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Abstract: Recently, climate change has increased the frequency of extreme weather events. In South
Korea, extreme droughts are frequent and cause serious damage. To identify the risk of extreme
drought, we need to calculate the hydrologic risk using probabilistic analysis methods. In particular,
future hydrologic risk of extreme drought should be compared to that of the control period. Therefore,
this study quantitatively assessed the future hydrologic risk of extreme drought in South Korea
according to climate change scenarios based on the representative concentration pathway (RCP)
8.5. A threshold level method was applied to observation-based rainfall data and climate change
scenario-based future rainfall data to identify drought events and extract drought characteristics.
A bivariate frequency analysis was then performed to estimate the return period considering both
duration and severity. The estimated return periods were used to calculate and compare hydrologic
risks between the control period and the future. Results indicate that the average duration of drought
events for the future was similar with that for the control period, however, the average severity
increased in most future scenarios. In addition, there was decreased risk of maximum drought events
in the Yeongsan River basin in the future, while there was increased risk in the Nakdong River basin.
The median of risk of extreme drought in the future was calculated to be larger than that of the
maximum drought in the control period.
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1. Introduction

Climate change induces changes of rainfall pattern as the consequence of global warming.
Contrary to climate variability, climate change is characterized by a slow-varying oscillation in the
climate system and can modify the possibility of extreme events by changing hydrological cycles [1].
According to the precipitation outlook based on climate change scenarios [2–4], climate change is likely
to produce very different patterns of flood and drought around the world [1]. Compared with other
natural disasters, the spatial extent of drought is usually much larger and the duration is greater [5].
In addition, the frequency of extreme droughts will increase and the damage caused by extreme
droughts will be severe. Therefore, drought should be quantitatively analyzed to mitigate damage.
Due to the multi-sided characteristics and the non-structural impacts of drought, it is difficult to
quantify drought damage [6].

For quantitative drought analysis, drought should be defined and characterized. Various drought
indices related to agricultural, soil moisture and streamflow data are used to quantify the climate
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dryness anomalies. For example, Standardized Precipitation Index (SPI) and Palmer Hydrological
Drought Index (PHSI) have been used in practice to quantitatively analyze the characteristics of
meteorological and hydrological droughts [7,8]. A threshold level method is another frequently
applied tool for defining a drought event and has practical advantages—(i) no a-priori knowledge of
probability distributions is required and (ii) it simply and directly produces drought characteristics
such as duration and severity [9,10]. Mirakbari et al. [11] and Yu et al. [12] defined drought events
using a certain threshold level of hydro-meteorological variables and analyzed the probabilistic return
period through hydrological drought frequency analysis.

To estimate the risk of extreme drought, the drought frequency analysis is usually performed first.
In this study, the drought frequency analysis was conducted using drought characteristics calculated
by the threshold level method. Because droughts are characterized by highly correlated random
variables, such as duration, intensity and peak, their joint and conditional distributions, as well as their
marginal distributions, need to be analyzed to understand multivariate behaviors. Using joint and
conditional distributions, the limitations of the univariate frequency analysis could be overcome and the
multivariate behavior of droughts could be understood more thoroughly [13]. Both drought duration
and severity could be determined easily and simultaneously through bivariate frequency analysis.
Since drought duration and severity may be represented by different marginal distributions, copulas
can be used to construct the joint distribution function of drought characteristics [14]. For example,
Yoo et al. [15] generated synthetic monthly rainfall using the copula-GARCH rainfall generation
model, after investigating performance of various copula functions. Janga and Ganguli [5] presented a
copula-based multivariate probabilistic approach to analyze the severity–duration–frequency (S-D-F)
relationship of drought events in western Rajasthan, India.

Since the hydrologic risk of drought is defined as the probability that a given level of dryness is
exceeded in any year, results of bivariate frequency analysis can be used to analyze the risk for certain
drought events. Ganguli and Janga [16] presented a risk assessment of hydrologic extreme droughts
using copula-based distribution functions in the Saurashtra and Kutch regions of Gujarat, India.
Recently, Yoo et al. [17] compared and analyzed drought risks based on the SPI and the Standardized
Precipitation Evapotranspiration Index (SPEI) using future climate change scenario data. Kim et al. [18]
performed temporal and spatial analyses on extreme drought events on the Korean peninsula to
estimate hydrologic risk and evaluate future droughts using future climate change scenario data.
Yu et al. [19] conducted a bivariate frequency analysis using copula functions to determine critical
severity according to the non-exceedance probability and calculated the hydrologic risk for extreme
drought events.

