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3D printing, also called additive manufacturing, has been increasingly popular and printing efficiency
has become more critical. To print artifacts faster with less material, thus leading to lighter and cheaper
printed products, various types of void structures have been designed and engineered inside of shape
models. In this paper, we present a novel method for generating support-free elliptic hollowing for 3D
shapes which can entirely avoid additional supporting structures. To achieve this, we perform the ellipse
hollowing in one of the cross sectional polygons and then extrude the hollowed ellipses to the other
parallel cross sections. To efficiently pack the ellipses in the polygon, we construct the Voronoi diagram
of ellipses to reason the free-space around the ellipses and other geometric features by taking advantage
of the available algorithm for the efficient and robust construction of the Voronoi diagram of circles.
We demonstrate the effectiveness and feasibility of our proposed method by designing and printing
support-free hollow for various 3D shapes using Poretron, the program which computes the hollow by
embedding appropriate APIs of the Voronoi Diagram Machine library that is freely available from Voronoi
Diagram Research Center. It takes a 3D mesh model and produces an STL file which can be either fed into
a 3D printer or postprocessed.

© 2018 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Additive manufacturing (AM), also called 3D printing, has been
advanced rapidly to make customized 3D models. Comparing to
traditional manufacturing techniques, it offers enormous geomet-
rical freedom for designers to create highly optimized components
with various functionality.

Model hollowing is a typical practice for purposes of reducing
printing material and time in 3D printing of light-weighted arti-
facts and various methods on generating optimized interior have
been developed during the last few years [1-3]. The mainstream
of 3D printing technologies, such as Fused Deposition Modeling
(FDM) and Stereolithography (SLA), requires additional supporting
structures to avoid the falling of relatively large overhanging parts
during the printing process [4-6]. Generally the extra supporting
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structures have to be removed either manually or by dissolving
dissolvable material from the printed objects.

However, there is no way at all to remove the supporting
material inside interior voids of a printed object. A naive method
is to first decompose the model into a few subparts, print them
and remove the supporting material individually, and then glue
them together. Obviously it may largely affect the computed phys-
ical properties. Recently, there are quite a few attempts to create
support-free interior voids or structures by constraining boundary
slopes [7-9].

A noticeable work adopts rhombic cell structures, where the
slope angles of all rhombic cells are smaller than a prescribed
maximum overhang-angle, as an infill pattern to generate support-
free interior voids inside the objects [8]. However, the rhombic
cells have only C° boundaries, which suffers serious problem of
stress concentration [ 10]. The stress around a discontinuity, e.g., a
CP corner, will be excessively high when compared to the stresses
at the other smooth areas as shown in Fig. 1. For example, hatches
and doorways in airplanes are oval to stay away from being broken
easily [11]. Rounded corners are structurally more beneficial than
sharp corners and also reduce the probability of crack development
unlike sharp corners.
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Fig. 1. Stress analysis on two thin plates by conducting two external loads (rep-
resented by two arrows respectively) on them. There is a C° discontinuity in the
concave region of the upper shape while the concave region of the lower shape
has a smooth boundary. From the stress maps, it is seen that the stress around the
discontinuity is excessively high. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)

Our work. We present a novel method for hollowing 3D shapes
with support-free smooth elliptic interior voids. To make it simple,
we first derive a class of support-free ellipses in 2D case, based on
the observation on sticky property of printing material. Then we
develop a novel approach for packing these support-free ellipses
in the interior of 2D shapes, which is a very challenging problem.
To achieve this goal, we develop a greedy but efficient algorithm
on adding these ellipses successively in 2D shapes via the Voronoi
diagram of ellipses in polygons using that of circular disks. Then the
hollowed ellipses are extruded into 3D volume and thus a support-
free hollowed 3D shape is generated. Various experimental results
have demonstrated the feasibility and applicability of our proposed
method. The algorithms discussed in the paper were implemented
in C++ and are freely available as APIs of the Voronoi Diagram Ma-
chine (VDM) library from Voronoi Diagram Research Center (VDRC,
http://voronoi.hanyang.ac.kr). Poretron, the software which im-
plemented the proposed support-free hollowing algorithm using
elliptic pores, is also freely available from VDRC: It takes 3D mesh
model and produces an STL file which can be either fed into a 3D
printer or postprocessed.

Contributions. Our contributions are summarized as follows.

e We develop efficient algorithms for computing the Voronoi
diagram of polygon and that of ellipses within a polygon;

e We develop an efficient method for packing 2D ellipses with
derivation of support-free constraint;

e We propose a method for generating support-free elliptic
voids for 3D shapes.

To the best of our knowledge, our work is the first to offer
a framework to generate a smooth, elliptic support-free interior
voids for printing 3D shapes. This provides a practically feasible
operator for support-free hollowing of 3D shapes and exemplifies
research along this direction.

2. Related work

3D printing technology has drawn a lot of attention in geometric
and physical modeling and optimization in computer graphics
community. We discuss about the work closely related to our study
and give specific discussion about their strength and limitations.

Supporting structures for 3D printing. Extra supporting structures
are required to make 3D shapes printable for shapes with large
overhanging parts, which leads to material waste and longer print-
ing time. Some methods, which adopt various supporting struc-
tures such as scaffold-like structures [5] and tree-like ones [6],
have been developed to generate economic usage of supporting
structure for 3D models. Vanek et al. [6] search an optimal printing
direction by reducing the total area of facing down regions where
require additional supporting structures while Zhang et al. [12]
develop a training-and-learning model to determine the optimal
printing direction considering multiple factors such as contact
area, viewpoint preference, and visual saliency. The work of [13]
optimizes the shape of an input model to reduce the area of fac-
ing down regions for less supporting structures. However, adding
supporting structure for interior voids will suffer the serious prob-
lem that it is impossible to remove these extra structures with-
out breaking the object into pieces. Instead, we generate interior
support-free voids, which completely avoid the usage of extra
supports.

