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Abstract

Background: Radiographic progression is reported to be highly heritable in rheumatoid arthritis (RA). However,
previous study using genetic loci showed an insufficient accuracy of prediction for radiographic progression. The
aim of this study is to identify a biologically relevant prediction model of radiographic progression in patients with
RA using a genome-wide association study (GWAS) combined with bioinformatics analysis.

Methods: We obtained genome-wide single nucleotide polymorphism (SNP) data for 374 Korean patients with RA
using lllumina HumanOmni2.5Exome-8 arrays. Radiographic progression was measured using the yearly Sharp/van
der Heijde modified score rate, and categorized in no or severe progression. Significant SNPs for severe radiographic
progression from GWAS were mapped on the functional genes and reprioritized by post-GWAS analysis. For robust
prediction of radiographic progression, tenfold cross-validation using a support vector machine (SVM) classifier was
conducted. Accuracy was used for selection of optimal SNPs set in the Hanyang Bae RA cohort. The performance of
our final model was compared with that of other models based on GWAS results and SPOT (one of the post-GWAS
analyses) using receiver operating characteristic (ROC) curves. The reliability of our model was confirmed using GWAS
data of Caucasian patients with RA.

Results: A total of 36,091 significant SNPs with a p value <0.05 from GWAS were reprioritized using post-GWAS analysis
and approximately 2700 were identified as SNPs related to RA biological features. The best average accuracy of ten
groups was 06015 with 85 SNPs, and this increased to 0.7481 when combined with clinical information. In comparisons
of the performance of the model, the 0.7872 area under the curve (AUC) in our model was superior to that obtained with
GWAS (AUC 06586, p value 897 x 10°) or SPOT (AUC 0.7449, p value 0.0423). Our model strategy also showed superior
prediction accuracy in Caucasian patients with RA compared with GWAS (p value 0.0049) and SPOT (p value 0.0151).

Conclusions: Using various biological functions of SNPs and repeated machine learning, our model could predict
severe radiographic progression relevantly and robustly in patients with RA compared with models using only GWAS
results or other post-GWAS tools.
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Background

The marked success of genome-wide association studies
(GWAS) has led to the discovery of numerous novel
genetic loci. To date, nearly 100 susceptibility loci of
rheumatoid arthritis (RA) have been identified [1]. Re-
cently, the role of post-GWAS analysis, which prioritizes
GWAS signals by incorporating diverse biological and
functional evidence, has been highlighted in the identifi-
cation of causal loci and for prediction of phenotypic
traits [2]. Most genome-wide association loci are in non-
coding regions of the genome and might not directly im-
plicate functional variants, whereas the prioritized loci in
post-GWAS analysis are biologically relevant variants
and more likely to be truly associated with phenotypic
traits [2].

Radiographic severity is a pivotal outcome of RA. Pre-
diction of patients who will ultimately develop severe
radiographic progression in the initial stage of the dis-
ease course is important for better outcomes and neces-
sary for precision medicine. As radiographic severity is
reported to be highly heritable (45-58%) [3], genetic loci
or genes could be helpful in the prediction of radio-
graphic severity. However, there is currently a lack of
genetic information for prediction of radiographic dam-
age. According to a report by van Steenbergen et al,
prediction accuracy of severe radiographic progression
reached only 62% using a model consisting of 17 known
genetic loci from several replication studies and meta-
analysis and clinical factors [4].

Therefore, we sought to develop a more accurate and
reliable prediction model for radiographic progression
using a comprehensive approach consisting of GWAS,
post-GWAS analysis, and bioinformatics. We first con-
ducted GWAS of radiographic progression in Korean
patients with early RA. Next, single nucleotide polymor-
phisms (SNPs) conferred by GWAS were mapped and
prioritized according to their biological features through
a post-GWAS approach and an optimal set of SNPs for
prediction of radiographic progression was selected via
tenfold cross-validation using a support vector machine
(SVM). Next, a prediction model for radiographic pro-
gression was generated by the ensemble approach using
genetic and clinical factors. Finally, we confirmed the
usefulness of post-GWAS prioritization and our model
strategy for prediction of radiographic progression in an
independent cohort of Caucasian patients with RA.