Although numerous studies have focused on drought risk analysis using observed data, more
studies about hydrologic risk are needed to quantitatively analyze future extreme droughts. It also
needs to compare and analyze the risk of extreme drought for future periods in South Korea under
various climate change scenarios. Therefore, this study estimates the hydrologic risk for extreme
drought in South Korea and investigates the changes of the drought risk in future.

2. Study area and Data

In this study, drought characteristics were analyzed for 109 medium-sized watersheds in South
Korea, as shown in Figure 1. The drought characteristics of medium-sized watersheds directly contribute
to regional drought management according to the governmental natural disaster response system.

Observed daily precipitation data (January 1983–December 2014) were obtained from the Korea
Meteorological Administration (KMA) and climate change scenario-based daily precipitation data
(January 2015–December 2099) were obtained from the Asia-Pacific Economic Cooperation Climate
Center (APCC). The observed data were analyzed for a control period and the climate change
scenario-based data were analyzed for the future period based on the Representative Concentration
Pathway (RCP) 8.5 scenario. Although there are four RCP scenarios such as 2.6, 4.5, 6.0 and 8.5
according to greenhouse gas emissions, the RCP 8.5 represents increases in emissions based on the
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current trend, without a greenhouse gas reduction policy [20]. The RCP 8.5 scenario is more appropriate
for extreme drought analysis than other RCP scenarios, because it realizes the extreme circumstances.
19 Global Climate Models (GCMs) were selected to provide future precipitation data, as shown in in
Table 1.

Figure 1. Map of the study area.

Table 1. Dataset of global climate models used in this study.

Model Institution

CanESM2 Canadian Centre for Climate Modelling and Analysis

CCSM4 National Center for Atmospheric Research

CESM1-BGC National Center for Atmospheric Research

CESM1-CAM5 National Center for Atmospheric Research

CMCC-CM Centro Euro-Mediterraneo per I Cambiamenti Climatici

CMCC-CMS Centro Euro-Mediterraneo per I Cambiamenti Climatici

CNRM-CM5 Centre National de Recherches Meteorologiques

GFDL-ESM2G Geophysical Fluid Dynamics Laboratory

GFDL-ESM2M Geophysical Fluid Dynamics Laboratory

HadGEM2-AO Met Office Hadley Centre

HadGEM2-ES Met Office Hadley Centre

INM-CM4 Institute for Numerical Mathematics

IPSL-CM5A-LR Institut Pierre-Simon Laplace

IPSL-CM5A-MR Institut Pierre-Simon Laplace

MIROC5 Atmosphere and Ocean Research Institute

MPI-ESM-LR Max Planck Institute for Meteorology

MPI-ESM-MR Max Planck Institute for Meteorology

MRI-CGCM3 Meteorological Research Institute

NorESM1-M Norwegian Climate Centre

Direct use of GCMs in regional-scale hydrologic analysis is constrained, because the atmospheric
dynamics at scales greater than 2 degrees of longitude and latitude yields unrealistic hydrologic
outcomes [21]. Dynamic and statistical methods are used to downscale the output from GCMs to
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regional-scale. The dynamic method is a physical process to enhance the spatial resolution of GCMs
climate output through regional climate models (RCMs) [22]; however, it results in biases in precipitation
simulations from RCMs due to limited understanding of regional climate processes [1]. The climate
change scenario-based data used in this study were provided by the APCC after correcting the bias of
GCMs using statistical relationships between observed historical climate data and GCM-based climate
variables [22]. In addition, the KMA certifies and releases climate change scenario-based data after
validating and examining their soundness and applicability.

3. Methodology

3.1. Threshold Level Method

The most widely used method to define drought is the threshold level method (TLM). The TLM is
based on run theory and has two main advantages—(i) no a priori knowledge of probability distributions
is required and (ii) it directly produces drought characteristics if the threshold is set according to
drought-impacted sectors [9]. Because the TLM is convenient for identifying drought events, it is
efficient for applying hydro-meteorological time series compared to other drought identification
methods using a drought index like SPI and PDSI [23]. Wada et al. [24] applied the TLM to quantify the
impact of human water consumption on intensity and frequency of hydrological drought worldwide
over the period 1960–2010. Yoo et al. [25] employed the 3-month and 12-month moving averages as the
threshold level and analyzed drought characteristics. Due to the simplicity and efficiency for defining
drought, the TLM was used in this study to analyze the drought risk effectively. According to the
TLM, the period during which rainfall is less than the predefined threshold is regarded as the drought
duration and the accumulated sum of rainfall deficit volume during the duration is defined as the
drought severity [26,27]. The period from the beginning of any drought event to the beginning of
the next drought event is called interarrival time. Figure 2 illustrates the details of defining drought
characteristics by applying the monthly threshold level.

