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Abstract

Background: In clinical trials and survival analysis, participants may be excluded from the study due to withdrawal,
which is often referred to as lost-to-follow-up (LTF). It is natural to argue that a disease would be censored due to death;
however, when an LTF is present it is not guaranteed that the disease has been censored. This makes it important to
consider both cases; the disease is censored or not censored. We also note that the illness process can be censored by
LTF. We will consider a multi-state model in which LTF is not regarded as censoring but as a non-fatal event.

Methods: We propose a multi-state model for analyzing semi-competing risks data with interval-censored or missing
intermediate events. More precisely, we employ the additive and multiplicative hazards model with log-normal frailty
and construct the conditional likelihood to estimate the transition intensities among states in the multi-state model.
Marginalization of the full likelihood is accomplished using adaptive importance sampling, and the optimal solution of
the regression parameters is achieved through the iterative quasi-Newton algorithm.

Results: Simulation is performed to investigate the finite-sample performance of the proposed estimation method in
terms of the relative bias and coverage probability of the regression parameters. The proposed estimators turned out
to be robust to misspecifications of the frailty distribution. PAQUID data have been analyzed and yielded somewhat
prominent results.

Conclusions: We propose a multi-state model for semi-competing risks data for which there exists information on
fatal events, but information on non-fatal events may not be available due to lost to follow-up. Simulation results
show that the coverage probabilities of the regression parameters are close to a nominal level of 0.95 in most cases.
Regarding the analysis of real data, the risk of transition from a healthy state to dementia is higher for women;
however, the risk of death after being diagnosed with dementia is higher for men.

Keywords: Additive and multiplicative hazards model, Interval censoring; log-normal frailty, Missing intermediate
event, Multi-state model, Semi-competing risks data

Background
In classical time-to-event or survival analysis, subjects are
under risk for one fatal event. However, subjects do not
fail from just one certain type of event in some appli-
cations, but are under risk of failing from two or more
mutually exclusive types of events. When an individual
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is under risk of failing from two different types of event,
these different event types are called competing risks. One
of the events censors the other, and vice versa, in these
competing risks frameworks [1–3]. However, many clini-
cal trials have revealed that a subject can experience both
a non-fatal event (e.g., a disease or relapse) and a fatal
event (e.g., death), where the fatal event censors the non-
fatal event but not vice versa. We call these types of data
semi-competing risks data [4–6].
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In clinical trials, the occurrence of a non-fatal event can
be detected in conjunction with possibly incessant mon-
itoring during periodic follow-up. For illustration pur-
poses of our methodologies, a dataset named PAQUID
(Personnes Agées Quid) is analyzed to investigate the
meaningful prognostic factors associated with dementia.
These data were initially analyzed by [7] using the con-
ventional Cox model [8, 9]. Complete descriptions of the
PAQUID data can be found in Conclusions section. In this
paper, we employ a semi-competing risks model where
death may occur after dementia has occurred (i.e., been
diagnosed), but death censors the disease. An illness-
death model [10] is perhaps one of the most commonly
and frequently used semi-competing risks models. Many
studies have been conducted under semi-competing risks
frameworks [4, 5, 11].
As shown in the PAQUID data, dementia can be cen-

sored informatively by death. Furthermore, an additional
informative censoring process can also occur. That is,
participants may be excluded from the study due to with-
drawal, which is often referred to as lost-to-follow-up
(LTF). It is clear that dementia would be censored due
to death; however, when an LTF is present it is not guar-
anteed that dementia has been censored. This makes it
important to consider both cases; dementia is censored
or not censored. We also note that the illness process
(dementia) can be censored by LTF. This forces us to con-
sider a multi-state model in which LTF is not regarded
as censoring but as a non-fatal event. Considerable stud-
ies have utilized this multi-state model. For example, [12]
proposed a nonparametric method to estimate the sur-
vival function associated with disease occurrences, while
[6, 13] used the Cox proportional hazards model [8, 9] to
estimate regression coefficients.
In the meantime, most non-fatal events are observed

periodically. That is, the event time is not observed exactly
but lies on an interval of the form (L,R], where L is the last
time a subject visited without possessing a disease and R
is the first time that the subject was diagnosed with a dis-
ease. This type of censoring is called interval censoring.
We could emulate what [6] did and assume that a non-
fatal event of a subject occurs uniformly on the interval
(L,R]. However, using the methods proposed by [14, 15],
we instead partition the interval (L,R] into a few sub-
intervals, in which a non-fatal event can occur. Ultimately,
different weights can be assigned to each sub-interval.
Thus, the former method corresponds to an uncondi-
tional probability approach with equal weight on all of
the sub-intervals, whereas the latter utilizes a conditional
probability approach with a specific weight, depending on
the sub-interval.
In our study, we use the latter method to deal with