Methods

Patients

All patients fulfilled the 1987 revised American College
of Rheumatology criteria [5], and were recruited after
providing informed consent and with ethical approval from
the Institutional Review Board of Hanyang University
Hospital (HYG-14-032-1).
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Two cohorts were used to establish the prediction
model of severe radiographic progression and their clinical
characteristics are shown in Additional file 1: Table S1.
First, 374 patients with early RA from the Hanyang Bae
RA cohort of Hanyang University Hospital for Rheumatic
Diseases [6] with two hand X-rays were included for the
initial approach of post-GWAS analysis and construction
of a prediction model. Next, reliability of post-GWAS
prioritization for prediction of severe radiographic pro-
gression was evaluated in 399 patients with RA from the
North  American Rheumatoid Arthritis Consortium
(NARAC) [7] with one hand X-ray per person.

Radiographic outcome

Radiographic joint damage was measured using the
Sharp/Van der Heijde modified score (SHS) from hand
radiographs [8]. For analysis of the Hanyang Bae RA co-
hort with two hand X-rays, the yearly radiographic joint
damage rate (ASHS/year) was calculated as the differ-
ence in SHS between baseline and follow-up radio-
graphs, divided by the duration between the two X-rays.
Two independent expert radiologists scored the radio-
graphs and the interclass observer correlation coefficient
was 0.89 for the total score. For analysis of the NARAC
cohort with one X-ray, the estimated yearly progression
rate was calculated (total SHS/disease years at time of
X-ray) as explained in a previous study [9]. Trained
readers at the Leiden University Medical Center scored
radiographs and the intra-observer reliability was 0.99
[10]. Patients with RA were classified into three groups
of low, middle, and high tertiles based on their radio-
graphic severity. Only the two groups of low tertile
(no progression) and high tertile (severe progression)
were used for analysis.

Genotyping
In the Hanyang Bae RA cohort, genotyping was con-
ducted with Illumina HumanOmni2.5Exome-8 BeadChips
at SNP Genetics Inc. (Seoul, South Korea). All subjects
were successfully genotyped for >2.5 million markers with
reliable genotyping call rates per sample >95%. After the
quality control, approximately 1.4 million markers with
minor allele frequency (MAF) >0.5%, genotyping call rate
rates per each marker >95%, and Hardy Weinberg equilib-
rium (HWE) >5x 107 were used in subsequent analyses.
Genetic relationship analysis performed to identify cryptic
relatedness among the subjects did not find any dupli-
cates, twins, or first-degree relatives. Principal component
(PC) analysis was performed to obtain PCs and assess
population stratification among the subjects. We noted
that there were no genetic outliers of >6 standard devia-
tions for each of the top ten PCs.

In the NARAC cohort, genotyping was conducted with
[lumina BeadChips (HumanHap 550 k) [7]. As reported
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in a previous study [10], 391,733 SNPs with reliable geno-
typing success rate (>98%), MAF >0.1%, and >1x 107
were used in analyses.

Genome-wide association study and genome mapping
based on functional regions and eQTL data

A comprehensive approach including GWAS, post-
GWAS analysis, repeated machine learning using SVM,
and ensemble model was conducted to identify a predic-
tion model for severe radiographic progression. The
study workflow is presented in Fig. 1.

