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IPMSM Design for Sensorless Control Considering Magnetic Neutral 
Point Shift According to Magnetic Saturation
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Abstract – In this paper, interior permanent magnet synchronous motor (IPMSM) design for 
sensorless drive, considering magnetic neutral point shift according to magnetic saturation, has been 
proposed. Sensorless control was divided into a method based on inductance and a method based on 
back induced voltage. Because induced voltage is very small at zero or low speed, error in rotor initial 
position estimation may occur. Using the ratio of saliency addresses this problem. When using high-
frequency injections at low speed, the rotor’s initial position is estimated at the smallest portion of the 
inductance. IPMSM has the minimum inductance at the d-axis. However, if magnetic saturation leads
to magnetic neutral point variation, following the load current change, there is a change in the 
minimum point of inductance. In this case, it can lead to failure of initial rotor position estimation. As 
a result, it is essential that the blocking design has an inductance minimum point shift. As such, in this 
study, an IPMSM design method, by blocking magnetic neutral point change, has been proposed. After 
determining the inductance profile based on the finite element analysis (FEA), the results of proposed 
method were verified.

Keywords: Inductance profile, IPMSM design method, Loading distribution method, Magnetic 
saturation, Saliency, Sensorless control

1. Introduction

Interior permanent magnet synchronous motor(IPMSM)
is an electric motor that is used in many industrial fields 
owing to its wide range of operating areas and high output 
density [1-15]. IPMSM is primarily driven by vector 
control, that requires precise position of the rotor. Thus, a 
position sensor such as encoder and resolver is attached to 
the axial direction to estimate the correct rotor position. 
Unfortunately, this leads to an increase in the cost of 
production and required motor size [5-8]. 

Within this context, small and lightweight automotive 
motors are the primary topic, because weight increase leads
to fuel loss and degradation in output. Therefore, with the 
adoption of the sensorless control method, it is possible to 
resolve the aforementioned issues [1]. 

Sensorless control is divided into two method: one based 
on inductance and another one based on back induced 
voltage. Because induced voltage is very small from zero 
to low speed, high-frequency voltage injections, based on 
inductance, are mainly used [1-4]. IPMSM has the minimal 
inductance at the d-axis. However, if magnetic saturation 
leads to magnetic neutral point variation, following the 
load current change, there is a change in the minimum 
point of inductance. In this case, it can lead to failure of 

initial rotor position estimation. Thus, in this study, the 
motor design for sensorless control takes into account the 
magnetic saturation characteristics of IPMSM [13-17].

2. Sensorless Control Based on Inductance

For sensorless control based on inductance, inject a
high-frequency voltage of (1) in the current controller 
output portion as illustrated, Fig. 1 [1-4].

cos  ,  0r r
dsh h dshV t Vw= = (1)

Arranging the equation of the injected high-frequency 
voltage and the associated high-frequency currents obtains 
(2).
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Fig. 1. Sensorless control block diagram
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As indicated by (2), the current signal contains 
information of each angle and frequency component of the 
rotor. The rotor position is determined from the current 
signal by removing the frequency component from this 
equation. This means that the inductance components 
involved in the expression are important parameters for the 
estimation of the rotor position [18].

3. IPMSM Initial Model

The initial model was chosen for ISG (Idel & Go) motors
for 10kW vehicles. As mentioned above, the motor of the 
vehicle is suitable for sensorless control considering light 
weight and lightening trend. Based on the specifications of 
Table 1, the initial model of Fig. 2 was designed.

3.1 IPMSM initial model FEA result

The flux line of the initial model as illustrated is Fig. 3. 
Unlike the no Load state in the Fig. 3(a), the armature 
reaction results in the movement of the magnetic neutral 
point when in a loaded state, causing the inductance 
variation [16].

The inductance profile for the initial model is depicted in 

Fig. 4. The larger the variation in the load current, the 
larger the changes in the inductance profile. Ultimately, 
when the rated current (175A) was applied, the inductance 
profile shifted to a 72.48 [°E]. Additionally, the minimum 
point of inductance was shifted [14-17].

IPMSM is an electric motor that uses both magnetic 
torque and reluctance torque. To achieve maximum output 
control, command the current vector of the two quadrants 
[15-17]. 

