signals. σxy is the covariance about xm and yp. The calculated normalized
covariance had a value from −1 to 1. A value of 1 meant that the two signals (xm and yp) had an
identical waveform pattern, although their amplitudes or phases may have differed. If the normalized
covariance is zero, there is no linear relationship between the two signals, which are independent of
each other. However, note that the normalized covariance determines only the waveform pattern of
hand gestures, but cannot judge the magnitude of gesture signals. Thus, there was a chance that a
small signal, which, for example, could occur as a result of unintended gestures, such as hand tumors,
could be detected.
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3.3. Definition of the Minimum Threshold for the Normalized Covariance and SVM

To resolve this problem, we also considered the absolute of the recognized hand-gesture signal.
For a successful recognition, the ρ value should exceed a pre-determined threshold value (ρth) and the
average value of a signal vector magnitude (M, given in Equation (6)) of the signal should be larger
than a threshold SVM value given by (Mth). Magnitude of the normalized covariance is:

M =
1
N

N∑
n=1

√
xm,x[n]

2 + xm,y[n]
2 + xm,z[n]

2 (6)

Table 3 shows the results of the process for defining the minimum ρxy value of each gesture. In the
table, a user conducted a “Right” hand gesture and generated a sensor signal (xm), which is sequentially
compared with the six reference waveform patterns (yp, p = 1,2,3,4,5,6), and their normalized covariance
(ρxy) is individually calculated. If the calculated ρxy is larger than the pre-defined threshold value
(from 0.2 to 0.9), the xm signal is recognized to be its corresponding hand gesture.

Table 3. Recognition probability of the “Right” gesture depends on the threshold value.

ρth Down Up Left Right CW CCW

0.20 19.2 1 46.1 33.7 0 0
0.25 4.5 0 57.6 37.9 0 0
0.30 0 0 62.4 37.6 0 0
0.35 0 0 63.1 36.9 0 0
0.40 0 0 64.3 35.7 0 0
0.45 0 0 49.5 50.5 0 0
0.50 0 0 8.3 91.7 0 0
0.55 0 0 0 100 0 0
0.60 0 0 0 100 0 0
0.65 0 0 0 100 0 0
0.70 0 0 0 100 0 0
0.75 0 0 0 100 0 0
0.80 0 0 0 100 0 0
0.85 0 0 0 100 0 0
0.90 0 0 0 100 0 0

The number is the percentage of counted numbers of each gesture.

This process was repeated 100 times at each threshold value and the probability of recognitions
was calculated. Note that in a small (minimum) threshold value, one user-generated signal may have
more than one similar pattern and thus be mistakenly recognized as two or more gestures. When the
threshold value is 0.4 or less, the probability of recognizing the gesture in the opposite direction is
rather high. When the range of the threshold value is larger than at least 0.55, all cases are correctly
recognized as the “Right” gesture. Thus, in this user generated data in Table 3, the ρth is set as 0.55.
These observations suggest that we need to set the minimum threshold of the normalized covariance.

Although the normalized covariance readily recognizes pattern similarity and difference, more
information is still required for an accurate decision. For example, the“Down” gestures in Figure 3
(having different amplitudes) are all recognized as the “Down” gesture (due to high ρxy), but should
be differentiated because the small gesture in the figure may be generated by unideal cases, such as
hand tremors or sensor noise. To avoid such errors, we needed to incorporate another decision factor,
specifying signal amplitude.

The signal-amplitude factor employed herein is an averaged SVM, the derivation of which is
given in Equation (6). SVM is popularly used in many applications, including machine learning or gait
sensing [33,34]. Figure 4 illustrates the results of a process to determine the averaged-SVM threshold
(Mth) and depicts recognition rates of the six hand gestures with different Mth values. Note that the Mth
values are basically angular velocities (unit of degree per second) because the sensor output source
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is a three-axis gyroscope. We first set the Mth value at 20◦/s, conducted the six hand gestures, and
computed and compared their recognition rates. Then, we increased Mth from 20◦/s to 400◦/s by steps
of 20◦/s and plotted the figure. It is noteworthy that we should select the smallest Mth value, which is
60◦/s in this figure, for 100% recognition. Thus, gestures having an averaged SVM smaller than Mth are
considered not to have occurred.
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3.4. Validation of the Unit Gesture Recognition Algorithm

To validate the usefulness of the developed algorithm, the reference waveform patterns are
experimentally analyzed. Another normalize covariance ρr1r2 is defined as:

ρr1r2 =
E[r1 − r1, r2 − r2]√

E[r1 − r1]
2
×

√
E[r2 − r2]