Figure 2. Definition of drought characteristics using a threshold level.

There are many ways to determine the threshold level. Because the characteristics of drought
vary according to threshold level, an appropriate threshold level should be chosen [12]. In this
study, the threshold level was determined as percentiles of precipitation based on the empirical
cumulative distribution function (ECDF). The threshold level commonly ranges between the 70th and
95th percentiles depending on regional characteristics when applying the TLM to precipitation [28,29].
The threshold may be constant or a variable over a year. If the threshold is derived from the ECDF,
it implies that the whole precipitation record (or a predefined period) is used in the derivation of the
threshold [30]. This leads to increased accuracy of the rainfall deficit investigation during months with
low and high precipitation [31].
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3.2. Bivariate Frequency Analysis

To quantify the hydrologic risk of drought, it is necessary to estimate the return period through
drought frequency analysis. Drought frequency analysis is divided into univariate and bivariate
frequency analysis. Since drought is usually represented by its duration and severity, univariate
frequency analysis using a single drought property may not reveal significant relationships among
the drought properties [10,32]. Therefore, both duration and severity should be considered together
in bivariate frequency analysis to reveal the multivariate characteristics of drought [32]. There are
several kinds of bivariate drought frequency analysis—(i) parametric methods, (ii) nonparametric
methods and (iii) copula function methods. Parametric methods fit an assumed theoretical probability
distribution for drought properties, whereas nonparametric methods do not require any assumptions
about probability distribution [26]. Lately, copula function methods have been widely applied in
hydrology and water resources engineering [33–40] because they have an advantage of reflecting the
dependency structure between two variables and combining their probability distributions [41–44].
The copula function for calculating the joint probability distribution of drought duration (D) and
severity (S) is shown in Equation (1).

FD,S(d, s) = C(FD(d), FS(s)) (1)

where FD,S(d, s) is the bivariate distribution function of two correlated random variables D and S.
FD(d) and FS(s) are marginal CDFs of D and S, respectively. C represents a copula function.

Copula functions are classified into four categories—Archimedean, elliptical, extreme value
and Plackett. The Archimedean copula can be constructed easily, includes a large variety of copula
functions and can be applied whether the correlations amongst hydrologic variables are positive or
negative [19,45,46]. Therefore, the Archimedean copula functions are more applicable to drought
frequency analysis compared to the others. Table 2 shows the Archimedean copula functions.

Table 2. Equations of Archimedean copula functions.

Name Equation C(u,v) Note

Clayton
(
u−θ + v−θ − 1

)−1/θ

u and v denote random variates
θ is a parameter.Frank 1

θ ln
[
1 +

[e−θu
−1][e−θv

−1]
e−θ−1

]
Gumbel exp

[
−

{
{− ln u}θ + {− ln v}θ

}1/θ
]

The return period of an event can be calculated as the inverse of the exceedance probability of
the event. The univariate frequency analysis needs only marginal probability of interest variable [47],
while bivariate frequency analysis considers two distinctive joint probabilities—(i) AND probability
that two variables are exceed specific values, (ii) OR probability that one of two variables is exceeded
specific values. In design of a water resources system, it is appropriate to consider the AND probability
for a safe design [48]. The joint return period of drought is available for the AND probability, as given
by Equation (2).

TDS =
E(L)

P(D ≥ d and S ≥ s)
=

E(L)
1− FD(d) − FS(s) + C(FD(d), FS(s))

(2)

where E(L) is the expected drought interarrival time.
There are many ways to assess the risk of drought—it is commonly divided into drought risk in the

field of natural disasters and drought risk in the fields of hydrology and water resources engineering.
Drought risk in the natural disaster field is defined as the scale of potential damage caused by a
disaster for a specific period in a particular region and is calculated as the product of hazard and
vulnerability. Drought risk in the fields of hydrology and water resources engineering is represented
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by the hydrologic risk (R) of failure which is the probability of occurrence when the magnitude of the
design return period (TDS) is exceeded within the expected life (n) of the structure [49], as given by
Equation (3).

R = 1−
(
1−

1
TDS

)n

(3)

The hydrologic risk for each drought event can be estimated through the bivariate return period
calculated by Equation (2).

4. Results

4.1. Definition of a Drought Event

In this study, to extract drought characteristics from precipitation time series, the TLM was
applied. The threshold level was set based on the percentile of the empirical cumulative distribution
function obtained by ordering precipitation data. The threshold level was determined as the closest
percentile, within the 70–95th percentiles, which generated as many drought events as using the
SPI. After applying the determined threshold to the observed and climate change scenario-based
precipitation, drought events were extracted and the duration and severity of drought events were
calculated. For the efficiency of analysis, the characteristics of drought events in 109 watersheds are
summarized in Table 3, in which average duration and severity are shown for five large river basins.