non-fatal events that are interval-censored on an inter-
val. In addition, we propose an additive-multiplicative

model by combining the Cox proportional hazards model
with the additive risk model of [16], in accordance with
a multi-state model. The additive-multiplicative model
was initially introduced by [17] and has since been devel-
oped by a number of researchers. Scheike and Zhang [19]
incorporated time-varying covariates for the additive part
and time-independent covariates for the multiplicative
part. On the other hand, [18] estimated relevant parame-
ters by considering time-varying covariates for both addi-
tive and multiplicative parts. We also consider the frailty
effect as a latent variable to incorporate possible connec-
tions between events; this is done because each individual
is exposed to several events, including the occurrence of
illness, LTF, and death.
The rest of the paper is organized as follows. First, we

explain notations and procedures for parameter estima-
tion along with the proposed models. Second, extensive
simulation studies are presented to investigate the model
performances in terms of the relative bias and coverage
probability of the proposed estimates. We also provide the
results of real data analysis. Finally, we present a summary
and concluding remarks, including some of the drawbacks
of the proposedmodels and directions for future research.

Methods
Models
As depicted in Fig. 1, the proposed model in this study
consists of five states: healthy (H), non-fatal (NF), fatal
(F), lost-to-follow-up (LTF), and unobserved non-fatal
(NF(LTF)). Each state is denoted by numbers 0 through
4, respectively. A total of seven possible transitions exists
in the model: 0 → 1, 0 → 2, 0 → 3, 1 → 2, 3 → 2,
3 → 4, and 4 → 2. However, among these transitions,
both 3 → 4 and 4 → 2 (displayed as dotted lines in Fig. 1
are unobservable and should be regarded as potential
transitions.
Let t be the time from study entry. Additionally, St

is defined as the state that each subject can take at
t ≥ 0. Then, St ∈ {0, 1, 2, 3, 4}. Let A = {(r, s) :
(r, s) = (0, 1), (0, 2), (0, 3), (1, 2), (3, 2), (3, 4), (4, 2)}. Also,
define λrs(t) to be the transition intensity from states r to
s at time t. That is,

λrs(t) = lim
dt→0

Pr(St+dt = s|St = r)
dt

for (r, s) ∈ A,

and λrs(t) = 0 for (r, s) /∈ A. As mentioned above, the data
corresponding to transitions 3 → 4 and 4 → 2 are not
observable, requiring the following assumptions for λ34(t)
and λ42(t):

λ34(t) = λ01(t), t ≥ 0, (1)
λ42(t) = λ12(t), t ≥ 0. (2)

Assumptions (1) and (2) imply that the transition
intensities of H to NF and NF to F may be the same,



Kim et al. BMCMedical ResearchMethodology           (2019) 19:49 Page 3 of 14

Fig. 1 Five-state model

irrespective of the occurrence of LTF. As mentioned in
Background section, given covariates z = (

z1, z2, . . . , zp
)′

and w = (w1,w2, . . . ,wd)
′, along with frailty u, we con-

sider additive and multiplicative models defined as
λrs(t|z,w,u) = η

(
β ′
rsz + exp

(
α′
rsw

)
θrsγrstγrs−1) for (r, s) ∈ A,

(3)

where θrs(> 0) and γrs(> 0) are the scale and shape
parameters of a Weibull distribution, respectively, and βrs
and αrs are vectors of the regression coefficients for the
additive and multiplicative parts, respectively. Moreover,
η = exp(u) is the frailty for a log-normal distribution
and u is assumed to follow a normal distribution with
a mean of zero and variance σ 2. Thus, we use a Weibull
distribution as a baseline transition intensity and impose
a multiplicative frailty effect on the transition intensities.
Since the parameters θ34, θ42, γ34, γ42,α34,α42,β34, and
β42 related to transitions 3 → 4 and 4 → 2 should satisfy
the assumptions in (1) and (2), theparameter vector estimated
for the model in (3) is ζ = (

θ∗, γ ∗,α∗,β∗, σ 2)′, where
θ∗ = (θ01, θ02, θ03, θ12, θ32), γ ∗ = (γ01, γ02, γ03, γ12, γ32),
α∗ = (

α′
01,α′

02,α′
03,α′

12,α′
32

)
, and β∗ =(

β ′
01,β ′

02,β ′
03,β ′

12,β ′
32

)
. According to the model in (3),

the cumulative hazard functions Hk(t1, t2) (k = 0, 1, 3, 4)
for leaving state k between t1 and t2 can be represented as

