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Abstract Einstein-scalar-U (2) gauge field theory is con-
sidered in a spacetime characterized by α and z, which are the
hyperscaling violation factor and the dynamical critical expo-
nent, respectively. We consider a dual fluid system of such a
gravity theory characterized by temperature T and chemical
potential μ. It turns out that there is a superfluid phase tran-
sition where a vector order parameter appears which breaks
SO(3) global rotation symmetry of the dual fluid system
when the chemical potential becomes a certain critical value.
To study this system for arbitrary z and α, we first apply
Sturm–Liouville theory and estimate the upper bounds of the
critical values of the chemical potential. We also employ a
numerical method in the ranges of 1 ≤ z ≤ 4 and 0 ≤ α ≤ 4
to check if the Sturm–Liouville method correctly estimates
the critical values of the chemical potential. It turns out that
the two methods are agreed within 10 percent error ranges.
Finally, we compute free energy density of the dual fluid by
using its gravity dual and check if the system shows phase
transition at the critical values of the chemical potential μc

for the given parameter region of α and z. Interestingly, it is
observed that the anisotropic phase is more favored than the
isotropic phase for relatively small values of z and α. How-
ever, for large values of z and α, the anisotropic phase is not
favored.
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1 Introduction

Black hole thermodynamics implies that the black hole
entropy is proportional to its horizon area. Entropy is an
extensive quantity and so is comparable to the system vol-
ume. In fact, it is conjectured that there is a one to one map-
ping between the physical degrees of freedom or entropy
inside the black hole being proportional to the black hole
volume and those on its horizon which is a codimension one
spacetime. This conjecture is called the holographic princi-
ple.

One of the examples of the holographic principle is the
AdS/CFT correspondence. The AdS/CFT correspondence is
a precise map between two different theories. One is a grav-
ity theory defined in asymptotically AdSd+1. The other is
its dual conformal field theory (CFT) defined on the AdS
boundary, which is a d-dimensional spacetime without any
gravitational fields. The pure AdS space corresponds to the
vacua of the dual CFT. There are two different kinds of exci-
tations on the gravity side. One kind is a normalizable mode
of excitations, which corresponds to a non-trivial state in the
dual CFT, and the other kind is a non-normalizable mode of
excitations, which is coincident with a deformation with a
certain operator in the dual CFT.

The AdS/CFT correspondence has lead to various appli-
cations on strongly coupled field theories. Especially, it is
applied to explore (conformal) fluid dynamics (fluid/gravity
duality) and condensed matter theories (AdS/CMT) [1,8].
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The precise map of fluid/gravity duality is given in [20]. The
claim in [20] is that there is a one to one correspondence
between the following two theories. One is a conformal fluid
dynamics with excitations of the temperature T (ω,

−→
k ), the

4-velocity uμ(ω,
−→
k ) and the charge density ρ(ω,

−→
k ) where

the frequency and the momenta of such a theory are much
smaller than the inverse of the mean free path (lmfp), namely,

(ω,
−→
k ) � l−1

mfp. The other is a dual gravity theory whose
classical geometry is a locally boosted black brane solution
slowly varying along the boundary directions, namely, its
wave length λ � r0, where the r0 is the black brane horizon.
Due to this property, it is possible that one gets the locally
boosted black brane solution with a power expansion of small
derivatives along the boundary directions. The geometry is
characterized by the Hawking temperature of the black brane
T (xμ), 4-velocityuμ(xμ) and (R)-charge density ρ(xμ). The
Einstein equations in the dual gravity provide constraints
on these quantities as ∇μTμν = 0 and ∇μ Jμ = 0, where
Tμν = T d(xα)(gμν(xα) + 4uμ(xα)uν(xα)) + O(r0∂μ) and
Jμ = ρ(xα)uμ(xα) + O(r0∂μ), which are called the bound-
ary energy-momentum tensor and charge current, respec-
tively.

An interesting research topic along these directions
is the thermodynamic phase transition from normal flu-
ids/conductor to superfluids/conductor. This holographic
superfluid/superconductor phase transition is accompanied
by a condensation (appearance of an order parameter) such
as the appearance of Cooper pairs in the superconducting
phase. The condensation breaks a global symmetry of the
system. Therefore, in the development of AdS/CMT and
fluid/gravity duality, the observation of several kinds of sym-
metry breaking mechanisms in a gravitational system plays
an important role. The first idea that a black hole describes
holographic superconductor/superfluids is suggested by the
observation that the RN-AdS black hole is possibly unstable
under a complex scalar perturbation below a certain Hawking
temperature. Below that temperature the gravitational system
presents its scalar hair outside of the black hole horizon in
[3]. Based on this mechanism, the holographic superconduc-
tor model was established in [2], which shows a complex
scalar field condensation resulting from a spontaneous sym-
metry breaking of global U(1) and it corresponds to an order
parameter in the second order phase transition via a holo-
graphic interpretation.