2
=

σr1r2

σr1 × σr2

(7)

where, r1 and r2 are one of the waveform patterns of the unit gestures in Figure 2. Note that ρxy in
Equation (5) is the normalized covariance of the reference (yp) and user generated sensor output (xm),
whereas the ρr1r2 is the normalized covariance between two reference patterns (r1 and r2, where r1 = yp1

and r2 = yp2).
Table 4 shows the recognition counts and rates of the unit gestures. After completing user

customization (by the learning mode and threshold adjustments), each gesture set was conducted for
400 times by four users. In all cases, high recognition rates (96–97.65%) were achieved. This result
implied that all hand gestures were independent, and thus, their waveform patterns were exclusively
recognized and the developed unit-gesture-recognition algorithm was reliable.

Table 4. Recognition counts and rates of the gestures conducted by four users (trial number is 400).

Down Up Left Right CW CCW Recognition Rate

Down 389 4 0 0 0 0 97.25%
Up 0 386 0 0 0 0 96.50%
Left 0 0 388 0 0 0 97.00%

Right 0 0 1 390 0 0 97.50%
CW 0 0 0 0 384 10 96.00%

CCW 0 0 0 0 0 391 97.75%
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4. Experimental Demonstration of Multimodal Capability

Previously, we described several key techniques, including normalized covariance for pattern
recognition, two thresholds (ρth and Mth) for enhanced accuracy, and the learning mode for
user-customized interaction. These techniques were used together to realize a multi-modal input
device for the HMI, facilitating simple, real-time, accurate, user-friendly, and multi-functional features.
These advantages were demonstrated by follow-up experiments.

Our experimental setup is depicted in Figure 5. The sensor system was an inertial sensor system
made of a micro controller unit, 2.4 GHz band chipsets, and a nine-axis inertial sensor. The inertial
sensor included an accelerometer, a gyroscope, and a magnetometer, but this study only relied on the
three-axis gyroscope. The gyroscope sampling rate was 20 Hz. The sensor system was assembled in a
plastic box and communicated with the receiver.Sensors 2019, 19, x FOR PEER REVIEW 11 of 17 
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4.1. Verification Using Three Different Application Programs

To verify the proposed concept, the developed input device was employed in three application
programs, which were in general controlled by different input devices. The programs were the
presentation program (the typical input device of which is a laser presentation pointer), a media player
for playing video/movie files (the typical input device of which is a remote controller), and a web
browser for surfing (the typical input device of which is a computer mouse).

Each experiment followed a predefined sequence. First, we ran the target application program
and determined its core functions. Then, the functions were matched with the six hand gestures in
Figure 2 and, if needed, simple combinations of the six gestures (e.g., two times “Right” gestures) were
also used. When the initial setup had been completed, the first participant in the experiment operated
the learning mode and then conducted a scenario comprising successive hand gestures executing all
core functions. After the participant finished the scenario, the next participant followed the learning
mode, which re-adjusted the input device according to his/her preferences, and conducted the scenario
again. Five participants took part in this experiment.

This section may be divided by subheadings. It should provide a concise and precise description
of the experimental results, their interpretation, as well as the experimental conclusions that can
be drawn.

4.2. Application Program #1: Presentation

When giving a presentation, a user usually brings a presentation laser pointer and needs three
major features. The first feature advances the presentation to the next slide or returns it to the previous
slide. Sometimes, the user wants to return to the first slide or skip to the last slide to save slide-changing
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time. The second feature selects and runs objects embedded in a slide. The objects include movie
clips, audio files, animations, etc. The final feature is used to draw the audience’s attention; it turns
on a laser used for pointing at intended locations on a slide. This feature is called the focus mode
and is exemplified by the laser-pointer option used in the slide-show mode. Based on this analysis,
we selected seven key functions and matched them with the six hand gestures. The function-gesture
matching results are listed in Table 5.

Table 5. Result of the presentation software (participant = 5; trials = 50).