Interior hollowing. Significant work has been done in generating
interior structure of a model to meet various geometric and/or
physical properties. Stava et al. [1] hollow a 3D-printed object
while maintaining its structural strength by adding some internal
struts. The interior is optimized by a reduced-order parameteri-
zation of offset surfaces in [14]. Various internal structures, such
as the skin-frame structure [2], the honeycomb-like structure [3],
and the medial axis tree structure [12], were developed for cost-
effective purposes while preserving the structural strength of
printed objects. Both static balance and dynamic balance have been
studied by designing the interior infills as well as changing the
model shapes [15-17]. Instead of designing hollowing structure
explicitly, a lot of efforts have been put on topology optimization
to obtain distributions of material according to certain perfor-
mance criteria during the last three decades [18,19]. However,
these works have not handled the problem of avoiding large over-
hangs. We study this problem by developing a carving operator via
support-free elliptic voids.

Support-free structure. Hu et al. [20] propose a method to decom-
pose a 3D object into support-free pyramidal subparts. Reiner and
Lefebvre [9] proposes an interactive sculpting system for designing
support-free models. Recent attempts have been put on creating
support-free interior structure for 3D printing. Wu et al. [8] de-
velop a method to generate support-free infill structures on adap-
tive rhombic cells. A concurrent work of Langelaar [7] considers an
overhang angle threshold in topology optimization and generates
a support-free material distribution. However, these works only
involve overhang angle and generate C° boundaries inevitably,
resulting in large stress concentration in discontinuities. In this
paper, we develop a special class of support-free ellipses and adopt
them as an interior carving operator to create infill structures.

Ellipse packing. Our method of ellipse carving is quite related
to the problems of ellipse and ellipsoid packing which are
NP-hard. In science, the problem was prevalently approached from
the packing ratio, particle size distribution, or jamming point of
view to understand material properties by enforcing contacts be-
tween ellipses and using Monte Carlo method [21,22], Molecu-
lar Dynamics [23,24], local and greedy algorithms [25,26] with
sampling points on the ellipse boundary [27] in either regular
containers or arbitrary domains [28]. However, these methods do
not balance the computation cost and packing density outcome
well because research interests were primarily on the discovery
of new phenomena. This is quite different from the circle packing
problem which have been extensively studied from the view points
of both solution quality (i.e. packing ratio) and computation time,
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from early study using an event-driven algorithm with a bucket
acceleration [29-31] to recent ones using a systematic reasoning
of empty space [32,33]. However, the infilled ellipses in our work
have special constraints which make current methods infeasible to
use. In this work, we develop a new method for packing ellipses in
arbitrary shapes with the mathematical tool of Voronoi diagram
(VD). Specifically, we perform an ellipse packing in the polygons
on parallel section planes of a 3D model and extrude the ellipses of
one plane to its neighboring planes in the shape volume to generate
the hollowed results. To better pack the ellipses in a polygon,
we construct the Voronoi diagram of ellipses to efficiently reason
the free-space around the ellipses and other geometric features
by taking advantage of the available algorithm for the efficient
and robust construction of the Voronoi diagram of circular disks
which approximate the ellipses [34]. The algorithm inherits the
disk packing algorithm using the VD of disks [33].

3. Notations and overview

For the sake of simplicity, we first elaborate on our method in a
2D setting. The extension to 3D is realized by extrusion in Section 5.

3.1. Support-free ellipses

Fabrication and material parameters. Denote oy as the printing
precision, i.e., the thickness of each fabrication layer, which is
0.1-0.4 mm for general FDM printers. Due to the sticky property
of printing material, a short length y of horizontal hangover can
be successfully printed without extra supporting structure. De-
note 6y as the maximally allowed overhang-angle. The material-
dependent parameters 6y and 8, can be measured by experiments,
for example, 6§ = 60° and 8o = 5 mm for plastic PLA material.
The minimum wall thickness is set as § = 58o. Note that these
parameters are device and material dependent parameters, which
can take different values depending on the used 3D printers and
material.

Geometric characterization of support-free ellipses. Denote a and b
as the horizontal axis and vertical axis of an ellipse E, respectively.
A hollowed ellipse is called support-free if it can be printed without
any extra supporting structure. Given an ellipse shown in Fig. 2(a),
denote P; and P, as the two points whose tangent lines have an
overhang angle of 6. By many experiments we have made the
following observation: If the distance between P; and P, is no
larger than &y, then this ellipse is support-free, that is, the elliptic
arc between P; and P, (shown in red) can be safely printed without
any extra support. On the other hand, too small interior ellipses
cannot be printed due to the limit of machine precision and thus
we set a lower bound of a as 53,. Based on the observations, we
have derived the conditions for a support-free ellipse as:

1
b>a,if 500 <a< —2
2 cos 6y 1)
\/4a? — 82 5
>a—,if a > .
§p tan Gy 2 cos by

It is worthwhile to mention that a uniform shrinking of a support-
free ellipse is still support-free as the support-free conditions
in Eq. (1) are convex.

3.2. Ellipse packing method

Problem. Given a polygon P, our goal is to find an optimal hol-
lowing, i.e., packing, of a set of m ellipses & = {Ei,E,, ..., Eny}
within P so as to maximize the sum of the areas of all ellipses
while satisfying mechanical and physicochemical constraints. In
other words, we want to minimize the amount of the material to
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Fig. 2. (a) The condition of a support-free ellipse: ||P1P2|| < 8o where P, and P,
are the two points with tangent lines of overhang angle 6y; (b) Ellipses with a and b
within the shaded region are support-free. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

fill 7 by maximizing the area of the elliptic voids to be left unfilled.
This ellipse packing problem is, however, not easier than the disk
packing problem which has been known to be NP-hard [33,35].
We thus have developed a heuristic algorithm based on Voronoi
diagrams.