Another type of holographic superconductor/superfluidity
models is also investigated in the asymptotically charged-
AdS4 spacetime coupled to SU(2) non-Abelian gauge field
in [4]. This type of the holographic models is proposed
to explore p-wave superconductor/superfluidity, where their
order parameters are vector-like. Some properties to the holo-
graphic dual description, such as the speed of second sound
or the conductivity, are studied in asymptotically AdS5, by

taking the probe limit in [18]. This model assumes that a
chemical potential is given in the third isospin direction and
accordingly it has a charge density as a response. Interest-
ingly, below a certain temperature Tc, an additional current
starts to be induced in a spatial direction, denoted 〈 j x1

1 〉. This
current breaks SU(2) gauge symmetry and also the rotational
symmetry (SO(3)) of the system to U(1).

In the dual field theory it plays the role of the order
parameter for the second order phase transition. The holo-
graphic dual of the anisotropic fluid dynamics is described by
excitations in the background of an asymptotically RN-AdS
black brane solution obtained from Einstein-SU (2) Yang–
Mills theory defined in 5-dimensional space. In the spatially
isotropic phase, the temporal part of the Yang–Mills fields,
A3
t , is non-zero only, but in the anisotropic phase, a spatial

part of the Yang–Mills fields arises, A1
x1

, together with the
temporal part.1 In [8,18], it is found that the phase transition
occurs at the chemical potential2 μc = 4 and the 〈 j x1

1 〉 starts
to appear in the dual fluid system. Near the critical point, it is
assumed that the current 〈 j x1

1 〉 takes a small value suppressed
by a dimensionless small parameter ε, the free energy can be
analytically computed from the dual gravity with the power
expansion of the parameter ε. It is proved that the anisotropic
phase is thermodynamically favorable when μ ≥ 4.

Beyond considering the asymptotically AdS spacetime,
the applications of the holography to strongly correlated sys-
tems have inspired one to consider various gravitational sys-
tems such as the Lifshitz spacetime, hyperscaling violation
geometry and so on. The Lifshitz spacetime was firstly intro-
duced to realize temporal anisotropy emerging from quantum
critical phenomena associated with continuous phase transi-
tions in [5]. In the vicinity of the critical point, time scales
differently from space,

t → λzt, −→x → λ
−→x , (1)

where z is called the dynamical critical exponent, and its dual
geometrical realization can be written as

ds2 = −r2zdt2 + dr2

r2 + r2d−→x 2, (2)

where one restores the conformal invariance by taking z = 1.
Furthermore, the gravitational action having the Abelian

gauge fields coupled to the dilaton field is allowed to make
a more general extension for the Lifshitz spacetime to have
an overall hyperscaling factor α and so as not to be invariant
under scaling,

1 In A1
x1

, the superscript indicates the adjoint index of SU(2) gauge
group and x1 is one of the spatial directions along the AdS boundary
2 This chemical potential, μ, is dimensionless, which is seen by a rescal-
ing transformation of the dimensionful chemical potential, μ̃, with the
black brane horizon r0. The precise formula is given by (22).
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ds2 → λ−αds2, (3)

and the extended metric takes the form

ds2 = r2α

(
− r2zdt2 + dr2

r2 + r2d−→x 2
)

. (4)

Some properties of this spacetime were studied in [13,14,21–
28].

In previous research, the thermodynamic phase transition
from the spatially isotropic to anisotropic states has widely
been studied in the background of the charged-AdS black
brane spacetime, where z = 1 and α = 0. In this note,
we consider more general spacetimes, showing arbitrary z
and α, and assume that the system is near the critical point,
μ = μc. Near the critical chemical potential, the current
〈 j x1

1 〉 starts to be induced. To deal with this current, we
assume that the amplitude of the current is small and so is
suppressed by a dimensionless small parameter, ε. We solve
this system order by order in the power expansion of the
parameter ε. Our purpose is to find the numerical/analytic
values of the μc for generic z and α and to compute the
free energy density to check the thermodynamically favored
state. To construct such a holographic model, we consider
Einstein-scalar-U (2)3 theory, which gives the background
geometry presenting asymptotically hyperscaling violation
and Lifshitz scale symmetry. For technical reasons, we take
the limit that the Yang–Mills coupling constant, gYM , is large
and the 5-dimensional gravity constant, κ5, is small but their
ratio, κ5

gYM
→ 0. This limit ensures that there is no back reac-

tion from the Yang–Mills fields to the other ones. Namely,
we consider a “probe limit”, where we solve the Yang–Mills
equations only, which become non-trivial near the critical
points.