H0(t1, t2|z,w,u) =
∫ t2

t1
{λ01(s|z,w,u) + λ02(s|z,w,u) + λ03(s|z,w,u)}ds

=
3∑

r=1
η

{(
β ′
0rz

)
(t2 − t1) + exp

(
α′
0rw

)
θ0r

(
tγ0r2 − tγ0r1

)}
,

H1(t1, t2|z,w,u) =
∫ t2

t1
λ12(s|z,w,u)ds

= η
{(

β ′
12z

)
(t2 − t1) + exp

(
α′
12w

)
θ12

(
tγ122 − tγ121

)}
,

H3(t1, t2|z,w,u) =
∫ t2

t1
{λ32(s|z,w,u) + λ34(s|z,w,u)}ds

= η
{ (

β ′
32z

)
(t2 − t1) + exp

(
α′
32w

)
θ32

(
tγ322 − tγ321

)

+ (
β ′
34z

)
(t2 − t1) + exp

(
α′
34w

)
θ34

(
tγ342 − tγ341

) }
,

H4(t1, t2|z,w,u) =
∫ t2

t1
λ42(s|z,w,u)ds

= η
{(

β ′
42z

)
(t2 − t1) + exp

(
α′
42w

)
θ42

(
tγ422 − tγ421

)}
.

Based onAssumptions (1) and (2), we note that β34 = β01,
β42 = β12, α34 = α01, α42 = α12, θ34 = θ01, θ42 = θ12,
γ34 = γ01, and γ42 = γ12 in the equations of H3 and H4.

Parameter estimation
As shown in Fig. 1, a total of six routes can be experienced
by a subject from the beginning to the end of the study.
These are route 1 (0 → 0), route 2 (0 → 2), route 3 (0 →
1), route 4 (0 → 1 → 2), route 5 (0 → 3), and route 6 (0
→ 3 → 2). In particular, route 5 can be classified into two
paths, i.e., 0→ 3 and 0→ 3→ 4, depending on whether or
not a subject experiences the unobservable NF state. Sim-
ilarly, route 6 can be classified into two paths: 0 → 3 →
2 and 0 → 3 → 4 → 2. We introduce notations to define
the likelihood associated with each route. Consider three
random variables R, L, and T, each of which represents a
time from the start of the study until the occurrence of a
non-fatal event, LTF, and a fatal event, respectively. Fur-
thermore, letH0(s) be the set of subjects staying in state 0
at time s. That is,

H0(s) = {R ∧ L ∧ T > s}.
Let H3,f (s) be the set of subjects who have already expe-
rienced LTF at time f and remain in state 3 at time s.
Then,
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H3,f (s) = {L = f ,R ∧ T > s, f ≤ s}.
Now, let ei be the entry time of study, ai be the last time the
ith subject visited before a non-fatal event was observed,
and bi be the first time a non-fatal event is observed by
the ith subject for i = 1, 2, . . . , n. Consider an indicator
function Iij, which is 1 if subject i follows route j and zero
otherwise for j = 1, 2, . . . , 6. Let Bj = {i : Iij = 1}. For
subject i ∈ B1 ∪ B2, we have ai, bi ≥ ti; this is the case
because a non-fatal event has not been observed before
time ti. For subject i ∈ B3∪B4, we have ai < bi ≤ ti; this is
the case because a non-fatal event has occurred between
ai and bi. When subject i is a member of B5 ∪ B6, LTF
has occurred at time ai, which yields ai < ti; however,
bi < ti or bi ≥ ti, depending on whether an unobservable
non-fatal event has occurred. Thus, ti would be a censor-
ing time for i ∈ B1 ∪ B3 ∪ B5, whereas it would be a time
of death for i ∈ B2 ∪ B4 ∪ B6. Therefore, likelihood func-
tions Q1 and Q2 can be constructed for routes 1 and 2,
respectively. These are given as follows:

Qi1 = Pr (Ri ∧ Li ∧ Ti > ti|H0(ei), zi,wi,ui)
= exp{−H0(ei, ti|zi,wi,ui)}, i ∈ B1. (4)

Qi2 = Pr(T = ti,R ∧ L > ti|H0(ei), zi,wi,ui)
= Qi1 × λ02(ti|zi,wi,ui), i ∈ B2. (5)

Likelihood functions can also be constructed for routes 3
and 4:

Q∗
i3 = Pr(Ri ∈ (ai, bi] , Li > ti,Ti > ti|H0(ei), zi,wi,ui)

=
∫ bi

ai

[
exp{−H0(ei, s|zi,wi,ui)}λ01(s|zi,wi,ui)

× exp{−H1(s, ti|zi,wi,ui)}
]
ds. (6)

Q∗
i4 = Pr(Ri∈(ai, bi] , Li> ti,Ri< Ti = ti|H0(ei), zi,wi,ui)

= Q∗
i3 × λ12(ti|zi,wi,ui), i ∈ B4. (7)

Equations (6) and (7) are derived by assuming that a non-
fatal event of subject i in the set B3 ∪ B4 can occur
uniformly on the interval (ai, bi] [6]. However, we parti-
tion the interval (ai, bi] into several sub-intervals where
non-fatal events could occur and assign different weights
to each interval [15].