First, GWAS was performed in a nested case-control
design, yielding genetic predictors for severe radio-
graphic progression. Next, we mapped the statistically
significant SNPs (p value <0.05 in GWAS analysis) with
their biologically related genes based on the functional
regions these SNPs map to. For this, we collected func-
tional regions of SNPs from several public databases and
obtained a total of 43,011 enhancer regions and associ-
ated genes retrieved from the FANTOMS5 consortium
[11]. A total of 50,900 gene regions, including both cod-
ing and intron regions and promoter regions, defined as
2 k bases upstream from the transcription start site,
were downloaded from the UCSC table browser [12]. In
addition, we collected 4666 miRNA regions from miR-
base [13] and their target genes from miRTarBase [14].
Moreover, we assessed cis and trans-expression quantita-
tive trait loci (eQTL) effects by reference to four publicly
available datasets [15—18]. We integrated eQTL informa-
tion tested in peripheral blood mononuclear cells
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(PBMCs), monocytes, CD4+ T cells, and lymphoblas-
toids with significance threshold defined in reference pa-
pers. When mapping the SNPs, we also considered their
proxy SNPs with r2>0.8. Reference pair-wise linkage
disequilibrium (LD) information was retrieved from
HapMap genotype information of Japanese and Han
Chinese populations.

SNP reprioritization based on RA network

We reprioritized the statistically significant SNPs in
GWAS based on RA correlation scores of their related
genes. To measure the RA correlation of the genes, we
first constructed a RA gene network by propagation of
prior RA information to their interaction partners
(Fig. 2a). To construct the network, we used an inte-
grated gene interaction database called HIPPIE [19],
which provided 221,331 interactions between 15,615
genes. We collected prior gene-disease association
(GDA) from DisGeNet [20] and disease similarity (DS)
from MimMiner [21] to consider not only RA genes, but
also genes for RA-related diseases. Next, for a gene v in
the Y was assigned as below:

Y(v) = Max(GDA_(v,d) x DS_(d, RA)),

where d represents all disease that is associated with
gene v. With assignment of prior RA information, we
propagated the information using the PRINCE method
[22] and calculated RA correlation scores of all genes in
the network. With the RA correlation scores of genes,

Hanyang Bae RA Cohort (n = 374) NARAC Cohort (n = 399)
SNP data Clinical data SNP data
GWAS anti-CCP antibody GWAS
Analysis ESR Analysis
BMI
P-value < 0.05 HAQ P-value < 0.05
Baseline SHS
Post-GWAS Disease duration Post-GWAS
Analysis Analysis
SNPs with RA score >Ol l
SVMsyp SVMgiinic SVMgpp
Pop(class) 299093009~ (class)
P(class) = aPsyp(class) + (1 — a)Peinic(class)
Prediction of Prediction of
severe radiographic severity severe radiographic severity
Fig. 1 Study workflow. BMI body mass index, CCP cyclic citrullinated peptide, ESR erythrocyte sedimentation rate, GWAS genome-wide association
studies, HAQ health assessment questionnaire, NARAC North American Rheumatoid Arthritis Consortium, SHS Sharp/Van der Heijde modified score,
SNP single nucleotide polymorphism, SVM support vector machine
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Fig. 2 Post-GWAS analysis: construction of an RA network (@), mapping statistically significant SNPs with their biological-related genes and calculation
of RA correlation score of all genes in the network (b). RA rheumatoid arthritis, SNP single nucleotide polymorphism

we finally reprioritized SNPs by the sum of RA correl-
ation scores of their related genes (Fig. 2b). We also
collected SNP sets that were prioritized by p value in
GWAS analysis and by SPOT analysis [23] for the com-
parison of prediction powers.

Prediction model for radiographic severity using
ensemble approach

The final prediction model for severe radiographic pro-
gression consisted of an ensemble approach that com-
bined two classification models: one was based on the
SNPs that we selected and the other was based on clin-
ical information. Each model was constructed by using
SVM, which is a supervised machine learning algorithm
to classify multiclasses based on a hyperplane that
differentiate the classes on the n-dimensional space. We
used six clinical predictive factors that we investigated in
another study [24]: baseline SHS, disease duration,
health assessment questionnaire (HAQ) index, anti-
cyclic citrullinated peptide (CCP) antibody, body mass
index (BMI), and erythrocyte sedimentation rate (ESR).
The final decision for severe radiographic progression

was calculated as the weight sum of probabilities in
each model.