To analyze this system, we apply two different methods:
analytic and numerical methods. First of all, we discuss the
analytic method.

It may be very difficult or almost impossible to get analytic
solutions of the Yang–Mills field equations near the critical
point. Therefore, we focus on getting the critical value of
the chemical potential. The analytic approach that we use is
by Sturm–Liouville theory. The structure of the Yang–Mills
equations with a certain boundary condition, B(ψ(x)) = 0
(where x = 0 or x = 1) has the following form:

O(x)ψi (x, λ) = λiψi (x, λ), (5)

3 U (2) means that U (1) × SU (2). In the dual gravity theory, we have
two different gauge fields, U (1) and SU (2) gauge fields. We combine
these and address those U (2). It could be somewhat misapprehensive,
since the spatial anisotropic phase is induced by a normalizable mode
of SU (2) gauge fields only, whereas the U (1) gauge fields are just a
background in our probe limit.

where the O(x) is a differential operator, the λi are the
eigenvalues of the operator (which corresponds to the μc)
and ψi (x, λ) is the eigenfunction (which corresponds to the
Yang–Mills field A1

x1
), where i = 0, 1, . . . , n with a certain

n ∈ Z+. The Sturm–Liouville theory is meant to solve such
differential equations with the undetermined parameters, λi
in the equations. The solutions exist only when the λi attain
appropriate values.

A difficulty in dealing with the Yang–Mills equations is
that it is very unlikely to get analytic solutions of those. How-
ever, one can estimate the lowest eigenvalue of the system,
even if one does not know the exact forms of the eigen-
functions ψi , by employing the following fact. Suppose that
the eigenvalues are real, then one can relabel the eigenval-
ues and eigenfunctions for them to satisfy the condition
that λi > λ j if i > j . An arbitrary (normalized) func-
tion, ψ , satisfying the boundary condition, B(ψ(x)) = 0
at x = 0 or x = 1, can be expressed by a summation of
the eigenfunctions by assuming completeness of the eigen-
functions. Namely, ψ = ∑i=n

i=0 aiψi with certain complex
numbers,4 ai satisfying

∑i=n
i=0 |ai |2 = 1. Then the expecta-

tion value of the operator O(x) from the ψ , 〈O(x)〉ψ is given
by

∑i=n
i=0 λi |ai |2, which is always greater than λ0. Namely,

the quantity 〈O(x)〉ψ provides an upper bound of the lowest
eigenvalue λ0. This is called a variational principle [15].

The last question in the process is to choose the ψ in a
smart way which provides a very close (but no cigar) value
to the μc. We have chosen A1

x1
(ξ) ∼ ξ3α+3z−1F(ξ), where

the factor ξ3α+3z−1 ensures the asymptotic behavior near
the hyperscaling violation and Lifshitz boundary as ξ → 0,
where ξ is a new radial variable such that ξ ∼ 1

r . We assume
that F(ξ) is a polynomial in ξ as F(ξ) = ∑∞

i=0 biξ
i . We tune

the coefficients bi to get the minima of the upper bounds of
the μc. Then those values would be the closest to the critical
chemical potentials.

In order to numerically find a critical value of μ, we solve
the coupled Yang–Mills equations of the A1

x1
and A3

t with
appropriate boundary conditions at the black hole horizon
and the asymptotic region for a fixed value z and α by using
a shooting method. Then we compare the Sturm–Liouville
results with the numerical one. This is one of our main results,
which is given in Fig. 1. In Fig. 1a, we plot the critical val-
ues of the chemical potential with the solid lines (analytic
approach) and dashed lines (numerics) for α = 0, 1, 2, 3, 4
from below in order. They present a monotonically increas-
ing behavior as z increases for fixed values of α. In Fig. 1b,
we plot the critical values of the chemical potential μc as
the α increases for values of z = 1, 2, 3, 4, 5 from below in
order.

4 For our case, ai are real numbers since the Yang–Mills fields are real.
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We also compute the free energy from the Euclideanized
dual gravity on-shell action to compare that of the isotropic
state with anisotropic state by using the numerical solutions
of Yang–Mills fields. Interestingly, the numerical results
show that the anisotropic state is thermodynamically favored
only in a certain region in the α versus z plane. In another
region that we explore, the free energy is severely oscillating
and we cannot conclude which state is favored thermodynam-
ically. The result is addressed and the details are discussed
in Sect. 4.2

This note is organized as follows. In Sect. 2, we discuss our
holographic setting of the gravity model which gives asymp-
totically hyperscaling violation, Lifshitz scaling symmetry
and spatial anisotropy for the critical values of the chemical
potential. In Sect. 3, we explain our analytic method and in
Sect. 4, we demonstrate numerical methods and the results.
In Sect. 5, we summarize our work.