2D Polygon. Given a 3D mesh M representing the boundary of
an oriented solid, possibly with handles and interior voids, and
a fabrication orientation (z-axis), we project M onto planes par-
allel to the z-axis and choose the projection direction T with
the largest projected silhouette area. We then represent M as a
sequence of parallel cross-sections, i.e., 2D polygonal shapes P* =
{P1, P2, ..., Py}, along T. Starting from the largest cross-section,
the other cross-sections are adaptively chosen according to some
criteria. Specifically, the area difference between two adjacent
cross-sections is kept within a threshold & (we set &€ = 0.1 in
our current implementation). We choose the polygon in P* with
the largest area and denote it as 7 which may have internal holes
(voids). Denote P = (V, E) where V and E are the sets of vertices
and edges, thus denoted as P-vertices and P-edges where “P-" indi-
cates their relationship with a polygon, respectively. If P contains
holes inside, its boundary is represented as a few closed loops: One
outer loop (with counter-clockwise vertices) and a few inner ones
(with clockwise vertices). There can be more than one polygon
on a section plane. In the following, we present our method on
hollowing P with support-free ellipses, i.e., packing of support-free
ellipses in P.

Voronoi diagrams (VD). The Voronoi diagram (VD) of a generator
set is the tessellation of space such that each cell of the tessellation
consists of the locations closer to a corresponding generator than
to the others and has been well-known as the most efficient and
compact data structure for spatial reasoning among particles. Var-
ious types of VD can be defined by generalizing the generator type,
the distance definition, and the dimension. For details, see [36].

Voronoi diagrams of disks and ellipses. In this study, we use the VDs
of disks and ellipses with the Euclidean Il,-distance, particularly
these VDs within a polygon P in 2D. See Fig. 3: (a) The VD of the
interior of the polygon P (VD(P)); (b) The VD after a disk set D
(consisting of five disks) is inserted into VD(P) (VD(P, D)).
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Fig. 3. lllustration of VDs in this study (a simple dog model). (a) The VD of a polygon P (VD(P)); (b) The VD of a disk set D within P (VD(P, D)); (¢, d) The disk approximation
P of P using “as uniform on-disks as possible (UniformOD)” method; (e, f) The disk approximation # of P using “as few on-disks as possible (FewerOD)” method; (c, e)
The VD of the approximating disks (VD(7)); (d, f) The VD of ellipses within 7 after the V-faces belonging to a P-edge are merged (VD(P, £)). (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

It is known that each Voronoi vertex v is associated with a
maximum empty circle, called the clearance probe m,, centered
at v. The radius of m, is given by the distance from v to the
boundary of its generators. The maximum clearance probe 7y is
the largest clearance probe that can be defined at a Voronoi vertex
of VD(P, D). The blue circle in Fig. 3(b) is the maximum clearance
probe after the five disks are inserted into the Voronoi diagram
of the polygon. The smaller red circle is 70% shrunken probe gy
which is co-circular with the blue one. We emphasize that any
object placed within either the maximum clearance probe or the
shrunken probe is intersection-free from any other object. Note
that both maximum clearance probe and shrunken probe can be
found in the linear time of the number of elements of the Voronoi
diagram; (c) The disk approximation P of P and its VD (VD(P));
(d) The VD of ellipses £ within the approximation P (VD(P, &)).

Note that both VD(P)and VD(P, D) can be correctly, efficiently,
and robustly computed. However, we compute VD(P, &) instead of
VD(P, £)because of the challenges involved in the computation of
the vertices and edges of Voronoi diagram VD(P, &), abbreviated

as V-vertices and V-edges, which will be explained in detail in
Section 4. Hence, we construct the approximation VD(P) instead
of VD(P) where each P-vertex is associated with a disk called at-
disk (the red filled-circles in Fig. 3(c) and (d)) and each P-edge
is associated with more than two disks called on-disks (the blue
filled-circles). In Fig. 3(d), we place an ellipse which inscribes the
shrunken probe 77, (instead of the maximum clearance probe
TTmax) to be conservative. The shrinking ratio is given by users
according to their intention to control the overall distribution of
ellipse heights. Be aware that P is associated with a disk set D” =
{Da, Don} Where Dy and D, are the sets of at-disks and on-disks,
respectively.

Idea of the packing algorithm. Let VD(P) be the VD of the interior
of P (Fig. 4(b)) obtained by trimming the exterior part of the entire
VD in Fig. 4(a). Let VD(P, &) be the Voronoi diagram of £ within
P. Let 7, be the clearance probe of a V-vertex v of VD(P) and
TTmax De the maximum clearance probe. Let v, be the V-vertex

corresponding to . Starting from € = {@}, we first find the
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Fig. 4. The ellipse packing process for the bunny polygon using the VD of ellipses. (a) The VD of boundary disks. (b) The VD of the bunny interior. (c) The in-disks of the first
ellipse within the clearance probe are incremented. (d) The fifth ellipse located within the clearance probe after the four ellipses were incremented. (e) The 100-th ellipse
to be incremented. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

V-vertex vpme With e (the blue solid circle in Fig. 4(c)) and its
shrunken probe 7,4 (the red one) and place the first new ellipse
E within 7,4 (Fig. 4(c)). Then, we construct VD(P, £ U {E}) by
inserting E into VD(P, £). We repeat the clearance-probe-finding,
the ellipse-placement, and Voronoi diagram update processes for
a sufficient number of times until a termination condition is met.
Fig. 4(d) shows the process after four ellipses are incremented.
Fig. 4(e) shows after one hundred ellipses are incremented.

4. Ellipse hollowing via Voronoi diagram

Problem. There are two major computational phases for using
VD in the ellipse hollowing: First, the construction of VD(P) and
second, the construction of VD(P, &).

4.1. Voronoi diagram of a polygon

Challenges. It is well-known that the algorithm for an efficient and
robust construction of VD(P) is not trivial due to the influence
of numerical error on maintaining correct topology of Voronoi
diagram [36,37]. In this study we developed and implemented a
new, simple, and efficient yet robust algorithm for VD(P) based
on the topology-oriented approach [34,38-40]. This is because we
eventually need to construct VD(P, £) which is lacking in existing
codes such as CGAL [41,42] and VRONI [39].