Gestures Functions Success Rate
Error Rate

Non-Recognition Incorrect Recognition

Up Select an
embedded object 96% 4% 0%

Down Execute the
selected object 96% 4% 0%

Left Return to the
previous slide 93% 5% 2%

Right Advance to the
next slide 92% 6% 2%

D-left Jump to the first
slide 92% 4% 4%

D-Right Jump to the last
slide 93% 2% 5%

CW Switch to focus
mode 94% - 6%

CCW Switch to focus
mode 94% - 6%

These functions were experimented with, as shown in Figure 6. The arrow signs in the figure
indicate the executed hand gestures. The number shown on the screen is the slide number. First, a
participant was asked to conduct a “Left” gesture and the slide returned to the previous slide and the
slide number changed from 5 to 4 (Figure 6a). When the participant was asked to execute a “Right”
gesture, the slide number increased from slide 5 to 6 (Figure 6b). For faster transition, the participant
rapidly conducted two “Left” or two “Right” gestures. This one-time “Double-Left” or “Double-Right”
action resulted in the presentation going to the first slide (Figure 6c) or jumping to the final (20th) slide
(Figure 6d). Then, the participant was asked to play a video clip embedded in slid 3. After conducting
two slow “Left” gestures to go to slid 3, he/she performed an “Up” gesture to select the chip and
sequentially made a “Down” gesture to play it (Figure 6e). While the video played, the participant
rested his/her hand. Finally, the participant was asked to emphasize some contents in slide number 5.
He/she conducted two slow “Right” gestures to go to the fifth slide and either a “CW” or a “CCW”
gesture to activate the focus mode. As illustrated in Figure 6f, he/she then freely moved the mouse
cursor (the white cursor movement is highlighted by the red circles). When the participant no longer
needed the focus mode, he/she performed a “CW” or “CCW” gesture one more time and deactivated
the mode.
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Figure 6. Sequence of experiments, (a) going to the previous slide, (b) going to the next slide, (c)
jumping to the first slide, (d) jumping to the last slide, numbered 20, (e) selecting and executing a video
clip, (f) activating the focus mode and moving the mouse cursor as a pointer.

Table 5 summarizes the success/error rates after five participants completed the sequence in
Figure 6, 50 times. The error sources were individually analyzed by non-recognition (when a gesture
is not recognized) and incorrect recognition (when it is recognized as a different gesture). The table
shows that, regardless of the user, high success rates are demonstrated in the range of 92% to 96%.
Thus, our single-device concept successfully incorporates all the needed functions of a presentation
laser pointer and is suitable for use with a presentation.

4.3. Application Program #2: Playing Video/Music Files Using a Multimedia Player

Multimedia contents are mostly controlled by a remote controller. Multimedia controllers require
four major features. The first feature is playing and pausing the currently playing file. The second
feature is time shifting, such as fast-forwarding and rewinding, while the third is changing files in a
playlist, such as playing the previous or next file. The final feature is volume control. Table 6 shows
the function-gesture matching results of a multimedia player.

Table 6. Result of the multimedia playing software (participant = 5; trials = 50).

Gestures Functions Success Rate
Error Rate

Non-Recognition Incorrect Recognition

Down Play/Pause 96% 2% 2%
Left Rewind by 10 s 92% 6% 2%

Right Fast-forward by 10 s 95% 4% 1%

D-Left Previous file in
playlist 91% 6% 3%

D-Right Next file in play list 90% 6% 4%
CW Volume down 93% 2% 5%

CCW Volume up 94% 1% 5%

Figure 7 depicts an experimental sequence of playing a horizon-landscape video file. The
red-circled symbol in each figure is generated by the used multimedia software and confirms which
function is currently executed. A participant conducts a “Down” gesture to play the video and a
second “Down” to pause it (Figure 7a). Then, he/she makes a “Left” gesture to rewind the video
clip, the time of which goes back to dawn, and then performs a “Right” gesture to fast-forward
the video so that its time rapidly goes to sunset (Figure 7b). Figure 7c illustrates the results of the
“Double-Left” and “Double-Right” gestures: The video changes to the previous clip and the next video
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clips, respectively. Finally, in Figure 7d, the participant turns his/her hand counterclockwise and the
video-sound volume decreases and eventually is muted. Then, he/she rotates the hand clockwise and
increases the sound volume.
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Table 6 reveals that the success rates span from 90% to 96%. The double-gestures (“Double-Right”
or “Double-Left”) show the lowest success rate, because their non-recognition rate is relatively high.
However, regardless of the participant or function, all gestures show superior success rates higher than
or equal to 90%, which satisfies all the needed functions of multimedia players.

4.4. Application Program #3: Web-Surfing Using Web-Browser

As compared with the two application programs discussed in the previous sections, surfing web
browsers requires different input characteristics, which are usually provided by a computer mouse and,
if needed, the support of a computer keyboard. A conventional computer mouse provides two major
features. One feature is selection functions provided by left or right clicks. The other is positioning
the mouse cursor by moving the mouse. Keyboard functions may include going to the previous page
(backspace key) and to the next page (alt-right-arrow keys) or refreshing the current page (F5 key).
Table 7 is the gesture-function matching results of web-surfing.
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Table 7. Result of the web surfing experiment (participant = 5; trials = 50).