2 Holographic model

We start with the bulk action

S = 1

κ2
5

∫
d5x

√−g

[
R − 1

2
gMN ∂Mφ∂Nφ

+ V0

L2 e
γφ − κ2

5

4g2
U

eλUφFMN F
MN

− κ2
5

4g2
YM

eλYMφGa
MNG

aMN

]
, (6)

where M and N are 5-dimensional (5-D) spacetime indices,
running from 0 to 4, gMN is the spacetime metric, V0, γ , λU
and λYM are real constants and κ5 is the 5-D gravity constant.
φ is a real scalar field, and FMN is the field strength of U(1)
gauge field AM , i.e. FMN = ∂M AN − ∂N AM . Ga

MN is the
field strength of the Yang–Mills field Ba

M (B ≡ BMdxM =
τ a Ba

MdxM ), where we have chosen the simplest Yang–Mills
gauge group, SU(2), which satisfies [τ a, τ b] = iεabcτ c and
Tr(τ aτ b) = δab/2 where εabc is fully antisymmetric tensor
and ε123 = 1. Then

Ga
MN = ∂M Ba

N − ∂N Ba
M − εabcBb

M Bc
N , (7)

where the gauge group adjoint indices, a, b and c run over 1
to 3. gU and gYM are gauge couplings. We set the AdS radius
L = 1.

The bulk equations of motion are given by

X ≡ 1√−g
∂M (

√−ggMN ∂Nφ) + V0γ e
γφ

−κ2
5 λU

4g2
U

eλUφFMN FMN

−κ2
5 λYM

4g2
YM

eλYMφGa
MNG

aMN = 0, (8)

Y N ≡ 1√−g
∂M (

√−geλUφFMN ) = 0, (9)

YaN ≡ 1√−g
∂M (

√−geλYMφGaMN )

+ eλYMφεabcGbMN Bc
M = 0, (10)

WMN ≡ RMN + V0

3
gMNe

γφ − 1

2
∂Mφ∂Nφ

− κ2
5

2g2
U

eλUφ

(
FPM FP

N − 1

6
gMN FPQF

PQ
)

− κ2
5

2g2
YM

eλYMφ

(
Ga

PMGaP
N − 1

6
gMNG

a
PQG

aPQ
)

= 0.

(11)

We start with a solution having a generic hyperscaling vio-
lating factor α and a temporal anisotropy factor z. Such
solutions already appeared in [13], an Einstein-dilaton the-
ory with two different U (1) gauge fields. This is a spatially
isotropic solution. Our solution is obtained in the almost same
way but we want to get spatial anisotropy on top of this. The
ansatz is given by

ds2 = r2α

(
−r2z f (r)σ 2(r)dt2 + dr2

r2 f (r)

+ r2h−4(r)dx2
1 + r2h2(r)(dx2

2 + dx2
3 )

)

Baτ a = b(r)τ 3dt + ω(r)τ 1dx1,

A = a(r)dt

φ = φ(r), (12)

where ω(r) represents the spatial anisotropy and τ a = σ a

2 .
When there is no anisotropy, i.e. ω(r) = 0, the background
geometry becomes that of 5-D charged black brane solutions,
which are given by

f (r) = 1 − mr−3α−z−3 + κ2
5

g2
YM

μ̃2r−6α−4−2z, σ (r) = 1, h(r) = 1

G3
r t = ∂r b(r) = μ̃e

−
√

α+z−1
6(α+1)

φ0
√

6(α + 1)(3α + z + 1)r−3α−z−2,

G1
r x1

= 0,

Frt = ∂r a(r) = g2
U

κ2
5

e
2α+3√

6(α+1)(α+z−1)
φ0

√
2(z − 1)(3α + z + 3)r3α+z+2,

φ = φ0 + √
6(α + 1)(α + z − 1) ln r, (13)

where m is the mass density of the black brane and μ̃ is the
chemical potential, and the free parameters of this model are
fixed by

V0 = (3α + z + 2)(3α + z + 3)eγφ0 (14)
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and

γ = −
√

2α√
3(α + 1)(α + z − 1)

, λYM =
√

2(α + z − 1)

3(α + 1)
,

λU = − 2(2α + 3)√
6(α + 1)(α + z − 1)

. (15)

We note that this solution should satisfy the null-energy con-
dition [13],

(α + 1)(α + z − 1) ≥ 0. (16)