4.1.1. TOI-D algorithm
The proposed algorithm takes advantage of the Voronoi dia-
gram of circular disks [43,44], particularly the recently reported
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topology-oriented incremental (TOI) algorithm for computing the
Voronoi of circular disks, thus abbreviated as the TOI-D algorithm,
which takes O(n?) time in the worst case but O(n) time on aver-
age for n disks [34]. The idea is to approximate target geometric
entities using circular disks in a sufficient resolution, construct
the VD of the disks using the TOI-D algorithm, and merge some
V-cells. While a similar idea was used for curved objects using
the ordinary Voronoi diagram of points which were sampled from
curves [39,45,46], the proposed algorithm using the TOI-D algo-
rithm is much powerful as circles can significantly reduce problem
size and complexity.

4.1.2. Approximating polygon with disks

To take advantage of the available TOI-D algorithm in the
Voronoi Diagram Machine (VDM) library for disks in the plane, it
is necessary to represent the problem in terms of disks. We have
implemented two methods to represent a polygon using a set of
disks: (i) As uniform on-disks as possible (UniformOD-method)
and (ii) as few on-disks as possible (FewOD-method). In the first
UniformOD-method, we represent a polygon ? = (V, E) as follows.
Let e* € E be the shortest P-edge with its length L*. Suppose that
we cover e* with two open disks with the diameter L* /2 by placing
their centers on e* and the boundary of each disk coincides either
one of the two extreme points of e*. For each of the other P-edges
with the length L > L*, we place |2L/L* | non-overlapping open
disks in a sequel on the P-edge (|| denotes a floor function). The
uncovered remaining segment with the length L — [2L/L*|L*/2
on the P-edge is then covered by one, and only one, smaller open
disk. We place this smaller disk in the middle of the P-edge for
algorithmic simplicity. Hence, the P-edge is entirely covered by
[2L/L*| + 1 mutually exclusive open disks called an on-disk (The
blue ones in Fig. 3(c)). A disk d is a child of an associated P-edge
e and e is the parent of d. We also place a disk of same size,
called at-disk, d, at each P-vertex v (The red ones in Fig. 3(c)):
v and d, also have a child-parent relationship. Each disk knows
its parent and each parent knows its children disks via pointers.
We eventually have a set D¥ of children disks representing P
where no disk contains any other while two disks may intersect,
|D”| > m, where m, is the number of P-vertices and P-edges. The
computation speed of the UniformOD-method is sensitive to the
shortest P-edge and can be slow.

The computational efficiency can be improved by enforc-
ing fewer on-disks for each P-edge using the FewerOD-method
(Fig. 3(e) and (f)). We initially allocate only three on-disks on each
P-edge: Two near the extreme points of the P-edge with the radii
identical to the at-disks for P-vertices and the third in the middle
with the diameter covering the entire rest segment of the P-edge.
For example, see the biggest blue on-disk in Fig. 3(e) and its two
adjacent small on-disks adjacent to the two red at-disks. If the
biggest on-disk intersects any other disk, either an at-disk or on-
disk, we subdivide it (to avoid computational complications in the
following processes) until the intersection is resolved. Note that
some P-edges of the legs in Fig. 3(e) have more than three blue
on-disks due to subdivisions. We implemented this subdivision by
employing a bucket system to accelerate the intersection check.
Note that the number of children disks of the FewerOD-method
is significantly smaller than that of the UniformOD-method. This
approach of using on-disks with non-uniform sizes works well for
the polygons produced from fine mesh models such as bunny. We
used the FewerOD-method in our implementation.

We note here that the FewerOD-method requires a precondi-
tion. For example, see the dog model in Fig. 3: The big blue on-disks
prevent the placement of ellipses and thus leave an undesirable
bulk material in printed artifacts as shown in Fig. 3(f). This bulk-
material symptom tends to occur for engineering models with
large planar facets. In fact, the symptom may occur if L* > § for

/7

(e) ]

Fig. 5. Three important steps of the TOI-P algorithm for VD(P). (a,b) vD(D7 ) after
the merge process. (c, d) After some V-vertices are relocated. (e, f) After outside V-
edges are trimmed, the V-vertex coordinates and V-edge equations are computed.
(For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

the minimum wall thickness §. In such a case, we subdivide each
P-edge into multiple shorter P-edges with 2§.

4.1.3. TOI-P algorithm

We construct VD(DF ) of the disk set DP = {Dy;, Dy} using the
TOI-D algorithm (Fig. 3(c)) and merge the V-cells of the children
on-disks of each P-edge (Fig. 5(a, b)). As shown from the figure,
the resulting VD structure has a unique V-cell for both each P-edge
and each P-vertex and thus its structure is close to VD(P) from
both topology and geometry point of views. However, some V-
vertices are off P-vertices (where V-vertices and P-vertices should
coincide) (Fig. 5(b)) and these V-vertices should be moved to the
related P-vertices. Fig. 5(c, d) shows the VD after relocating those
V-vertices to the polygon boundary and flipping some V-edges
to get the correct topology, both taking at most O(m) time for m
disks. Note that a V-edge flipping is required to get the correct
topological structure of VD(P) (Compare Fig. 5(b) and (d)). Then,
removing the exterior part of the VD and computing the V-vertex
coordinates and the V-edge equations transforms the intermediate
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VD structure to the correct VD(P) (Fig. 5(e, f)). Note that some
previously linear V-edges are curved. Removing the at-disks and
on-disks results in the VD of Fig. 3(a).

There are three cases of V-edges: (i) If a V-edge e is defined
between two P-vertices, e is a line segment; (ii) Between two
P-edges, e is also a line segment; (iii) Between a P-vertex and
P-edge, e is a parabolic arc. As the V-edges of VD(P) are quadratic
curve segments, they can be represented as a rational quadratic
Bézier curve [37]. There are four cases of V-vertices: (i) Among
three line segments; (ii) Among two line segments and one point;
(iii) Among one line segment and two points; (iv) Among three
points. Each V-vertex coordinate and V-edge equation can be cor-
rectly computed in O(1) time [37].

Lemma 1. Given VD(D"), TOI-P algorithm constructs VD(P)in O(m)
time in the worst case where m represents the number of children disks
in D

Proof. With the polygon P of n P-vertices and n P-edges, n < m,
the merge process takes O(m — n) time because each merge of
two adjacent V-cells takes O(1) time. In addition, V-vertex shift and
coordinate correction for all at-disks takes O(n) time. O

As m depends either on the length of the shortest P-edge or
on the minimum wall thickness, the proposed TOI-P algorithm is
input-sensitive. All time complexities in this paper are in the worst
case sense unless otherwise stated. Note that the TOI-D algorithm
for the construction of the VD of m disks takes O(im) time on average
and O(m?) time in the worst case [34].