Table 3. Characteristics of drought events.

Characteristics Dataset Han River Nakdong River Geum River Seomjin River Yeongsan River

Average
Duration (mon)

Observed data 3.42 3.56 3.41 3.47 3.43

GCMs

Lowest 3.18
(HadGEM2-AO)

2.97
(HadGEM2-AO)

3.19
(HadGEM2-AO)

3.23
(IPSL-CM5A-MR)

3.21
(HadGEM2-AO)

Highest 3.73
(CFDL-ESM2M)

3.83
(CMCC-CM)

3.72
(CMCC-CM)

3.73
(IPSL-CM5A-LR)

3.87
(CFDL-ESM2M)

Average 3.44 3.51 3.50 3.51 3.47

Average
Severity (mm)

Observed data 660.8 600.3 601.8 711.2 630.9

GCMs

Lowest 599.9
(CESM1-BGC)

503
(CESM1-BGC)

558.5
(CESM1-BGC)

654.7
(CESM1-BGC)

579.2
(CESM1-BGC)

Highest 804.1
(INM-CM4)

725.4
(HadGEM2-AO)

771.8
(HadGEM2-AO)

832.7
(CNRM-CM5)

742.3
(CFDL-ESM2M)

Average 685.73 6225.73 661.41 760.20 669.51

Table 3 demonstrates that HadGEM2-ES produced the lowest average duration and the differences
between average durations from the observed and the future scenario were small. CESM1-BGC
produced the lowest average severity and the averages of future severity were larger than those of
control period for all large basins. It was expected that there will be many droughts in the future with
similar duration but greater severity than in the control period. These findings suggest that extreme
droughts occur in the future, consistent with results of previous studies.

4.2. Drought Risk Analysis Using Bivariate Frequency Analysis

Various distributions such as exponential, normal, gamma, lognormal, Poisson, Weibull,
generalized extreme value and generalized pareto were employed as possible distributions for
duration and severity. After estimating distribution parameters using the maximum likelihood method,
the optimal probabilistic distributions were individually determined for 109 medium-sized watershed
based on χ2 goodness-of-fit test. Among the Archimedean copula functions such as Clayton, Frank and
Gumbel, a suitable copula function was selected for observed data in individual watershed and applied
to the future climate change scenario data to perform the bivariate frequency analysis. Consequently,
the largest value of the bivariate return periods was chosen as the maximum drought event for a
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watershed and dataset. The characteristics of maximum drought events are shown in Figures 3 and 4.
Table 4 summaries the characteristics of maximum drought event.

Figure 3. Duration of maximum droughts for each dataset.

Figure 4. Severity of maximum droughts for each dataset.

Table 4. Characteristics of maximum drought events.

Characteristics Dataset Han River Nakdong River Geum River Sumjin River Yeongsan River

Average
Duration (mon)

Observed data 12 14 14 14 14

GCMs

Lowest 8
(CESM1-BGC)

7
(HadGEM2-AO)

9
(GFDL-ESM2M)

7
(HadGEM2-AO)

10
(CESM1-BGC)

Highest 25
(MPI-ESM-MR)

25
(MPI-ESM-MR)

25
(MPI-ESM-MR)

19
(CESM1-CAM5)

29
(MPI-ESM-MR)

Average 13.2 11.9 14.1 12.0 13.8

Average
Severity (mm)

Observed data 2673.7 2127.6 2745.7 2238.8 2307.5

GCMs

Lowest 2169.9
(CESM1-BGC)

1474.1
(CESM1-BGC)

2526.3
(CMCC-CM)

2020.7
(HadGEM2-AO)

2073.1
(NorESM1-M)

Highest 5081.9
(MPI-ESM-MR)

3964.9
(MPI-ESM-MR)

4793.6
(CanESM2)

3823.5
(IPSL-CM5A-LR)

4920.2
(MPI-ESM-MR)

Average 3132.62 2178.64 3278.40 2707.99 2757.99

Comparison of duration and severity of maximum drought events for each dataset indicated that
the median duration of maximum drought in the control period was 7 months. The median severity
of maximum drought in the control period was 1849 mm. These medians are the criteria for future
risk analysis. In this study, the risk analysis was conducted in two ways using the results of bivariate
frequency analysis. We calculated hydrologic risks for the maximum drought events of the control
period and then estimated hydrologic risks of extreme droughts in the future period, which are the
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drought events that are larger than the maximum drought in the control period. The design return
periods of a large dam are set to 100–200 years in South Korea. Therefore, in this study, the expected life
(n in Equation (3)) of hydrologic risk was set to 100 years. The hydrologic risks of maximum drought
events calculated for 109 watersheds are shown in Figure 5.