To be more precise, we consider a null vector in this black
brane background as ζ M = (

√
grr ,

√
gtt , 0, 0, 0); then

TMN ζ Mζ N ∼ Rr
r −Rt

t = 3(α+1)(α+z−1)r−2α f (r) ≥ 0,

(17)

and this leads (16).
We would like to explore a spatial anisotropy in this back-

ground by turning on B1
x1

(= ω(r)) without considering its
back reactions to the background geometry.5 This limit can
be obtained by demanding that the Yang–Mill coupling is

taken to be infinity, i.e.
κ2

5
g2
YM

→ 0. In such a limit, spacetime

becomes just AdS-Schwarzschild type black brane since the
term that is proportional to the chemical potential in f (r)
disappears.

When we look at the action (6), it is clear that the Yang–
Mills fields can absorb the Yang–Mills coupling by a field
redefinition as 1

gYM
Aa
M → Aa

M . Therefore, the decoupling
limit actually refers to the weak field limit of the Yang–Mills
field whose stress-energy tensor is too small to back react to
the other fields. In much literature, the classical (quantum)
field theory in a robust background geometry is studied by
ignoring back reaction from the fields and our analysis is
along the same lines.

For further discussion, we rescale the radial coordinate r
by the size of the black brane horizon. More precisely, we
define a new radial variable u by

r = r0u, (18)

where r0 is for the horizon, which is obtained by

f (r = r0) = 1 − m

r3α+z+3
0

= 0; (19)

then m = r3α+z+3
0 . Together with this, we rescale the

other coordinate variables as t → r−z
0 t and {x1, x2, x3} →

1
r0

{x1, x2, x3}. As a result, the background metric becomes

5 The genuine spatial anisotropy is encoded in the back reactions to
the background spacetime, meaning that non-trivial h(r) shows the
anisotropy. It is certain that once we compute the back reactions to
the metric, we must have non-trivial h(r) and we will leave this project
for future work.

ds2

r2α
0

= u2α

(
−u2z f (u)dt2 + du2

u2 f (u)

+ u2(dx2
1 + dx2

2 + dx2
3 )

)
, (20)

where

f (u) = 1 − u−3α−z−3. (21)

Together with this, we define a new chemical potential, μ, in
this rescaled coordinate as

μ ≡ μ̃

r3α+z+1
0

e
−

√
α+z−1
6(α+1)

φ0

√
6(α + 1)(3α + z + 1)

3α + z + 1
. (22)

Then the background value of B3
t becomes

b(u) = μ(1 − u−3α−z−1). (23)

In this rescaled coordinate, the Yang–Mill equations are writ-
ten as

Y1
x = u−5α−z−2∂u(u

3α+3z f (u)∂uω(u))

+ f −1(u)u−2α−4b2(u)ω(u) = 0 (24)

and Y3
t = u−5α−z−2∂u(u

3α+z+2∂ub(u))

− f −1(u)u−2α−4ω2(u)b(u) = 0. (25)

3 Analytic and numerical approaches to the critical
points

In this section, we estimate the critical value of chemical
potential for the generic z and α. It is more convenient to
use the ξ coordinate, where ξ is given by ξ = 1

u . In this
coordinate, (24) and (25) are given by

0 = d

dξ

(
ξ2−3α−3z f (ξ)

dω(ξ)

dξ

)

+ f −1(ξ)ξ−3α−zb2(ξ)ω(ξ), (26)

0 = d

dξ

(
ξ−3α−z db(ξ)

dξ

)

− f −1(ξ)ξ−3α−zω2(ξ)b(ξ). (27)

Near the critical point, we expect a second order phase tran-
sition. We assume that the amplitude of the field, ω(ξ), is
small and it is suppressed by ε, a dimensionless small con-
stant. Then one can regard the solution of b(ξ) to be approx-
imately described by (23) in the new coordinate ξ by

b(ξ) = μ(1 − ξ3α+z+1) + O(ε2). (28)

Near the boundary of the spacetime, ω(ξ) will behave as

ω(ξ) = ε〈J 1
x1

〉ξ3α+3z−1F(ξ) + O(ε3), (29)
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where 〈J 1
x1

〉 is an anisotropic order parameter and F(ξ) is a
new function that satisfies the boundary conditions

F(0) = 1, and F ′(0) = 0. (30)

The factor ξ3α+3z−1 in (29) ensures its asymptotic behavior
and we solve the equation up to O(ε)

To estimate the critical values of chemical potential for
various α and z, we use Sturm–Liouville technique. To solve
the Sturm–Liouville problem, (26) should be written in the
form