4.2. Voronoi diagram of ellipses in a polygon

4.2.1. Challenges to Voronoi diagram of ellipses

Construction of VD(P, &) involves the computation of
V-vertices and V-edges and the topological structure among them
where each of these tasks is challenging. Consider a V-vertex
defined by three ellipses. It is known that there can be up to 184
complex circles that are simultaneously tangent to three conics in
the plane and each corresponds to a root of a polynomial of degree
184 [47].1tis hard to expect to find the roots of a polynomial of such
a high degree both exactly and efficiently. Given 10-bit precision to
represent the coefficients of three random ellipses, each coefficient
of the resultant necessary for the exact computation of a V-vertex
v is, on average, 4603-bit integers [47]. Hence, the exact and
efficient computation of the correct coordinate of v itself is hard
to expect. We are not aware of any method to solve this resultant
exactly and efficiently and thus an exact computation approach
to construct the VD of ellipses seems impractical. The V-edge
between two ellipses can be more complicated than one might
expect. Even the bisector between a point and an ellipse can be very
complicated [48]: It may have cusps and self-intersections and is
disconnected if the point is located outside the ellipse. The bisector
between two rational curves can be non-rational and even a two-
dimensional object [49]. Therefore, the computation of V-vertices,
V-edges, and their association through the topological structure
among ellipses in a free-space is a challenge, not to mention about
the VD of the ellipses within a polygon. As far as we know, no study
has been reported for constructing VD(P, £).

4.2.2. Idea to increment ellipses with circle approximations

We represent an ellipse E as an approximation with a set Df
of an odd number of disks, called in-disks which inscribes E (The
yellow ones in Fig. 3(d) and Fig. 4(c)). In-disks may intersect but
none is contained by another. The in-disks are generated as follows.
The first in-disk d; is the maximal inscribing disk which is centered
at the center of E. Let € be an approximation error defined as the
horizontal distance between JF and dd;. Then, a point p € 9d;

can be located for an a priori defined error, say €. Hence, a second
in-disk d, passes through p while inscribing E. We alternate this
calculation up and down of d; to get d, and d3, respectively. Re-
peating this calculation produces in-disks with a strictly controlled
error bound €g. Given €, a shorter ellipse has fewer in-disks than
a longer one does.

Regarding VD(P) for DF as VD(P, & = {@}), we first find the
V-verteXx vngy With the maximum clearance probe 7,4, and place
an ellipse E which inscribes the shrunken probe 77,4 SO that its
center coincides vyq. We incrementally insert E at vy of VD(P, £)
to get VD(P, £ U {E}). Instead of directly inserting E into VD(P, &),
we insert the in-disks, one by one, into VD(D) where D = D”. As
the ellipse increment process goes on, D contains all the in-disks
of the ellipses incremented so far in addition to D .

4.2.3. TOI-EinP algorithm

The idea is very simple as follows. We insert each in-disk in DF
into VD(D) of existing disks and then merge the V-cells of the in-
disks of DE. If a sufficient number of in-disks approximates each
ellipse, the VD of the disks well-approximate the VD of ellipses
from both topology and geometry point of views. As ellipses do
not intersect, the in-disks from distinct ellipses do not intersect. In
addition, the in-disks do not intersect both on-disks and at-disks
on the polygon boundary, either.

The increment of an in-disk is done using the TOI-D algorithm.
When we increment an in-disk, we maintain a dual representation
of both VD(P, £) and VD(D). In other words, VD(P, £) and VD(D)
are carefully synchronized in the following sense. We first incre-
mentally update VD(D) until all in-disks of DF (thus those of E)
are exhausted to get VD(DUDE). Then, we merge the V-cells of the
in-disks of E to produce the topology of VD(P, £ U {E}). After the
merge process, each of the remaining V-vertices of VD(D U DF) be-
comes the V-vertices of VD(P, £) and a connected subset of some
appropriate remaining V-edges becomes the V-edge of VD(P, €).
Hence, we carefully maintain the correspondence of the V-vertices
and V-edges between VD(DUDE) and VD(P, £U{E}). Note that the
merge can also be done incrementally as soon as after an in-disk is
incremented. Fig. 6 shows the process of incrementing ellipses (For
visual convenience, we used UniformOD-method in these figures):
(a) The maximum clearance probe 7,4 (the large blue circle),
its shrunken probe 7,4 (the red circle), the ellipse within 7,4y,
and the biggest in-disk (blue filled circle) is incremented into the
VD; (b) The second in-disk (the blue filled circle) is incremented
into the VD (The previously incremented in-disk is yellow now);
(c) After four in-disks are incremented; (d) After all in-disks of
the first ellipse are incremented; (e) After the second ellipse is
incremented; (f) After the third ellipse is incremented.

The V-vertices of VD(P, £ U {E}) remaining after the V-cell
merge have their coordinates inheriting from VD(D U DF) which
are computed from a triplet of in-disks. Thus, they are not nec-
essarily correct for ellipses and it is necessary to compute their
correct coordinates for the successful packing of next ellipse be-
cause the maximum clearance probe needs to be found from these
V-vertices. The six cases of generator combination for a V-vertex
in VD(P, £ U {E}) among ellipses, line segments (i.e. P-edges),
and points (i.e. P-vertices) become a unified case of generator
combination among three ellipses in VD(P, £ U {E}) because of Dy,
and D,,. The six cases are as follows: among three ellipses, among
two ellipses and one line segment, among two ellipses and one
point, among one ellipse and two line segments, among one ellipse
and two points, and among one ellipse, one line, and one point.