• Let Ri′ ∈ (ai′ , bi′ ] be an interval for the occurrence of
non-fatal events associated with subjects in routes 3
or 4. Let s1 be the smallest value among all bi′ ’s for
subjects in the set B3 ∪ B4. Let s2 be the smallest
value among all bi′ ’s corresponding to subjects having
ai′ greater than or equal to s1. This process is
repeated until we have no subjects with ai′ greater
than or equal to sm (m = 1, 2, . . .). Thus, we can have
a refined set of time points

0 = s0 < s1 < s2 < · · · < sl < sl+1 = ∞.

• We can define the weight wi′m at time sm
(m = 1, 2, . . .) for subject i′ in the set B3 ∪ B4 :

wi′m = di′m exp {−H0 (ei′ , sm|wi′ , zi′ ,ui′ )} λ01(sm|wi′ , zi′ ,ui′ )
∑l

m′=1 di′m′ exp {−H0(ei′ , sm′ |wi′ , zi′ ,ui′ )} λ01(sm′ |wi′ , zi′ ,ui′ )
,

(8)

where di′m = I(sm ∈ (ai′ , bi′ ] ). Subsequently, likelihood
functions incorporated with weight wi′m in (8) for routes
3 and 4 are given by

Qi3 =
l∑

m=1
dimwim exp{−H0(ei, sm|zi,wi,ui)}λ01(sm|zi,wi,ui)

× exp{−H1(sm, ti|zi,wi,ui)}, i ∈ B3.
(9)

Qi4 = Qi3 × λ12(ti|zi,wi,ui), i ∈ B4. (10)

Finally, likelihood functions for routes 5 and 6 are given by

Qi5 = Pr(Ri ∧ Ti > ti|H3,ai(ai), zi,wi,ui)
+Pr(Ri ∈ (ai, ti] ,Ti > ti|H3,ai(ai), zi,wi,ui)

= exp{−H0(ei, ai|zi,wi,ui)}λ03(ai|zi,wi,ui)

×
[
exp{−H3(ai, ti|zi,wi,ui)}

+
∫ ti

ai
exp{−H3(ai, s|zi,wi,ui)}λ34(s|zi,wi,ui)

× exp{−H4(s, ti|zi,wi,ui)}ds
]
, i ∈ B5, (11)

Qi6 =Pr(Ri > Ti, Ti = ti| H3, ai(ai), zi,wi,ui)
+ Pr(Ri ∈ (ai, ti] , Ri < Ti = ti|H3,ai(ai), zi,wi,ui)

= exp{−H0(ei, ai|zi,wi,ui)}λ03(ai|zi,wi,ui)

×
[
exp{−H3(ai, ti|zi,wi,ui)}λ32(ti|zi,wi,ui)

+
{ ∫ ti

ai
exp{−H3(ai, s|zi,wi,ui)}λ34(s|zi,wi,ui)

× exp{−H4(s, ti|zi,wi,ui)}ds
}
λ42(ti|zi,wi,ui)

]
, i ∈ B6.

(12)

Therefore, based on Eqs. (4)-(5) and (9)-(12), the likeli-
hood function for the parameter vector ζ is

L(ζ ) =
n∏

i=1

⎧
⎨

⎩

6∏

j=1
QIij
ij

⎫
⎬

⎭
φ

(
0, σ 2;ui

)
, (13)

where φ(·) is the probability density function of a nor-
mal distribution with a mean of zero and variance
σ 2. In our analysis, we use the NLMIXED procedure
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of the SAS software to estimate ζ . For the sake of
parameter estimation procedures, we define the marginal
likelihood as

m(ζ ) =
∫

· · ·
∫

L(ζ )du1 · · · dun.
Then, we find the value of ζ that minimizes f (ζ ) =
− logm(ζ ), which is referred to as ζ̂ . Consequently, the
inverse of the Hessian matrix evaluated at ζ̂ is defined as
the estimated variance-covariance matrix of ζ̂ . Numerical
integration is required for the frailty distribution. For this
purpose, we use the adaptive importance sampling [20].
Finally, we employ quasi-Newton optimization, which uti-
lizes the gradient vector and the Hessian matrix of f (ζ ), to
achieve the optimal solution of ζ .

Results
Simulation studies
Extensive simulation is performed to investigate the
finite-sample properties of the estimators proposed in
Methods section. As mentioned earlier, we assume a
Weibull distribution with a shape parameter of γrs = 1 as
the baseline transition intensity and a log-normal distri-
bution for frailty η = exp(u), where u is generated from
a normal distribution with a mean of zero and a variance
of 0.01. Furthermore, we use a binary covariate for z (gen-
erated from a Bernoulli trial with a success probability of
0.5) and a continuous covariate for w (generated from a
standard normal distribution). We fix the sample size n at
200 and the censoring time C at 365. A total of 500 repli-
cations is used in our simulations. The following presents
the details related to the generation of random variates for
the ith (i = 1, 2, . . . , n) subject.