0 = d

dξ

(
K (ξ)

dF(ξ)

dξ

)
− P(ξ)F(ξ) + μ2Q(ξ)F(ξ), (31)

where

K (ξ) = ξ3α+3z(1 − ξ3α+z+3), (32)

P(ξ) = −(3α + 3z − 1)ξ3α+3z−1 d

dξ

(
1 − ξ3α+z+3

)
,

(33)

Q(ξ) = ξ3α+5z−2(1 − ξ3α+z+1)2

1 − ξ3α+z+3 . (34)

One can estimate the chemical potential by obtaining its
upper bounds by using the general variation method of the
Sturm–Liouville problem. In the range of 0 ≤ ξ ≤ 1, the
eigenvalue μ2 in the equation is minimized by the following
expression:

μ2 =
∫ 1

0 dξ

[
K (ξ)

(
dF(ξ)

dξ

)2 + P(ξ)F2(ξ)

]
∫ 1

0 dξQ(ξ)F2(ξ)
. (35)

To estimate this effectively, we introduce a test function of
F(ξ) satisfying (30) as

F(ξ) = 1 − tξ2, (36)

where t is an arbitrary real constant to be determined under
the condition that μ2 becomes minimum. The integrations
can be analytically performed in the range of

5z+3α >1, 3α+z >−3, 4z+6α > −2 and z+α > −1

(37)

and on top of this we also consider the null-energy condition
(16). Only in this region, the Sturm–Liouville problem is well
defined.

We study the minimum value of the chemical potential for
various possible values of z and α. First of all, we evaluate the
upper bounds of the critical value of the chemical potential
for fixed α. The results are shown in Fig. 1a with solid lines.
There are five different graphs in it and from below, each solid

line indicates the critical value of the chemical potential when
α = 0, α = 1 . . . α = 4 as z continuously varies from 1 to
5. The graphs show monotonically increasing behaviors as z
increases.

Especially, when z = 1 and α = 0, we get μc = 4.09206
by the Sturm–Liouville method. In [9], the authors address
the subject of an Einstein-SU (2) Yang–Mills system in
asymptotically AdS space showing a phase transition from
the spatially isotropic phase to an anisotropic phase when
μc = 4. The critical value of the chemical potential is cor-
rect within 2.3% error.

Next, we study the chemical potential upper bounds for
fixed z. The result is presented in Fig. 1b with solid lines too.
For a large z, μc seems to increase linearly as z increases,
but for the small z region each graph may show a minimum
of the critical value of chemical potential and it rebounds as
α decreases.

4 Numerics

In this section, we also consider the limit that the Yang–

Mills coupling constant is large,
κ2

5
g2
YM

→ 0, and there is no

back reaction to the background geometry, the scalar field
and the U (1) gauge fields, namely we take the probe limit.
We numerically find critical values of μ for the given values
of α and z and compare the results with the analytic ones
obtained in Sect. 3. We calculate and compare free energy
densities with/without turning on ω(ξ) by using the numer-
ically obtained values of μ, α, and z.

4.1 Numerical solutions of ω(ξ) and b(ξ)

Boundary conditions In the asymptotic region (as ξ → 0),
the following boundary conditions are applied:

lim
ξ→0

b(ξ) → μ, lim
ξ→0

ω(ξ) → 0, (38)

and near the black brane horizon (as ξ → 1), the boundary
condition is

b(ξ) → 0. (39)

We employ the shooting method to find the values of μ and z
(or μ and α) for a given value of α (or z) with these boundary
conditions.

The numerical results and comparison with the Sturm–
Liouville computations The numerical results are presented
by the dashed line in Fig. 1. In Fig. 1, μ versus α and μ versus
z graphs are depicted in (a) and (b) for the given integral
values of z = 1, 2, 3, 4, 5 and α = 0, 1, 2, 3, 4, respectively.
The solid lines present the results from the Sturm–Liouville
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Fig. 1 Plot for the chemical potential μ versus α (or z) for the given values of z (or α). The solid lines show graphs of the upper bounds obtained
from the analytic methods and the dashed lines present the numerical results
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Fig. 2 A comparison of the values of μ in the Sturm–Liouville method and the numerical results

method and we show the dashed and solid lines together
for comparison. For the given testing range of α and z, the
discrepancy ratio6 between the numerical method and the
Sturm–Liouville method for μ is less than 9.2 percents for
0 < α < 4 and z = 1, 2, 3, 4, and 5. It is less then 8.1
percents for α = 1, 2, 3, 4 and 5 and 1 < z < 5. Especially,
for z = 1 and α = 0 our numerical value of μc yields 3.999,
which well agrees with the result in [8,18]. As seen in Fig. 2,
the Sturm–Liouville results approach the numerical ones as
z becomes larger and α becomes smaller.