4.2.4. Geometry of the Voronoi diagram

V-vertex coordinate among three ellipses. Consider a V-vertex v
defined by three ellipse generators. We iteratively find the correct
location of v in VD(P, &) starting with its initial coordinate pro-
vided by VD(D). In other words, v is initially equidistant from three
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Fig. 6. The ellipse increment process of the TOI-EinP algorithm through the increments of in-disks into the VD structure. (a) Identification of the clearance probes, the ellipse,
and the increment of the biggest in-disk. (b) The increment of the second in-disk. (c) The increment of the fourth in-disk. (d) After the increment of all in-disks of the first
ellipse. (e) After the increment of the second ellipse. (f) The increment of the third ellipse. (For interpretation of the references to color in this figure legend, the reader is

referred to the web version of this article.)

in-disks where each is a child of each of three ellipses. We project
v to each of the three distinct ellipses to find its footprint (which
is the closest location on an ellipse from v). Then, we compute
the circumcircle, say &, which passes through the three footprints
and use the center of £ as the new coordinate of v. Provided that
each ellipse is approximated by a sufficient number of in-disks,
the iteration of this footprint-projection and circumcircle-finding
process quickly converges to the correct coordinate of v due to the
convexity of ellipse. Experiment shows that the initial coordinate
of v is already very close to the converged coordinate. The situation
that a generator(s) of v is at-disk or on-disk can be handled as an
easier special case

V-edge between two ellipses. Due to the current theoretical limi-
tations, it is practically inevitable to approximate a V-edge with
a sequence of passing points computed through the envelopes of
families of point/curve bisectors [48,50] or a sequence of curve
segments [51]. There exist other approaches to trace bisectors for
VD and medial axis transformations [52-54].

We emphasize that the topological structure of VD(P, &) is
already known. In other words, for each V-edge e, its starting

and ending V-vertices are known with correct coordinates along
with its two elliptic generators. We approximate each V-edge as
a sequence of points by tracing the V-edge in a way conceptually
similar to the tracing algorithm of the intersection curve between
two free-form surfaces [55]. Tracing V-edges in this study is, how-
ever, much simpler than tracing general intersection curve in that
(i) the coordinates of two V-vertices of each V-edge are known,
(ii) V-edges are planar, and (iii) each V-edge is C'-continuous
between two V-vertices. The case that e is defined between one
ellipse and one at-disk (or on-disk) is an easier special case.

Finding footprints. Finding footprints is a key building block. Sup-
pose that p is a point outside an ellipse E and L is a line passing
through p. It is known that there are four, three, or two locations
on E that L perpendicularly intersects E depending on whether p
lies inside the evolute, lies on the evolute but not at a cusp, or
lies on a cusp or outside the evolute, respectively [47]. Finding the
perpendicular intersection between L and E can be formulated as
a root-finding problem of a quartic polynomial thus taking O(1)
time. The footprint of p is obviously one of these locations which
determines the minimum distance.
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Lemma 2. Suppose that the ellipses in £ are placed inside a polygon P
which has n P-vertices and P-edges. Suppose that there are M in-disks
for & and the disk representation D of P has N children disks. Given
the synchronized VD(P, £) and VD(D), where D is the union of D¥
and the M in-disks of &, the increment of a new ellipse E which is
approximated by C in-disks takes O(C(N + M + 1) + n + |&]) time
where |€| represents the size of £.

Proof. Given a new ellipse E, with C in-disks, the increment of the
C in-disks into VD(D) takes O(C(N + M)) time. This completes the
computation of the topological structure of VD(P, £ U {E}). Then,
it is followed by the merges of the V-cells among the in-disks of E
taking O(C) time. Then, the computation of the geometry of each
of O(n + |&|) V-vertices and V-edges takes O(1) time. O

Corollary 3. The increment of |€| ellipses takes O(CN|E| + C?|€]?)
timeif N> nand M > |&|.

Proof. The increment of one ellipse takes O(C(N +M)+n+|€]) =
O(C(N + M))timeif N > nand M > |£]. O

Table 1 summarizes the three algorithms discussed above
where their pseudocodes are shown in Algorithm 1, 3 and 4.

Algorithm 1: TOI-D

Input: Adiskset D = {dq,d, ..., d}
Output: The Voronoi diagram VD(D) of D
1 Construct initial Voronoi diagram VD.
2 fori < 1tondo
3 L Algorithm 2. INSERT-ONE-DISK(VD, d;) [Insert d; into the
current VD]

4 return VD

Algorithm 2: INSERT-ONE-DISK

Input: VD(D), and new disk d
Result: vD(D U {d})

1 Find the V-vertices VV,i, and V-edges VE, of VD(D) to be
trimmed by V-cell of d.

2 Make new V-vertices and new V-edges which bound the
V-cell of d.

3 Trim VW4, and VEgpn,.

Algorithm 3: TOI-P

Input: VD(D”) [D” = {Dar, Don}]
Result: VD(P)
n <« the number of P-edges (or P-vertices)
Let pe; be the ith P-edge.
fori < 1tondo
Collect D}, € Doy [D!, is on-disks of pe;.].
Merge the V-cells of D! .

et pv; be the jth P-vertex.

forj < 1tondo

8 Relocate V-vertex v which is corresponding to D), [D,, is
at-disk of pv;.].

9 Correct topology by flipping some V-edges.

o Compute V-vertex coordinates.

1 Compute V-edge equation.

a A W N =

NS
—

-

4.3. Implementation issues

Criteria of adding ellipses. During the ellipse increment, the dis-
tance between two adjacent interior ellipses should be no less than
the minimum wall thickness § = 5§,. An intuitive scheme is to

Algorithm 4: TOI-EinP

Input: VD(P, £), and new ellipse E
Result: VD(P, € U {E})

1 Df, < E [D} is in-disk set of E]

2 C « the number of Df,

3 fori < 1toCdo

4 L Algorithm 2. INSERT-ONE-DISK with vD(P, €) and df [df

is ith in-disk of E]

5 Merge the V-cells of D,

6 Adjust the topological structure of VD(P, £ U {E}) Collect vg
[vg is V-vertices which bound the V-cell of E]

7 Compute coordinates of vg

8 Collect eg [eg is V-edges which are incident to vg]

9 Compute geometry of eg

maximally pack the polygon with ellipses and shrink each ellipse
by §/2. As an ellipse is not offset-invariant, the shrunk ellipse needs
to be approximated but can be effectively computed.