• Step 0: We may allow the total number of
occurrences for non-fatal events to be 24 times in a
12-month period, such as 15, 31, . . . , 349, 365 days.
However, the actual visiting time of each subject can
be different from the designated times. Hence, we
add random numbers, generated from a normal
distribution with a mean of zero and a variance of 9,
to each designated time point. Subsequently, the
actual observed time points will be defined as

0 = l0 < l1i < · · · < l23,i < l24 = 366.

Let u01i, u02i, and u03i be random numbers generated
from a uniform distribution on the interval (0, 1).
Additionally, let Ri, Ti, and Li be, respectively, the
roots s of the equations:

�01(s|zi,wi,ui) + log(1 − u01i) = 0,
�02(s|zi,wi,ui) + log(1 − u02i) = 0,

and

�03(s|zi,wi,ui) + log(1 − u03i) = 0,

where

�0j(s|zi,wi,ui) = ηi
[(

β0jzi
)
s + exp{α0jwi}θ0jsγ0j

]
for j = 1, 2, 3.

• Step 1: If C ≤ Ri ∧ Ti ∧ Li, then the ith subject is
defined as being censored without experiencing a
non-fatal event, i.e., i ∈ B1. If Ti = Ri ∧ Ti ∧ Li, then
the ith subject is defined as being dead without
experiencing a non-fatal event, i.e., i ∈ B2. However,
if Ri = Ri ∧ Ti ∧ Li, proceed to Step 2, and if
Li = Ri ∧ Ti ∧ Li, proceed to Step 3.

• Step 2: Let u12i be a random number generated from
a uniform distribution on the interval
(1 − exp{�12(Ri|zi,wi,ui)}, 1), where
�12(s|zi,wi,ui) = ηi

[
(β12zi)s + exp{α12wi}θ12sγ12

]
.

Redefine Ti as the root s of the equation,

�12(s|zi,wi,ui) + log(1 − u12i) = 0.

If C ≤ Ti, then the ith subject is defined as being
censored after experiencing a non-fatal event, i.e.,
i ∈ B3. Otherwise, the ith subject is defined as being
dead at time Ti after experiencing a non-fatal event,
i.e., i ∈ B4. Moreover,
- If Ri ∈ (0, l1i), let ai = 0 and bi = l1i. If
Ri ∈ (

lk−1,i, lki
)
, let ai = lk−1,i and bi = lki for

k = 2, 3, . . . , 23.
- However, if Ri ∈ (l23,i,C), the type of path should
be redefined because a non-fatal event for the subject
did not occur before the time of the last observation.
Thus, if C ≤ Ti, the ith subject is defined as being
censored without experiencing a non-fatal event, i.e.,
i ∈ B1. Otherwise, the ith subject is defined as being
dead at time Ti without experiencing a non-fatal
event, i.e., i ∈ B2.

• Step 3: Let u32i and u34i be random numbers
generated from uniform distributions on the intervals
(1 − exp{�32(Li|zi,wi,ui)}, 1) and
(1 − exp{�34(Li|zi,wi,ui)}, 1), respectively, where
�3j(s|zi,wi,ui) = ηi

[
(β3jzi)s + exp{α3jwi}θ3jsγ3j

]
, for j = 2, 4.

Now redefine Ri and Ti as the roots s of the
equations:

�32(s|zi,wi,ui) + log(1 − u32i) = 0

and

�34(s|zi,wi,ui) + log(1 − u34i) = 0,

respectively. If C ≤ Ri ∧ Ti, the ith subject is defined
as being censored without experiencing a non-fatal
event after LTF, i.e., i ∈ B5. If Ti ≤ Ri, then the ith
subject is defined as being dead without experiencing
a non-fatal event after LTF, i.e., i ∈ B6. However, if
Ri < Ti, move to Step 4.
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Table 5 Patients’ characteristics of ages at entry, at demensia (DM) diagnosis, at death after DM, at death without DM, and at death
after LTF