We do not understand why the errors between the chem-
ical potentials, obtained by employing numerical and ana-
lytic methods, respectively, become larger as α increases or z
decreases. However, the errors may be due to the truncation
of the polynomial in the function F(ξ). Considering more
appropriate test functions may enhance the accuracy of the
Sturm–Liouville method. For example, one can go further by
adding more terms like having higher powers of ξ and find
more accurate results.

The numerical solutions of the ω(ξ) and b(ξ) fields The
numerical solutions as regards ω(ξ) and b(ξ) are demon-
strated in Fig. 3.

6 We define the discrepancy ratio = μnumeric−μStrum−−Liuville
μnumeric

× 100%.

4.2 Free energy density

Since we consider the probe limit, it is enough to inspect the
Yang–Mills kinetic term in the background of other fields
to examine the thermodynamic phase transition. The Yang–
Mills action with imaginary time obtained by a Wick rotation,
t = −iτ , is given by

SEYM = βV3

2g2
YM

r3α+2z−2
0 eλYMφ0

∫ 1

0
dξξ−3α−z

[
ξ2−2z f (ξ)

(
dω(ξ)

dξ

)2

− ω2(ξ)b2(ξ)

f (ξ)
−

(
db(ξ)

dξ

)2
]

≡ 1

g2
YM

r3α+2z−2
0 eλYMφ0SE

YM (40)

where V3 is the coordinate volume of the spatial boundary.
β is the periodicity of the Euclidean time in the rescaled
coordinate (ξ coordinate) and is identified with the inverse
of the temperature. By using the equations of motion of
the Yang–Mills fields, one can derive a simpler form of
the Yang–Mills action. The free energy is defined by the
Euclideanized on-shell action times the temperature, which is
given by
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Fig. 3 Numerical fittings of ω(ξ) and b(ξ) functions
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Fig. 4 The difference of free energy density between the anisotropic state (ω �= 0) and the isotropic state (ω = 0) for the fixed values of z in a
and α in b

FYM = TSE
YM = V3

2

(∫ 1

0
dξξ−3α−3z+2 f (ξ)(∂ξω(ξ))2

+ξ−3α−zb(ξ)∂ξb(ξ)

∣∣∣ξ=0
)

. (41)

In the spatially isotropic phase, ω(ξ) = 0, b(ξ) = μ(1 −
ξ3α+z+1) and so the free energy is given by

FYM−iso = TSE
YM−iso

= −μ2 V3

2

∫ 1

0
dξ(3α + z + 1)2ξ3α+z,

= −μ2 V3

2
(3α + z + 1)(1 − ξ3α+z+1)|ξ=0. (42)

If we restrict our study to the region 3α + z + 1 > 0, then

FYM−iso = −μ2 V3

2
(3α + z + 1). (43)

If �F ≡ T�SE = T SEYM − T SEYM−iso < 0, the spatially
anisotropic phase is more favored and then there will be a
thermodynamic phase transition from the spatially isotropic
phase to the anisotropic one.

To check the behavior of the free energy difference for the
given testing ranges of α and z, we plot the free energy den-
sity difference by employing the following parameterization
because the free energy itself shows a very large magnitude:

T(dF/V3) ≡ tanh
[{free energy density(ω �= 0)

−free energy density(ω = 0)}]
= tanh

[
(FYM − FYM−iso)/V3

]
. (44)

That (dF/V3) is negative means that FYM < FYM−iso and
so the anisotropic phase is stable.

In Fig. 4a, a graph of T(df/V3) versus α(in the range of
0 ≤ α ≤ 2.5) is given to show the free energy density differ-
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Fig. 5 For fixed value of z. The free energy densities depending on α for the anisotropic and isotropic phase (left), and the free energy density
difference between the two phases (right) depending on α. Respectively, a b z = 1, c, d z = 2, e, f z = 3, 4, 5 from top to bottom on the left axis

ence between the anisotropic and the isotropic phase for the
given values of z in our testing range (1 ≤ z ≤ 3). T(df/V3)

is negative from α = 0 to around α = 2.5 for the integral
values of z = 1, 2, 3, 4 and 5, but it is undetermined after
α = 2.5 and so we do not plot it after α = 2.5.7 We conclude
that, for the given values of z = 1, 2, 3, 4 and 5 and for the
range of 0 ≤ α ≤ 2.5, the values of the chemical potential,
μc, that we obtain in Fig. 1a are the critical values. Beyond
this region, however, we do not have a definite conclusion.