However, if the inductance profile is changed, such as 
with the initial model, it will not generate maximum 
Torque from sensorless vector controls based on the 

Table 1. Specification of initial model

Parameter Value Unit

Pole / Slot 8 / 48 -

Stator / Rotor
Outer Diameter

147 / 70 mm

Stack Length 46 mm

Rated Speed / Torque 2000 / 12.20 rpm / Nm

Max Speed / Torque 16000 / 1.4 rpm / Nm

Voltage Limit 60 Vdc

Current Density Limit 8 A/mm2

Core Type 35PN230 -

Permanent Magnet NdFeB ( rB =1.19T) -

(a) Initial Model (b) B Field

Fig. 2. Initial model of IPMSM for sensorless control

(a) No Load

(b) Rated Load (175A, 32°)

Fig. 3. Flux line of initial model

Fig. 4. Inductance profile of initial model (at 2000rpm)

Fig. 5. IPMSM vector diagram
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inductance. In the worst case, if the inductance profile 
variation is greater than 90 [°E] [4], it causes a command 
of the three current vector command. This then, causes it 
to operate with a generator rather than a motor. As a 
result, the sensorless control motor requires a design that 
minimizes the inductance profile variation [17].

4. Loading Distribution Method

4.1 Definition of Loading

(3) is the total magnetic loading. (4) is the magnetic 
loading. p is half of the number of poles. gf  is the average 
air gap flux per pole.

Total magnetic loading 2 pf=  (3)

2 g
gav

g stk

p
B

D L

f

p
= [T] (4)

(5) is the total electric loading. (6) is the electric loading.

Total electric loading aI Z= [Ampere Conductor] (5)

a

g

I Z
ac

Dp
= [Ampere Conductor / m]    (6)

4.2 Torque equation of IPMSM

The IPMSM torque equation is expressed by separating 
magnetic torque( mT ) and reluctance torque( rT ) (7)

23 3
cos ( ) sin 2   

2 4
pm a d q a m LT p I p L L I T Tl q b= + - = + (7)

The above equation is expressed in (8), including the 
previously mentioned the magnetic loading and the electric 
loading.

2
1

4
w g g stkT k B acD L

p
= (8)

Finally, the torque equation can be expressed as a 
product of the magnetic loading and the electric loading 
[19].

5. IPMSM Design Considering Magnetic Neutral 

Point Variation

5.1 Determination of design parameters (Step 1)

In the previous chapter, the inductance variation was 
considered to be an effect of the armature reaction. The 
armature reaction increases proportionally to the magnitude 
of the current. Thus, inductance variation becomes larger 

depending on the increase in the current magnitude. In 
other words, it was determined that the inductance 
variation was very closely related to electrical loading.

As a result, the object function of the improvement 
design was determined by reducing the electric loading and 
increasing the magnetic loading.

The external diameter of the rotor and the use of a 
permanent magnet were selected to increase the magnetic 
loading. Additionally, the mount of total conductor and 
magnitude of the stator current were selected to reduce the 
electric loading. Based on the selected design variables, the 
process of Fig. 6 was proceeded.

ㆍMaximize Magnetic Loading : 1 2 3 4( , , , )mlf x x x x

ㆍMinimize Electric Loading : 1 2 3 4( , , , )elf x x x x

ㆍUsage of Magnet : 1x

ㆍthe number of Stator Turns : 2x

ㆍStator Current : 3x

ㆍRotor Outer Diameter : 4x

ㆍMaximize Output Torque : 1 2 3 4( , , , )tg x x x x

ㆍInductance Variation : 1 2 3 4( , , , )ivg x x x x

Objective functions

1 2 3 4( , , , )mlf x x x x + 1 2 3 4( , , , )elf x x x x

Constraint conditions

1 2 3 4( , , , ) 12.20tg x x x x ³

1 2 3 4( , , , ) 25tg x x x x £

Fig. 6. Improved model design block diagram

(a) Model 1 (b) Model 2

Fig. 7. Improved model
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Table 2. Specification of improved model

model

initial #1 #2

Rotor Diameter [mm] 175 170 200

Usage of Magnet [mm2] 97.2 192.2 249.0

Stator Turns 6 4 3

Rated Current [Arms] 175 185 195

2000rpm 12.92 12.83 12.51Torque [Nm]

16000rpm 4.08 3.65 1.72

Fig. 8. Speed-Torque Graph of each model

5.2 Design based on loading distribution method 
(Step 2)

The size of the rotor and stator were determined based 
on a loading distribution method under conditions of 
generating identical torque. The improvement model and 
detailed specifications are shown in Fig. 7 and Table 2 
respectively.

The load requirement and speed-torque graph of each 
model are shown in Fig.8. Under the same output, the 
higher the magnetic loading, the lower the field weakening 
control region [20]. Considering these characteristics, the 
improved model design was leveraged to meet the 
requirements of the load at the highest speed.

5.3 Check of constraint conditions (Step 3, 4)

The magnetic and electric loading of the improved 
model are shown in Table 3. The inductance profile of the 
improved model is illustrated in Fig. 8. Based on this, the 
correlation between the ratio of loading and inductance 
variation was analyzed.