In the control period, the highest risk was in the downstream area of the Yeongsan River and the
upstream area of the Nakdong River and the lowest risk was in the downstream area of the Nakdong
River. However, the results of the future period indicated that the Yeongsan River basin was greatly
decreased and the Nakdong River basin was rather dangerous in both upstream and downstream
areas. Future drought events exceeding the maximum drought of the control period were defined
as extreme droughts and were analyzed using the hydrologic risk. The results for future extreme
droughts are shown in Figure 6. The red line represents the median risk for the maximum drought of
the control period.

Figure 5. Cont.
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Figure 5. Hydrologic risk of maximum drought events for each dataset.

Figure 6. Hydrologic risk of extreme drought for each dataset.

The median risk of the maximum drought of the control period was 0.61, which was lower than
most of the future scenario data. CMCC-CMS of the future scenario data had the highest value of 0.91
compared to the control period and NorESM1-M had the lowest value of 0.38. Table 5 demonstrates
the average risk for extreme drought by watershed.
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Table 5. Average hydrologic risk of extreme drought event in each basin.

Basin
(River) CanESM2 CCSM4 CESM1-BGC CESM1-CAM5 CMCC-CM CMCC-CMS CNRM-CM5 GFDL-ESM2G GFDL-ESM2M HadGEM2-AO HadGEM2-ES INM-CM4 IPSL-CM5A-LR IPSL-CM5A-MR MIROC5 MPI-ESM-LR MPI-ESM-MR MRI-CGCM3 NorESM1-M

Han
River 0.64 0.53 0.56 0.65 0.83 0.84 0.68 0.55 0.55 0.62 0.72 0.61 0.59 0.51 0.73 0.78 0.67 0.78 0.48

Nakdong
River 0.79 0.73 0.83 0.51 0.54 0.89 0.85 0.71 0.70 0.69 0.73 0.66 0.78 0.56 0.73 0.63 0.60 0.69 0.58

Geum
River 0.65 0.58 0.75 0.45 0.57 0.94 0.55 0.67 0.71 0.58 0.78 0.46 0.77 0.59 0.68 0.64 0.68 0.91 0.38

Seomjin
River 0.68 0.82 0.62 0.78 0.81 0.82 0.84 0.60 0.67 0.52 0.62 0.83 0.81 0.57 0.84 0.84 0.75 0.71 -

Yeongsan
River 0.26 0.54 0.66 0.63 0.65 0.80 0.80 0.52 0.68 0.41 - 0.45 0.79 0.38 0.69 0.75 0.96 0.70 0.31



Water 2019, 11, 2052 11 of 13

These results show that CMCC-CMS had the highest risk compared to other GCMs, while
NorESM1-M had the lowest risk. In addition, the risks of the Han River, Nakdong River and Seomjin
River basins were expected to increase, while the risks of the Geum River and Yeongsan River basins
were expected to be similar to those in the control period. Those results are similar to those of
Park et al. [50] and the Nakdong, Seomjin and Han River basins are expected to experience more severe
drought in the future.

5. Conclusions

In this study, we conducted a bivariate frequency analysis for 109 medium-sized watershed of
South Korea using the observed data and 19 RCP 8.5-based synthetic data and then assessed the
hydrologic risk of drought for control and future periods. The main conclusions are as follows;
(1) The average drought duration of control period and the average drought duration of future period
were similar. However, the average drought in the future was higher according to climate change.
Consequently, it was expected that extreme droughts would occur in the future. (2) Considering
hydrologic risk of drought, the Yeongsan River basin and the upstream area of the Nakdong River basin
were dangerous in the control period. In the future, the hydrologic risk of the Yeongsan River basin
decreased but that of the Nakdong River basin increased in the downstream region. (3) The hydrologic
risks of extreme drought, which was more severe than the maximum drought in the control period,
were up to 1.5 times higher than those of the control period. The Han River, Nakdong River and
Seomjin River basins predicted high risk of severe drought.

This study demonstrated that drought would be more severe and dangerous in the future in
South Korea. Current design standards do not consider the change of extreme drought risk in the
future. Therefore, design standards for water resources systems should be established to cope with
future extreme droughts considering the climate change. The results of this study can be useful in
establishing risk-based quantitative design standards of water resource systems for drought mitigation.
Consequently, the design standards of the water resource system can be changed considering the
risk of drought and the government can give priority to the area with high risk when preparing the
drought measures.
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