7 T(df/V3) shows large oscillation after α = 2.5. Therefore, it is hard
to distinguish the regions of anisotropic phase from the isotropic ones
after this. We expect that this is due to numerical errors but we do not
understand what makes such errors yet.

In Fig. 4b, a T(df/V3) versus z graph(in the range of
1 ≤ z ≤ 3) is displayed for the given integral values of
α = 0, 1, 2, 3 and 4. For α = 0, 1, 2, T(df/V3) is negative
when 1 ≤ z ≤ 5. The chemical potential shown in Fig. 1b
is the critical value in 1 ≤ z ≤ 5 for these values of α.
However, for α = 3, 4, the free energy density difference,
dF , is negative up to a certain value of α and again shows
large oscillating behaviors. Therefore, we conclude that for
α = 0, 1, 2, 3 and 4, the values of the chemical potential, μc,
that we obtain are the critical values.

A closer look at the free energy density for the given inte-
gral values of z is in Fig. 5. The free energy densities for
the anisotropic and isotropic phase are plotted together in
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Fig. 6 For fixed value of α. The free energy densities for the anisotropic and isotropic phase (left), and the free energy density difference between
two phases (right) depending on z. Respectively, a, b α = 0, 1, 2 (from top to bottom on the right axis), c, d α = 3, e, f α = 4

Fig. 5a, c, e. The red solid and the blue dashed lines indi-
cate the anisotropic and isotropic phase, respectively. Their
differences are shown in Fig. 5b, d, f in more detail.

For the fixed integral values of α, the free energy densities
are depicted in Fig. 6a, c, e, where the light red solid lines and
the purple dashed lines are for the anisotropic and isotropic
phase, respectively. When α = 0, 1, 2, T(df/V3) is negative
in the entire region of our test range of z and so the anisotropic
phases are favored by the corresponding critical values of
the chemical potential. However, for α = 3 in Fig. 6c, the
free energy of the anisotropic phase is smaller than that of

the isotropic phase when 1 ≤ z ≤ (roughly)3 and so the
anisotropic phase is favored in this region. After this, the
isotropic phase is favored.

5 Summary

We explored thermodynamic phase transition between spa-
tially isotropic and anisotropic phases of fluid dynamics by
employing its gravity duals characterized by the hyperscal-
ing violation factor α and the dynamical critical exponent z
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when the current 〈J x1
1 〉 starts to occur. We use analytic and

numerical methods to find the critical value of μ for generic
values of α and z, and check the thermodynamic stability of
the anisotropic phase by calculating the free energy.

To do so, we employ its dual gravity action with the
Einstein-dilaton-U(2) gauge fields and consider the probe
limit of the Yang–Mills coupling constant being large,
κ2

5
g2
YM

→ 0. We calculate the upper bounds of the critical

value of the μ for the generic values of the α and z by using
the Sturm–Liouville method by using the test function (36).
The result is displayed in Fig. 1 with the solid lines. We also
calculate the critical value of μ by solving the coupled Yang–
Mills field equations numerically. With the choice of the mag-
nitude of the vector order parameter of 〈J x1

1 〉 ∼ ε = 10−5,
the shooting method searches the critical values of μ for
the given values of α and z satisfying appropriate boundary
conditions. This result is shown in Fig. 1 with dashed lines.
The two methods coincide within a few percentile errors, as
illustrated in Fig. 2.

Next, we compute the free energy to check the thermody-
namically favored phases among the spatially isotropic(ω =
0) and the anisotropic(ω �= 0) phases. We investigate the
region with 1 ≤ z ≤ 5 and 0 ≤ α ≤ 4 and we found that the
anisotropic phase is stable only for 0 ≤ α ≤ (roughly)3 for
all values of z, and the isotropic phase is favored in the rest
of the range of α and z. This result is shown in Figs. 4, 5, and
6.

For future work, it would be interesting to study the ther-
modynamic stability when considering the back reaction of
Yang–Mills fields to the spacetime geometry, the dilaton and
the gauge fields to study this system beyond the probe limit.
Furthermore, the back reaction to the background metric will
provide a computation of the shear viscosity and its holo-
graphic renormalization. As argued in [12], the shear vis-
cosity of the anisotropic fluids runs as energy scale changes
whereas almost all of the other holographic models for fluid
dynamics give a trivial flow of the shear viscosity. Exploring
this for the generic values of z and α would be interesting.

Following the study in [19], the positivity of the canoni-
cal energy is equivalent to the dynamical instability and the
canonical energy has a connection to the thermodynamic
instability as well. Thus, checking the dynamical instability,
such as the quasinormal modes of this gravitational system
with or without back reaction, would also be interesting.
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