Post-GWAS prioritization in an independent cohort of
Caucasian patients with RA

To confirm the reliability of post-GWAS prioritization
and SVM-based prediction of severe radiographic pro-
gression, we conducted GWAS, post-GWAS analysis,
and machine learning using SVM in consecutive order.
As there was limited clinical information in the NARAC
cohort, only SNPs were used for prediction of severe
radiographic progression.

Statistical analysis

The multivariate logistic regression model was used
to investigate the association between SNPs and
radiographic severity (no progression vs. severe pro-
gression) in GWAS, adjusted for anti-CCP antibody
positivity, ESR, BMI, HAQ score, baseline SHS, dis-
ease duration, and the top ten principal components
using PLINK v1.07.
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Accuracy is a measure of the proportion of samples
that are correctly predicted among all the test samples,
and it is easy to intuitively understand the model per-
formance at a glance. Thus, accuracy was used for selec-
tion of optimal SNPs set in the Hanyang Bae RA cohort
and NARAC cohort, according to the standard method
as follows:

ZTrue positive—f—ZTme negative

Accuracy =
Y ZTme population

Classification accuracy is typically not enough infor-
mation to evaluate the performance of the model. To
evaluate the robustness of a model, more performance
measures are needed. The area under the curve (AUC)
of the receiver operating characteristic (ROC) curve
measures the performance of the markers with the total
sum of performance at all thresholds. Based on the di-
versity of populations and the characteristics of SNP
markers that should be evaluated with a limited number
of samples, it would be more reliable to compare all the
performance that the set could have, rather than looking
for the best accuracy it could have, with expectations for
performance for various unknown samples. In this rea-
son, we further analyzed the performance of the model
in the Hanyang Bae RA cohort using AUC according to
the standard method as follows:

AUC — ZRank(pos)—#pos X (#pos+1)/2
B #pos + #neg

Where YRank(pos) means the sum of the ranks of all
positively classified examples, #pos means the number of
positive examples in the dataset, and #neg means the
number of negative examples in the dataset.

Results

Findings of GWAS for radiographic progression in Korean
RA patients

After quality control, a total of 1,343,748 SNPs were
available for comparison in 118 patients with no pro-
gression [age 49.5+11.8 (mean + standard deviation),
female = 83.9%] and 120 patients with severe progression
[age 47.7+£12.6, female=285.0%] (Additional file 1:
Table S1). In the single association analysis, none of the
SNPs reached the significance threshold after Bonferroni
correction. The SNPs with p <1.0 x 10 and their related
genes are listed in Additional file 1: Table S2.

Optimal SNP set selection using post-GWAS scoring

To determine the optimal number of SNPs for the pre-
diction model, we tested the accuracy of the prediction
model by adding 5 SNPs from the top ten scored SNPs.
For this, we performed tenfold cross-validation by
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grouping the patients into ten groups. Of the ten groups,
nine groups were used as the training set in GWAS and
post-GWAS analysis for selection of the SNPs and con-
struction of a SVM model using radial basis function
Kernel. The remaining group was used as a test set and
we calculated the average accuracies of ten test sets. Our
results showed that the best accuracy was 0.6015 when
the top 85 SNPs were used (Fig. 3a). Therefore, we
defined the optimal number of SNPs as 85. Our
method showed superior accuracy compared with
SNPs selected based on p-value of GWAS and by
SPOT analysis (p value 1.06 x 10°° and 6.25 x 10,
respectively). The list of 85 SNPs and their related genes
are described in Additional file 1: Table S3.

Interestingly, SNPs that had low p values in GWAS
analysis showed the lowest accuracy. To investigate
further, we compared the overlapping ratio of the top
85 SNPs selected by different methods between ten
training sets (Fig. 3b). The results showed that the
overlap ratio between SNPs selected by low p value
was only 0.2403, whereas the overlap ratio of our
method was more than two times higher (0.5627). It
seems that the SNPs selected in each training set by
tenfold cross-validation based on GWAS p value are
likely to be biased in each training sample itself and
could cause lower overlap ratio between groups. On
other hand, post-GWAS analysis which integrated the
biological meaning to the analysis is less likely to se-
lect the SNPs that were biased in the sample group,
unlike the GWAS which depends only on the simple
p value.