Table 3 and Fig. 8 illustrate that, by reducing the electric
loading and increasing the magnetic loading, the inductance
variation decreases. 

The magnetic & electric loading of improved model are 
shown in Table 3. The inductance profile of the improved 
model is shown in Fig. 8.

As shown in Fig.10, decreasing the electrical loading 
reduces the effect of the armature reaction. This means that 
an increase to the magnetic loading is key to improving the 
model design. However, increasing the usage of the 
permanent magnets, to increase the magnetic loading, may 
result in a rise in production costs. Therefore, the next 

chapter will select various design variables of the stator 
and rotor, except the permanent magnet, and identify 
factors influencing inductance variation.

5.4 Determination of additional design parameters 
(Step 1)

As many design variables selection are considered to be 
more accurate. As such, it is desirable to select as many 

Table 3. Specification of improved model

Model
Initial #1 #2

Electric Loading [A/m] 114591.6 83135.1 44690.7
Magnetic Loading [T] 0.5054 0.7317 0.8034

Inductance Variation [°E] 72.48 41.47 25.63

(a) Model 1

(b) Model 2

Fig. 9. Inductance profile of improved model (at 2000rpm)

(a) No Load (Model 1) (b) Rated Load (Model 1)

(c) No Load (Model 2) (d) Rated Load (Model 2)

Fig. 10. Flux line of the improved model
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design variables as possible. However, since the increase in 
design variables requires an increased number of 
simulations, it is necessary to select the proper set of 
variables. In this study, the four design variables that were 
considered in the preceding paragraph were identical to 
model 2. The six variables described in Fig. 11 were 
further selected and analyzed.

The primary intent of the design was to reduce the 
inductance variation. The constraint conditions of design 
were torque, torque ripple and efficiency. Based on these 
conditions, a simulation was performed and the result was 
analyzed. 

In this study, the primary objective is to reduce the 
inductance variation. However, if torque and efficiency are 
disregarded, the motor performance is adversely affected. 
Therefore, the design parameters were selected in 
consideration of torque, torque ripple and efficiency under 
conditions that minimize inductance variation.

(a) H_s (b) W_t

(c) W_sy (d) W_so

(e) W_web (f) T_rib

Fig. 13. Effects of each design variable (torque and ripple)

(a) H_s (b) W_t

(c) W_sy (d) W_so

(e) W_web (f) T_rib

Fig. 14. Effects of each design variable (efficiency)

5.5 Analysis based on various design parameters

From now on, the effect of each design parameters on 
the object function and constraint conditions will be 
covered. As illustrated by Fig. 15, the aspect of magnetic 
saturation varies de-pending on the variation in design 
variables. The variation in magnetic flux characteristics of 
the motor core has a significant effect on the magnetic field 
characteristics.

(a) Rotor (b) Stator

Fig 11. Nomenclature of each parts

(a) H_s (b) W_t

(c) W_sy (d) W_so

(e) W_web (f) T_rib

Fig. 12. Effects of each design variable (inductance 
variation)
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As a result, the object function and constraint condition 
will be reviewed, and the final model will be designed 
considering the effects on magnetic saturation.

(For stator parameters)
First, if the thickness of teeth becomes thinner, it becomes 

more prone to saturation. Hence, inductance variation was 
decreased. Additionally, output and efficiency tended to 
decrease, and torque ripple tended to increase. Finally, it 
was chosen as 5 mm with the overall consideration.

Second, the smaller the height of the shoe, the wider the 
region of magnetic saturation field. Inductance variation 
tended to decrease. There was little change in efficiency, and
the height of the shoe was selected as 0.7 mm considering 
the reduction of torque ripple.

Third, the smaller the width of slot, the greater the 
inductan-ce variation; efficiency, output and torque ripple 
tended to increase. However, if it was too small, it led to 
difficulty in inserting the windings and insulators. So, it was
chosen as 1.5 mm.

Fourth, the lesser the thickness of the stator yoke, the 
smaller the inductance variation. Additionally, as output 
decreased, the efficiency and torque ripple tended to 
increase. For this consideration, it was chosen as 6.5 mm.

In conclusion, the stator design parameters demonstrated 
that the wider the range of magnetic saturation fields, the 
smaller the inductance variation.

(For rotor parameters)
First, the thinner the thickness of web, the smaller the 

inductance variation. Torque ripple tended to decrease, as 
efficiency increased. As the web became thinner, most of 
the electromagnetic field characteristics considered in this 
study were excellent. However, if it is too thin, it is difficult 
to maintain the mechanical strength during prolonged 
periods of rotation at high speed. For this consideration, it 
was chosen as 0.6 mm.