We instead use a computationally easier yet equally effective
scheme as follows. We have two parameters to control the height
of each ellipse: the minimum wall thickness § and the shrink ratio
p € (0, 1) of the maximal clearance probe .. Given .y, We
multiply p to 7,4 to get a shrunken probe 77,4 With the shrunken
radius y. If y > §/2, we use g to produce an inscribing ellipse
and increment in the VD. Otherwise, we reduce the radius of 7,,qx
by /2 and produce the inscribing ellipse. The purpose of p is to
provide users a convenient handle to control the overall distribu-
tion of ellipse heights because, in addition to the NP-hardness of
the optimal ellipse packing, we never know which way is best even
if we only consider geometry. Moreover, experienced users may
want to have a control of overall shape distribution by tuning p.

Terminating condition. An ellipse should not be too small to be
printed. We regard a < § = 5§y (see Eq. (1)) as the terminating
condition of inserting new ellipses. In other words, whenever 7y
is produced and shrunken, we check its horizontal axis a and
terminate if it is less than &.

5. Extrusion to 3D
5.1. 3D Hollowing

Extrusion of ellipses. The hollowed polygon P* is lifted to 3D by ex-
truding the ellipses orthogonal to the 2D plane in both directions.
Denote i as the index of P*, i.e.,, P; = P*. For each ellipse E in P;,
we project it onto P;.. If E totally lies in P;,; within a distance
of minimal wall thickness o, we keep it in P;; 1. Otherwise, we
shrink it with a factor so that the shrunk ellipse lies in ;1 within a
distance of o. We can also enlarge the ellipse if there is much space
around it. Note that the enlargement of the ellipse should meet
the support-free condition (Eq. (1)). This operation is successively
applied for the other cross sectional polygons.

Hollowing other polygons. After we complete the extrusion of all
ellipses for all cross sectional polygons, we check each polygon
and choose the one with the largest available region which can
insert more ellipses. Then we set it as input and add more support-
free ellipses in it using our method, and then extrude the newly-
added ellipses to its neighborhood polygons. The above process is
iteratively performed until no more ellipse can be added into the
polygons.

Hollowed volume. After we obtain the hollowed polygons, we con-
nect the corresponding ellipses on successive polygons and thus
generate a hollowed volume of M. As each polygon is support-free,
the obtained hollowed 3D volume is also support-free.
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Table 1
Summary table of algorithms.
TOI-D TOI-P TOI-EinP
Function Construct VD Construct VD Construct VD
of disks of polygon interior of ellipses
in polygon
Input Disk set D vD(DF) VD(P, )
new ellipse E
Output VD(D) VD(P) VD(P, € U{E})
Time Worst C.: O(n?) Worst C.: O(m) Worst C.: O(C(N + M + 1))
complexity Avg. C.: O(n)
Explanatory Dl =n ‘P: Polygon P: disk representation of P
note Worst C.: Worst Case DP: children disks £: inserted ellipses
Avg. C.: Average Case of P N: the number of children disks
IDP|=m of P
M: the number of all children
disks of £

C: the number of in-disks of E

Fig. 7. Optimization of static balance (2D case). (a) The hollowed object cannot
stand by itself (left). (b) It is optimized to a self-balanced object using our optimizer
(right). The red dots denote the gravity center. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

5.2. Functional constraints

The printed objects are generally required to meet some func-
tional constraints such as static balance and mechanical stiff-
ness [2,8]. However, integration of these constraints into the VD
computation is computationally expensive. Thus we handle them
as a postprocess after we generate the support-free hollowed vol-
ume.

Design variables. We define a design variable yx € [0, 1], as a
shrinking factor, for each ellipse E inside M. A value yx = 0 means
that E is totally filled with solid. The basic idea is that shrinking
of ellipses can shift the center of gravity of the model and can
improve its mechanical stiffness as more material is filled. Thus
we can easily formulate the optimization according to a specific
objective function. In particular, we discuss about the optimization

(a)

(c) (d)

Fig. 9. A hollowed kitten model. (a) The hollowed model; (b-d) different cross-
sections.

with respect to static balance as an example. The optimization for
other constraints can be similarly achieved.

(@

Fig. 8. A hollowed bunny model. (a) The hollowed model; (b-d) different cross-sections.
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(d)

(e)

(6]

Fig. 10. Hollowed human models with different poses. The upper row shows the hollowed model and the lower row one of the cross sections.

(a)

(b)

Fig. 11. (a) The hollowed hanging ball may fall down without balance optimization
(left) (b) while the optimized one is standing stable.

Static balance. An object is self-balanced when the vertical projec-
tion of its gravity center lies in the convex hull of its contact points
with the ground. As shown in Fig. 7, it is intuitive that shrinking
ellipses on the left hand side of the gravity center will shift it left-
wards, i.e., closer to the convex hull of its contact points. It is easy
to formulate an optimization of minimizing the horizontal distance
between the gravity center and the boundary of the convex hull.
Our optimizer thus tries to reach a balance by shrinking some
ellipses and thus shifting the gravity center into the convex hull.

Fig. 12. Photos of the fabricated bunny model and kitten model hollowed by our
method.

6. Experimental results

Computational platform. We have implemented our algorithm in
C++ on a standard desktop PC with Intel(R) Core(Tm) i7-4790K
CPU@4.0 GHz and 16 GB of RAM. Thanks to the efficient implemen-
tation of TOI-EinP, the VD generation of polygons and ellipses is fast
and the ellipse hollowing takes less than 30 s for all examples.
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Fig. 13. Computation time profile of the TOI-EinP algorithm. (a) Bunny model (Time vs. # input P-edges). (b) Hanging ball model (Time vs. # input P-edges). (c) Hanging
ball model (Time vs. # subdivided P-edges). (d) # P-edges changes of both Bunny and Hanging ball models after subdivision. (e) Packing ratio of polygons in both Bunny and
Hanging ball models. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Printer configuration and parameters. We fabricate the objects us-
ing a commercial FDM 3D printer: The Ultimaker 2+ with tray size
of 223 mm x 223 mm x 205 mm. The printable layer thickness of
the printer (printing precision) ranges from 0.1 mm to 0.4 mm and
we use a value of og = 0.2 mm. We test the plastic PLA material
used in the 3D printing and set the maximally allowed overhang-
angle as 6y = 60° and the maximal length of printable horizontal
hangover as §o = 5 mm.