Comparison of the prediction accuracy among different
models

The final ensemble model was composed of two differ-
ent SVM models: one is based on 85 SNPs selected by
post-GWAS analysis and the other is based on informa-
tion on six clinical factors. We calculated a weighted
sum of probabilities of these two models to predict se-
vere radiographic progression. The best average accur-
acy of our model was 0.7481 with 0.27 of weight to
SVM model using SNPs (Additional file 2: Figure S1).
In the process of optimizing the weight, all tenfold
cross-validation tests were performed on the test set,
to avoid overfitting as much as possible. We com-
pared the ROC curve of our ensemble model with
other ensemble models that used 85 SNPs selected by
GWAS p value or by SPOT analysis as well as clinical
information (Fig. 4). The AUC of our model was
0.7872 (sensitivity 0.7644, specificity 0.7318, and
positive predictive value 0.7445, Additional file 1:
Table S4), which was significantly better than that of
the ensemble model with GWAS (8.97X10E-5) and
SPOT (0.0423).
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Reliability of post-GWAS prioritization in the independent
cohort
By applying the same methods of post-GWAS prio-
ritization and tenfold cross-validation using SVM to the
NARAC cohort (68 patients with no progression and 86
patients with severe progression), we were able to con-
firm that the SNPs selected by post-GWAS analysis were
more accurate than those selected by statistical signifi-
cance in GWAS for prediction of severe radiographic
progression. In the NARAC cohort the average accuracy
was 0.6143 with SNPs selected by post-GWAS analysis,
which was superior to that using SNPs selected by statis-
tical significance in GWAS (average accuracy 0.3875) or
by SPOT analysis (average accuracy 0.4563) (Fig. 5).
After quality control, a total of 1,343,748 SNPs were avail-
able for comparison in 118 patients with no progression
[age 49.5+11.8 (mean +standard deviation), female =
83.9%] and 120 patients with severe progression [age 47.7 +
12.6, female = 85.0%] (Additional file 1: Table S1).

Discussion
As hypothesized in this study, our new model allowed us
to conduct more relevant and robust prediction of
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Fig. 5 Comparison of prediction accuracy of our model with other methods in an independent Caucasian cohort. GWAS genome-wide
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radiographic severity in RA. In short, using post-GWAS
analysis we identified biologically relevant SNPs related
to RA progression in patients with early RA. Our final
model composed of SNPs combined with clinical factors
could satisfactorily discriminate severe progression from
the absence of progression, showing an average AUC of
0.78 in tenfold cross-validation. This result was superior
to those obtained using data from GWAS (AUC = 0.59)
or SPOT (AUC=0.67), one of the methods of post-
GWAS analysis. The superior effectiveness of our pre-
diction model was also successfully reproduced in an in-
dependent cohort.

We initially thought that biological function-enriched
prediction of radiographic severity would overcome the
overfitting effect although the prediction accuracy would
be similar to that using only GWAS results. Interest-
ingly, however, the prediction accuracy was also im-
proved compared with that using data of GWAS.
Selection of biologically relevant variants based on post-
GWAS analysis, in addition to p value in GWAS, and
use of a machine learning algorithm such as SVM en-
abled more accurate and robust prediction of radio-
graphic severity despite the limited sample size.