Gender

Women Men

Certificate Certificate

All With Without With Without

mean mean mean mean n mean

Age n (±SD) n (±SD) n (±SD) n (±SD) n (±SD)

at entry 1000 75.0 456 76.0 122 74.4 306 74.7 116 72.8

(±6.84) (±7.03) (±7.02) (±6.67) (±5.61)

at DM diagnosis 186 83.3 109 84.2 17 83.3 45 81.5 15 81.9

(±5.46) (±5.60) (±5.39) (±4.92) (±4.99)

at death after DM 127 87.6 72 88.8 10 88.9 36 85.4 9 84.8

(±5.93) (±6.21) (±5.19) (±5.23) (±4.12)

at death without DM 438 84 170 85.9 47 84.5 161 82.8 60 81.1

(±7.03) (±7.17) (±6.91) (±6.44) (±6.78)

at death after LTF 159 87.2 80 87.7 20 86.3 43 87.3 16 85.9

(±6.42) (±6.04) (±6.85) (±6.75) (±7.12)

• Step 4: Let u42i be a random number generated from
a uniform distribution on the interval
(1 − exp{�42(Ri|zi,wi,ui)}, 1), where
�42(s|zi,wi,ui) = ηi

[
(β42zi)s + exp{α42wi}θ42sγ42

]
.

Redefine Ti as the root s of the equation,

�42(s|zi,wi,ui) + log(1 − u42i) = 0.

If C ≤ Ti, then the ith subject is defined as being
censored at time C after experiencing LTF and a
non-fatal event, i.e., i ∈ B5. Otherwise, the ith subject
is defined as being dead at time Ti after experiencing
LTF and a non-fatal event, i.e., i ∈ B6.

In the simulation settings, we consider three types of
regression coefficients (i.e., ‘even’, accelerated (‘acc’), and
decelerated (‘dec’)) as well as three types of LTF propor-
tions (i.e., ‘low’, ‘moderate’, and ‘high’). For the ‘even’ type,
there are no differences in the effects of the covariates
on the hazard rate of death before and after experienc-
ing a non-fatal event. That is, α02 = α12 = 0.01 and
β02 = β12 = 0.004. Meanwhile, for ‘acc’ and ‘dec’, increas-
ing and decreasing effects are noted on the hazard rates

Table 6 P-values of the test used to check the proportional
hazard assumption for each transition model

Covariate
Transition models

0 → 1 0 → 2 1 → 2 0 → 3 3 → 2

Gender 0.063 < 0.001 0.093 0.354 0.062

Certificate 0.963 < 0.001 0.147 0.754 0.148

of death, respectively. That is, α02 = 0.01, α12 = 0.0125,
β02 = 0.004, and β12 = 0.005 for ‘acc’, whereas α02 = 0.02,
α12 = 0.01, β02 = 0.008, and β12 = 0.004 for ‘dec’.
For the rest of the regression coefficients, we set β01 =
β03 = β32 = 0.004 and α01 = α03 = α32 = 0.01.
Moreover, we set θ03 = 0.00075, θ03 = 0.002, and θ03 =
0.004 for the ‘low’, ‘moderate’, and ‘high’ types, respectively.
The remaining shape parameters of the baseline transi-
tion intensities were set as θ01 = θ32 = 0.002 and θ02 =
0.001. Tables 1, 2, and 3 provide the relative bias (‘r.Bias’),
standard deviation (‘SD’), average of the standard errors
(‘SEM’), and coverage probability (‘CP’) of 95% confidence
intervals for the regression parameters and the variance
estimate of the frailty distribution, respectively, according
to the three LTF proportions. For comparison purposes
with the proposed approach (‘proposed’), each table also
displays the results obtained by simply assuming that a
non-fatal event occurred at the end of the right endpoint
of the interval (‘imputed-by-the-right-endpoint’). When
the type of the regression coefficients is fixed at ‘even’, ‘acc’,
or ‘dec’, the CPs of the regression parameters correspond-
ing to the ‘proposed’ case are close to a nominal level of
0.95 irrespective of the LTF proportions, whereas those of
the regression parameters such as b01 and b03, are much
smaller than 0.95 for the ‘imputed-by-the-right-endpoint’
case. For the results based on the ‘proposed’ method,
as the proportion of LTF increases, the mean squared
error (MSE) for estimates of some regression parameters
(e.g., a03, a32, and b32) decreases, while the MSE of other
regression parameters (e.g., a02, b02, and b03) increases,
regardless of the type of regression coefficients.
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Fig. 2 Diagnostic plots showing the constancy of the coefficients in the PAQUID data. Each plot shows a component of the time-varying coefficient
against the ordered time. A spline smoother (solid line) is shown together with the ±2 standard deviation bands (dashed lines)

Sensitivity analysis is also conducted to investigate how
the estimator of the parameter behaves with different
frailty distributions. For simplicity of computation, we
consider only the ‘even’ case for the regression parame-
ters and the ‘moderate’ LTF proportion. Three different
frailty distributions are used, along with a normal distri-
bution with a mean of zero and a variance of 0.01. These
are uniform, double exponential, and gamma distributions
with specific parameter value(s), for which the mean and
variance of each distribution are the same as those of
the normal distribution. Simulation results are provided
in Table 4. We compare the results of the three distribu-
tions with those of the normal distribution. The uniform
and double exponential distributions are symmetric, like
the normal distribution. However, the uniform distribu-
tion has thinner tails than the normal distribution, while
the double exponential distribution has heavier tails than
the normal distribution. Alternatively, unlike the normal
distribution, the gamma distribution is an asymmetric
distribution. Overall, there are no differences in the val-
ues of r.Bias and CP between the three distributions and
the normal distribution. This implies that the proposed

estimators are robust to misspecifications of the frailty
distribution.