Second, if the thickness of rib became thinner, it became 
more prone to saturation. Hence, inductance variation 
decreased. Both output and torque ripples tended to 
increase. However, as with the web, there is a possibility 
that stress was concentrated on the ribs at a high speed 
rotation. For this consideration, it was chosen as 0.7 mm. 

In conclusion, the magnetic saturation of core and 
inductance changes are closely related. In particular, the 
width of teeth and web are large contributors to inductance 
variation because of the design flexibility. Based upon the 
rotor design parameter, the width of rib and web, it is 

necessary to select parameters considering the structural 
rigidity. This is owed to the possibility that rotor 
deformation can occur at high speed rotation.

5.6 Performance of Final Model (Step 3, 4)

The design variables selected through the optimized 
process are shown in Table 4. The performance of the final 

(a) H_s = 0.7mm (b) H_s = 1.1mm

(c) W_t = 3.8mm (d) W_t = 5mm

(e) W_sy = 6.2mm (f) W_sy = 6.8mm

(g) W_so = 0.9mm (h) W_so = 1.5mm

(i) W_web = 0.6mm (j) W_web = 3mm

(k) T_rib = 0.6mm (l) T_rib = 1mm

Fig. 15. B Field depending on each part variation

Table 4. Design parameter of final model

Variable Model 2 Final Model

Height of shoe 0.8 mm 0.7 mm (↓)

Width of teeth 4.8 mm 5.0 mm (↑)

Width of back yoke 6.6 mm 6.3 mm (↓)Stator

Slot opening 1.1 mm 1.2 mm (↑)

Width of web 3.0 mm 0.6 mm (↓)
Rotor Thickness of rib 0.8 mm 0.7 mm (↓)
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model is depicted in Table Fig. 16 and Table 5, respectively.
Compared to the initial model, at a rated speed of 2,000 

rpm, the inductance variation decreased approximately 48 
[°E] and efficiency increased by approximately 1 [%]. At 
the highest speed, both torque and efficiency were reduced. 
Because the final model had a higher the magnetic loading, 
the field weakening control region was shorten. The 
efficiency was reduced by 5 [%] owing to the increase in 
core loss. Eddy current loss was greater than the decrease 
in cooper loss.

Table 6. Inductance of initial & final model

Model

Initial Final

Ld [mH] 0.0479 0.0056

Lq [mH] 0.0927 0.01142,000 [rpm]
(Rated) The ratio of Inductance

(Lq / Ld)
1.93 2.03

Ld [mH] 0.0526 0.0042
Lq [mH] 0.1232 0.014516,000 [rpm]

(Maximum) The ratio of Inductance
(Lq / Ld)

2.34 3.45

Fig. 19. Stiffness analysis of final model

Fig. 17 represents the flux line of the final model. There 
is no appreciable difference between the no load and rated 
load condition. In other words, the magnetic neutral point 
shift, according to load conditions, is small. As such, 
inductance variation in Fig. 18 was decreased. This means 
that the final model is suitable for the sensorless control 
motor.

The inductance of the initial and final models are shown 
in Table 6. Saliency is very important in sensorless control 
based on inductance [21]. The final model has a higher 
saliency compared to the initial model at rated / maximum 
speed. Therefore, the final model is better suited for 
sensorless control.

5.7 Check of Structural Rigidity (Step 5)

The analysis results of the final design are illustrated in 
Fig. 19. Tensile force is defined as the force that a 
permanent magnet tries to bounce out. Additionally, tensile 
strength is defined as a force that prevents the scattering of 
permanent magnets. Finally, the safety coefficient is 
defined as the maximum tensile strength divided by the 
maximum stress.

2 2.5 10
2.23

 112.01
safe

Yidle Strentgh
k

Equivalent stress

´
= = = (9)

The safety coefficient indicates that the structural safety 
standards (1.5) are met.

(a) Final Model (b) B Field

Fig. 16. Final model of IPMSM for sensorless control

(a) No Load

(b) Rated Load (195A, 18deg)

Fig. 17. Flux line of final model

Fig. 18. Inductance profile of final model (at 2,000rpm)
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6. Conclusion

In this paper, the design of synchronous motor designs 
for sensorless control was analyzed. As noted above, the 
typical motor increases inductance phase angle differences 
as the load current increases. As such, maximum output 
control cannot be achieved when sensorless vector 
control is based on inductance. To improve this, reducing 
the electric loading, under the same torque generating 
condition s, is a key design point. In addition, a parametric 
analysis of IPMSM elements was conducted in order to 
identify the correlation between the magnetic saturation 
phase change and inductance phase change. In conclusion, 
it is necessary to design both magnetic saturation and 
structural rigidity simultaneously. The results analyzed in 
this paper will be useful research material for the design of 
motor vehicles for sensorless control.
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