Regarding post-GWAS analysis, there have been ex-
amples of effective integration of biological database in-
formation of SNPs with GWAS results to identify causal
SNPs in colorectal cancer [25] and chronic lymphocytic
lymphoma [26]. We used information on various func-
tional regions associated with SNPs and related genes
such as enhancer region, mRNA, promoter region,
miRNA region, and posttranscriptional modification

(PTM), in addition to expression of quantitative traits,
and gave a higher priority to SNPs with greater involve-
ment with these genes. Thus, SNPs with higher bio-
logical relevance obtained a higher reprioritization score
and might be used in prediction of radiographic severity.
The SVM algorithm also contributed to increased pre-
diction accuracy. It is one of the popular supervised
learning techniques in classification. In the SVM algo-
rithm, each patient is represented in n-dimensional
space where n is the number of SNPs. After that, it finds
a hyperplane that can separate patients’ classes with
maximum margin. We also used Kernel trick that
mapped original dimensional space into a much higher-
dimensional space. It can help to do a nonlinear classifi-
cation more efficiently. This learning machine technique
could discover new patterns for input features via inves-
tigation of complex relationships among SNPs, and thus
increase the explanation power for prediction of radio-
graphic severity in RA [27]. Many examples of outcome
prediction with high predictive accuracy using SVM
algorithms have been reported, such as in breast cancer
[28], nasopharyngeal carcinoma [29], and severe radiation-
induced pneumonitis in lung cancer [30—32]. Similarly, we
could predict severe radiographic progression with high
predictive accuracy via a SVM-based ensemble model that
integrated multidimensional SNP data and clinical factors.
It is interesting that our model was superior to SPOT,
which is also a method of SNP prioritization [23]. How-
ever, there were some differences between our SNP
prioritization method and SPOT. Information on func-
tional properties used in annotation was not the same;
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our method used more varied biological information re-
lated to SNPs and genes including transcription factor
binding sites, micro RNA regions, PTM, and eQTL. An
eQTL study was able to explain the functional basis of
up to 50% of SNPs related to immune-mediated disease
[33] and therefore might be very useful in predicting the
outcome of RA. Another important difference is the
characteristics of the network used for scoring. In con-
trast to SPOT, we used a disease-specific gene database
during construction of the network based on the con-
cept that a RA susceptibility gene is also associated with
phenotype. This is the first RA-specific network con-
structed based on network propagation and might give
more accurate and stable relationship information to
reprioritize the SNPs conferred by GWAS.

This study has some limitations. First, the sample size
used in the analysis was small, which could lead to lower
predictive accuracy of GWAS. However, as we applied
the results of GWAS to post-GWAS analysis and tenfold
cross-validation we could achieve higher predictive ac-
curacy of radiographic progression and robustness of
top SNPs in each of the ten groups. This meant that
post-GWAS could take advantage of the small sample
size of subjects in contrast to GWAS, which needs nu-
merous samples to identify disease-specific loci. Second,
we did not use the 85 SNPs selected in the Korean co-
hort in the analysis of the Caucasian cohort. Rather, we
reproduced all courses of analysis from GWAS to using
the SVM classifier in the Caucasian cohort to show the
advantage of a post-GWAS approach over GWAS as a
method of prediction. When we validated the final SNPs
from the Hanyang Bae RA cohort in the NARAC cohort,
the performance of the model using the final SNPs was
unsatisfactory. Among the 85 SNPs, 72 SNPs were iden-
tified in the NARAC cohort and the accuracy (standard
deviation) of the model was 0.5062 (0.1239) and the
AUC was 0.4739 (Additional file 2: Figure S2). It seems
that the same SNPs are not useful across ethnic groups
for many reasons, such as ethnicity-specific SNPs or dif-
ferent allele frequency, or linkage disequilibrium.

Conclusions

We demonstrated that biologically relevant SNPs could
provide more accurate and robust prediction of severe
radiographic progression in Korean and Caucasian co-
horts. Biologically relevant prediction of radiographic pro-
gression was possible through a bioinformatics approach
including post-GWAS, which was conducted with func-
tional annotation of the genome gathered from GWA
studies, a RA network with propagation, and machine
learning algorithm. This approach worked better than the
GWAS approach alone. SNPs and genes selected in this
approach could be targets for further functional studies
and might be a basis of individual precision medicine.
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Additional file 2: Figure S1. The weighted sum of probabilities in each

model. Figure S2. Receiver operating characteristic (ROC) curve for the
result of replication of the final SNPs in the NARAC cohort. (PPTX 207 kb)
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