Illustrative data analysis
PAQUID data were collected to investigate the effects of
dementia on mortality. Samples were taken from com-
munity residents of two southwestern regions (Gironde
and Dordogne) of France [7]. The population consists of
elderly people of ages 65 or above, between 1988 and
1990, whose socio-demographic characteristics and men-
tal health status were recorded every two to three years.
A total of 3675 persons was selected to participate in the
study; among these individuals, 832 (22.6%) were diag-
nosed with dementia, 639 of whom died. The remaining
2843 participants (77.4%) did not experience dementia but
2298 of them died.
In this article, we performed an analysis based on

‘paq1000’ data, which included 1000 randomly selected
observations from the PAQUID data [21]. The paq1000
data consist of several pieces of information, such as
the mental health status (diagnosed with dementia or
dementia-free), dead or alive status, age (including a n’s
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age at the start of study, their age at the last dementia-free
visit, their age when they were diagnosed with dementia,
their age at their time of death, and their age at censoring),
gender, and educational background (educated or non-
educated in terms of graduation of elementary school, say
certificate). When a person who was not diagnosed with
dementia at their last visit has not been traced for more
than four years, this person is assigned to the LTF cate-
gory. Table 5 shows summary statistics to briefly grasp the
subjects’ characteristics including ages at entry, at demen-
tia diagnosis, at death after dementia, at death without
dementia, and at death after LTF. A total of 231 persons
was categorized as LTF; among these, 159 (68.8%) died.
Moreover, 127 (68.3%) persons out of the 186 who experi-
enced dementia died, and 438 (75.1%) persons out of the
583 dementia-free persons died. Moreover, age at demen-
tia diagnosis is higher for women than for men regardless
of the education group (with certificate or without cer-
tificate). The same trend is observed both at age after
dementia and at age without dementia. Meanwhile, age at
death after LTF is a bit higher for women than for men.
First, we check to see whether each covariate satis-

fies the proportional hazards assumption by using the
test procedure of [22] and the Schoenfeld residual [23].
Figure 2 shows diagnostic (scattered) plots of the scaled
Schoenfeld residual versus age. In each plot, we mark a
spline smoother (solid line) as well as two standard devia-
tion bands (dashed lines). In the curve showing the effect
of gender, there is a decreasing trend on transitions 0 → 1
and 0 → 2, an increasing trend on 1 → 2 and 3 → 2,
and a quite steady pattern for 0 → 3. In the curve showing
the effect of certificate, there is a prominent decreasing
trend for transition 0 → 2, while the other transitions
show steady patterns. Table 6 provides the p-values for the
test results [11]. For the gender effect, only the p-value
for transition 0 → 3 is greater than 0.1, which seems
to violate the proportional hazards assumption. Alterna-
tively, the p-values for all transitions for the certificate
effect, with the exception of 0 → 2, are greater than 0.1.
This seems to satisfy the proportional hazards assump-
tion. Thus, we put ‘gender’ into the additive side and
‘certificate’ into the multiplicative side for future analyses:

λrs(t|z = gender,w = certificate,u)

= exp(u)
{
βrsz + exp(αrsw)θrsγrstγrs−1}

for (r, s) ∈ A.
Table 7 shows a summary of the estimation procedures.

We provide the estimates of the regression coefficients
along with their standard errors and p-values. For the
transition from H to LTF (0 → 3), the intensities for
women are larger than for men, with a value of 0.00849
(849 out of 100000 persons). However, this turned out

Table 7 Regression parameter estimates (Est) with the
accompanying standard errors (SE) and p-values (P)