Gestures Functions Success Rate
Error Rate

Non-Recognition Incorrect Recognition

Up Right click 94% 2% 4%
Down Left click 93% 2% 5%

Left Back to the
previous page 99% 1% 0%

Right Forward to the next
page 98% 0% 2%

CW Switch to cursor
positioning 95% 3% 2%

CCW Switch to cursor
positioning 96% 2% 2%

Figure 8 illustrates an experiment sequence using the web browser. A participant first uses a
default mode and locates the cursor on an intended website hyperlink. If the cursor does not move
for a certain time (set as 0.7 s in this application), it freezes at the cursor-pointing location and allows
the user to select certain activities. Then, the user conducts an “Up” gesture in Figure 8a. Now, the
participant can move the cursor, meaning that the function changes to the cursor-positioning mode,
and place it on the pop-up menu. He/she selects the function by making a “Down” gesture. In this
step, he/she opens a page in the same tab. When the (selected) page is displayed, the participant makes
a “Left” gesture to return to the previous page (here, the search page) and then performs a “Right”
gesture to move to the forward page, as depicted in Figure 8b. When a user no longer wants to use
left/right clicking or forward/backward functions, he/she can rotate his/her hand in either the clockwise
or counterclockwise direction to return to the cursor-positioning mode (Figure 8c).
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The experimental results are summarized in Table 7, showing that a high success rate is achieved
in all functions, from 93% to 99%. Therefore, it is demonstrated that our concept can cover not only all
the functions of a computer mouse but also some functions that require a computer keyboard.
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4.5. Summary of the Verification Experiments

As noted, threshold values of normalized covariance (ρth) and averaged SVM (Mth) were adjusted
by applications. For the presentation, ρth is 0.8 and Mth is 50. Both of them were relatively large,
because a user typically used large gestures (large Mth) during presentation and willingly accepted
a lack of recognition but strongly wanted to avoid any wrong actions (large ρth). Whereas, when a
person listens to music or watches a video, hand gestures are typically large but a user is less concerned
with incorrect recognition, which is easily corrected by quickly executing the right gesture one more
time. Thus, the Mth was maintained at 50, while the ρth was decreased to 0.5. When a user surfs the
web, the user’s hand movements show a wide speed range. Thus, the Mth was decreased to 30. The
normalized covariance threshold was increased to 0.7.

Figure 9 summarizes the experimental results on gesture recognition rate in each program. All the
recognition rates were higher than 90% and generally 92–96%. Moreover, the success rate increased
as a user became more familiar with the input device. One accidental observation was that a user
became more familiar with using our wearable input device and began to adapt himself/herself. This
observation offered a hint for achieving a 100% success as the number of repetitions increased.
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The computation load of this system was represented by a recognition delay time, which is
experimentally evaluated herein. The delay time was defined as the time elapsed until a computer
executed a specific function (matched to a specific gesture) since a user completed the corresponding
hand gesture. The elapsed time was repeatedly measured for 100 times using a stopwatch. The
measured delay-time values were 0.21 ± 0.05 s, and dominantly observed from 0.22 to 0.23 s. These
values were not significantly long and were within the time scale of the cognitive band (0.1 to 10 s),
which is the time required for a computer mediated HMI system [35]. Thus, we consider our system to
be able to operate in real time.

5. Conclusions

This paper proposes a method providing a wearable electronics system providing a unified
multi-modal input device for HMI systems. Six unit gestures are employed and resynchronized for
three different application programs. The resynchronization is feasible because a machine in an HMI
system already recognizes which program is currently running, and the required functions differ
according to application programs. The resynchronization-by-program approach reduces the number
of required functions to a great extent and (sequentially) the diversity in HMI input devices, realizing a
unified (multi-modal) input device for HMI systems with less complex hand gestures.

For fast and reliable recognition, two determinants are used: Normalized covariance and averaged
SVM. The normalized covariance determines the gesture pattern similarity, and the SVM distinguishes
errors caused by small hand gestures. In addition, the machine initially learns user preferences
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and habits by means of a learning mode. Thus, a highly successful gesture-recognition algorithm
is achieved.

The developed algorithm was applied to three application programs: Presentations, a multimedia
player (for playing video/music files), and a web browser. The three programs are usually controlled
by a laser pointer, remote controller, and computer mouse, respectively. Our single wearable sensor
exhibits high success rates for the different functions of the three programs. Therefore, the developed
sensor has high potential as a multi-modal wearable input device for HMI systems.
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