Manufacture setting. After we generate the hollowed models, we
add supporting structures for the exterior part of the models but
do not add any interior support. After the models are fabricated,
we manually remove the exterior supports. All models have been

successfully printed which reveals that the hollowed interior of the
models is printed without any problem. We also validate this by
printing and checking only half of the models which will be shown
later.

Experiments. Fig. 8 shows an example of hollowed bunny model
and a few cross-sections. Fig. 9 shows a 3D hollowed volume
of kitten model with a few cross-sections. Fig. 10 shows human
models of different poses.

Fig. 11 shows two hollowed hanging balls. The left one cannot
stand by itself. After using our optimizer, it can be optimized to be
well balanced in the right by filling material in the elliptic voids of
the column. Fig. 12 shows photos of the fabricated bunny model
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and kitten model which are hollowed by our method. The models
are successfully fabricated without adding any extra support in the
interior voids.

Performance of the TOI-EinP algorithm for constructing VD. We con-
ducted computational efficiency test using two models: the bunny
and the hanging ball models. From the bunny model, we produced
121 planes resulting 219 polygons as some planes contain more
than one polygon. The smallest and the largest polygons have 8 and
655 P-edges, respectively. For experimental purpose, we enforced
to pack 100 ellipses into each polygon ignoring the mechanical and
physicochemical constraints. Fig. 13(a) shows computation time
vs. polygon size in terms of the input P-edges. The top-most black
curve: the total time; The next red one: the time for incrementing
all the in-disks of the ellipses into the VD structure; The next green
one: that for finding the maximum clearance probe; The blue one:
that for constructing the VD of the at-disks and on-disks. Note that
the total time is weakly super-linear mainly due to the increment
process of in-disks which is believed to be caused by the mapping
mechanism of equivalent V-vertices between VD(D)and VD(P, £).
We used the map in the C++ template which is implemented by a
binary search tree, taking O(log n) time for each query for n entities.
With this model, we used the FewerOD method (as few on-disks as
possible) using a bucket system for the acceleration.

From the hanging ball model, we produced 88 planes resulting
141 polygons: The smallest and the largest polygons have 25
and 232 P-edges, respectively. As this model consists of several
large planar faces together with smaller ones, the polygons have
several long P-edges together with short ones. This is common
in many engineering products. Hence, we subdivided each P-edge
into a set of P-edges of the length defined by the previously stated
rule. Fig. 13(b) also shows computation time vs. polygon size in
terms of the input P-edges. Note that the correlation is very weak
compared to the bunny model as is expected because of the big
variation of the P-edge lengths. Fig. 13(c) shows computation time
vs. the number of subdivided P-edges: The curves are fairly well
correlated in a slightly super-linear fashion. The big gap between
the two clusters of data is due to many subdivided P-edges through
very long input P-edges. For example, the left-most data in the
right cluster in Fig. 13(c) corresponds to a polygon with 234 input
P-edges which was subdivided into 513 shorter P-edges. Fig. 13(d)
shows the number of subdivided P-edges vs. the number of input
P-edges. The bunny model is expectedly a straight line whereas
the hanging ball model shows bumpy curve which is similar to
the curves in Fig. 13(b). The relationship between Fig. 13(b) and
(c) can be explained by Fig. 13(d). Fig. 13(e) shows the packing
ratio of the 100 ellipses in each polygon. The bunny model is
expectedly smooth with decreasing pattern for bigger polygons as
we incremented only 100 ellipses whereas the curve of the hanging
ball model is bumpy.

Comparison to rhombic cell structure. The work of [8] adopts rhom-
bic cell structure, which have C° discontinuity on boundaries, to
generate support-free interior voids for 3D shapes. We compare
our method with this method as shown in Fig. 14. We apply two
methods on the same P model with similar hollowing ratios. Then
we fix the bottom of the model and conduct an identical external
load on it, respectively. From the stress map we can see that the
result generated by [8] suffers the problem of stress concentration
at the region marked in red, which generally happens in disconti-
nuity. This does not happen in our method.

7. Conclusions and future work

In this paper we propose a novel approach for generating
support-free interior hollowing for general 3D shapes. The gen-
erated 3D shapes can be directly fabricated with FDM 3D print-
ers without any usage of extra supports in interior voids. This is

Fig. 14. Comparison with Wu et al. (2016b). Upper row: the hollowed P model using
Wau et al. (2016b) with a hollowing ratio of 24.3%; Lower row: the hollowed P model
using our method with a hollowing ratio of 25.7%. The bottom of the model is fixed
and one identical external load is conducted on the right, respectively, as shown by
the arrow. The right figures show the color maps of stress. It is seen that the region
marked in red in the upper-right figure suffers the problem of stress concentration,
i.e., the stress there is very high. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

based on the observation of a family of support-free ellipses and
is achieved by hollowing 2D shapes with these ellipses. Then the
interior ellipses are extruded into volume for generating hollowed
3D shapes. We also develop a new, efficient and robust algorithm
for the Voronoi diagram of polygons and the first algorithm for the
Voronoi diagram of ellipses within a polygon, both based on the
topology-oriented incremental approach, which are quite useful
for generating the ellipse packing in 2D shapes. With the sizes
of ellipses as design variables, the optimization according to a
specific objective function, e.g., static stability, can be formulated.
Experimental results have shown the practicability and feasibility
of our proposed approach.

Limitation and future work. Our research opens many directions
for future studies. First, the packing results can be further opti-
mized by optimizing the positions and sizes of the ellipses for
the purpose of increasing packing ratio. Second, it is expected to
extend our approach for generating support-free ellipsoids for 3D
shapes. This is feasible but needs more effort. Last but not the
least, we are interested in studying general support-free shapes
for additive manufacturing, which is a promising direction for
geometric modeling and processing.
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