Covariate Param Est SE P

Gender β01 -0.0156 0.0132 0.245

β02 0.0295 0.0136 0.004

β12 0.0101 0.205 0.961

β03 -8.49×10−3 0.0108 0.439

β32 6.19×10−3 1.57×10−3 < 0.001

Certificate α01 -2.10×10−3 0.190 0.991

α02 -3.00×10−5 0.128 0.999

α12 3.90×10−5 0.621 0.999

α03 -9.80×10−4 0.151 0.995

α32 3.85×10−4 1.133 0.999

σ 2 0.999 2.55×10−3 < 0.001

to be insignificant with a p-value of 0.439. For the inten-
sity of the 3 → 2 transition, a reversed outcome was
obtained, with a value of 0.00619 for men with a very
significant p-value of less than 0.001. For the 0 → 1 tran-
sition, women showed a larger intensity than men with
a value of 0.0156, yielding a non-significant result with
a p-value of 0.245. For the 1 → 2 transition, the inten-
sity for men is similar to that for women, with a value of
0.0101 and a p-value of 0.961. Finally, for the 0 → 2 tran-
sition, the intensity for men is larger than for women with
a value of 0.0295 along with a significant p-value of 0.038.
Meanwhile, all transition intensities of the non-educated
group are similar to those of the educated group. Finally,
the estimate for the variance σ 2 on the common frailty
is 0.999 with a highly significant p-value less than 0.001,
showing non-homogeneity between clusters classified by
the age at entry. Figure 3 shows five transition intensities
over age by gender and certificate and estimated normal
frailties of each cluster. As presented in Fig. 3, the tran-
sition intensities of 0 → 1 and 0 → 3 are higher for
women than for men over age regardless of the education
group, while these trends are reversed for the 0 → 2 and
3 → 2 transitions. For the transition 1 → 2, no difference
is observed between women and men, but there is a sig-
nificantly monotone increasing trend over age. These are
consistent with the results in Table 7.

Conclusions
We considered a multi-state model for semi-competing
risks data, for which there exists information on fatal
events, but information on non-fatal events may not be
available due to lost to follow-up. More precisely, we
proposed an additive and multiplicative random effect
model by combining the additive risk model [16] with
the proportional hazards model [8, 9] in order to derive
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A B C
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Fig. 3 Five transition intensities over age by gender and certificate: 0 → 1, 0 → 2, 1 → 2, 0 → 3, 3 → 2 transitions and estimated normal frailties of
each cluster classified by age at entry

the conditional likelihood function. An adjusted impor-
tance sampling method was used to compute the marginal
likelihood function, where the MLEs for the regression
coefficients were obtained by an iterative quasi-Newton
algorithm. The proposed model was illustrated using
PAQUID data and yielded several promising results. The
risk of transition from a healthy state to dementia is
higher for women. However, the risk of death is higher
for men regardless whether a subject is diagnosed with
dementia or not. Meanwhile, the risk of transition from a
healthy state to dementia is higher for the educated group.
The risk of death after being diagnosed with dementia is
higher for the educated group; however, a reversed result
is observed for non-diagnosed subjects. Furthermore, we
conducted simulations with finite-sample sizes to investi-
gate the efficiency of the proposed estimators. In partic-
ular, we considered nine combinations of three different
types of regression coefficients and three different types
of LTF proportions. In general, the coverage probabilities
of the regression parameters are close to a nominal level
of 0.95 in most cases. Moreover, according to a referee’s
suggestion, we investigated influence of parameter esti-
mation when LTF is omitted (not censoring) in our sim-
ulation studies. Finally, we performed simulations with
the same realizations generated from each configuration
included in Tables 1, 2, and 3. Based on the results not
reported here, the CP of parameter β01 is extremely lower
than a nominal level of 0.95 for all configurations. In

addition, when the type of regression coefficients is ‘dec’,
the CP of parameter β02 is much smaller than 0.95 regard-
less of types of LTF proportions. Moreover, compared to
each table, namely, Tables 1, 2, and 3, the relative bias
of β01 increases around ten times for all configurations.
This is the reason omitting LTF results in route changes
of subjects included in routes 5 and 6 at the data gener-
ation stage, i.e., from route 5 to 1 (when the fatal event
is censored) or from route 6 to 2 (when the fatal event is
observed) according to the fatal status of subjects.
The proposed model has some drawbacks. At the ini-

tial stage of this research, as developed in [8, 9, 16], we
intended to consider a semi-parametricmodel incorporat-
ing five transition intensity models. However, it was quite
difficult to handle nonparametric estimation procedures
for the baseline transition intensity associated with the
nuisance parameter because the total number of param-
eters is proportional to the number of subjects. Rather,
we assumed a Weibull distribution for the baseline tran-
sition intensity; further research should be carried out to
avoid the use of this specific distribution. To circumvent
arbitrariness, it is necessary to calculate the Nelson-Aalen
estimators for the cumulative baseline transition intensity
[8, 9, 16] and extend this method to semi-competing risks
models based on the profile likelihood function. Another
plausible remedy would be to apply a spline smoothing
method on the baseline transition intensity proposed by
[24, 25]. In the additive and multiplicative hazards model
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with frailty, one could use a semi-parametric Bayesian
approach by assuming a prior distribution on the log-
normal frailty. Subsequently, conventional Markov Chain
Monte Carlo computation would be proceeded for the full
conditional distribution on the frailty [26, 27].
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